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Abstract—In wireless sensor network (WSN) deployments,
Receiver-side Collision Detection (RCD) has been proposed for
speeding up collaborative feedback collection from a singlehop
neighborhood. Using RCD, an initiator node can query the
existence of a predicateP in its neighborhood in constant time
by making all P -positive nodes answer simultaneously. Despite
the collisions, the initiator is still able to infer useful information
from a broadcast using RCD: an activity in the network means
the predicateP holds for at least one node while silence indicates
that P does not hold at any queried node in the network.

In this study we investigate the threshold querying problem,
where the initiator has to learn whether P holds in the network
for at least threshold t number of nodes in singlehop of the ini-
tiator. To answer the threshold queries in an efficient fashion, we
present a number of adaptive RCD-based querying mechanisms
that dynamically re-groups the queried nodes in the network. We
evaluate our algorithms on a real sensor network implementation
and also carry out several simulations to contrast our approach
with the traditional techniques. The experiments reveal that our
algorithms achieve significant time improvements in threshold
queries over traditional techniques.

I. I NTRODUCTION

Wireless sensor networks (WSNs) comprise of a large
number of inexpensive low-power sensor nodes that are
spread accross an area for the purpose of monitoring the
pyhsical environment [2], [3], [22], [24]. Each sensor node
is battery powered and has certain amount of processing
power, short-range wireless communication capabilities and
integrated sensors. The large scale deployment of sensor
networks and the resource scarcity of sensor nodes motivate
the need to design efficient data aggregation and in-network
information processing techniques. In order to cope with the
bandwidth, energy and latency concerns related to centralized
approaches, in-network processing has been advocated and
widely adopted [1], [9], [15], [19]. In-network information
processing exploits the computation capacity of sensor nodes
to process data locally close to where it originates from. This
can be achieved either by (1) summarizing the data relayed
towards basestation or (2) performing decisions locally to
avoid contacting the basestation for each decision made.

An example of both scenarios appears in intrusion detection
applications, where a node that locally detects an event,
initiates a protocol to collect the feedback of its neighboring
nodes to confirm the event. Each positive answer indicates the
detection of a threat at the corresponding participant node. The

initiator then decides on the action to perform based on the
number of positive answers from the queried participants. For
example, if at least a thresholdt number of positive nodes
report to the initiator, the initiator notifies the basestation of
the threat, and otherwise it logs the event as a false-positive.
In such a scenario, the initiator does not need to know the
identities of the responding nodes or even the exact number
of detected threats. It is only concerned about whether the
number of detected threats is above the threshold value. We
call this as thethreshold querying problem.

Due to the absence of a priori knowledge of which nodes
will report positive, the initiator cannot propose a reporting
schedule that includes only the positive nodes1. In order to
avoid collisions, all nodes in the network should be assigned a
different time slot to reply. In the worst case, such an approach
has a time complexity ofO(n) wheren denotes the number of
nodes in the network. This does not scale well as the number of
nodes increase and hence it is impractical for dense networks.

An alternative solution to the threshold querying problem
is to set no ordering on the reply messages and use CSMA
to provide successful delivery of the messages. This solution
has a time complexity ofO(x log x) wherex is the number
of positive answers to the query. Although CSMA achieves
a decent time whenx is small, it has an unacceptably high
time cost when asx gets larger. Moreover, CSMA is prone to
message collisions and loss due to hidden terminal problem,
and the situation worsens for largex. Thus, it is impossible to
tell whetherx>t or x<t holds with certainty using CSMA.

In this study, we investigate Receiver-side Collision Detec-
tion (RCD) approaches for collaborative feedback collection
from singlehop. Recently Demirbas et al. proposedpoll-
cast [10], an RCD based primitive for collaborative feedback
collection in WSNs. Using pollcast, an initiator node can
query the existence of a predicateP in its neighborhood
in constant time by making all theP -positivenodes answer
simultaneously. Despite the collisions, the initiator is still
able to infer useful information from a broadcast using RCD:
an activity in the network means the predicateP holds for
at least one node, while silence indicates thatP does not
hold at any queried node. RCD based approaches, such as
pollcast, are particularly well suited for applications where

1Nor can the positive nodes coordinate to agree on such a schedule easily.



traffic explodes in a bursty manner and a fast response is
required. By performing tests on cleverly chosen groups of
nodes, RCD based approaches are able to scale well with
increasing number of positive nodes in the network.

More specifically, in this paper, we tackle the problem of an-
swering threshold queries in WSNs efficiently by a variation of
group testing. We propose a family of algorithms to implement
a threshold querying primitive,tcast. We discuss the basic
algorithm in Section IV. In the basic algorithm, which was
derived from [4], the initiator first partitions the nodes into 2t
equal-sized groups, and then using pollcast the initiator queries
each group (bin) one after the other. Each positive node in a
group sends its reply message simultaneously. In this process,
in-group collision does not pose a problem since this method
does not require the acquisition of messages correctly. After
one such round, the initiator marks to exclude the nodes in
the silent groups from the next rounds, and re-calculates the
range of valuesx can have, and if threshold question cannot
be precisely answered with the available data, it moves on to
the next round to repeat the same process.

Using the above process the initiator gets a precise answer
for the threshold value inlog N

2t
rounds wheret is the threshold

andN is the total number of participant nodes. The intuition
behind this result is as follows. At a given round there are
two cases to consider 1)t groups replied positively, hence
threshold is reached and algorithm stops, or 2) more thant
groups returned silence meaning that the initiator can exclude
all the nodes in those groups in the next round (i.e., the number
of nodes to be queried has at least halved in this round).
Note that in the worst case the algorithm terminates when
the number of nodes to be queried reduces below2t, and,
hence, the upperbound on the rounds forlog N

2t
. In Section V,

we present an extended version of this algorithm, where the
group number selection is performed adaptively with respect
to the estimate that the initiator has aboutx, the number of
positive nodes.

In Section VI, we adopt a probabilistic approach for thresh-
old querying in applications where the expected number of
positive answers follows a bimodal distribution. For example,
in an intrusion detection WSN deployment withn nodes, we
may know from the system model in advance that at any time
either there is a false detection with a few positive answers
(x < t1) or a true detection with a significant number of
positive answers (x > t2), where t1 ≪ t2. In this case,
the probabilistic sampling approach we adopt from the data
stream algorithms community [18] enables us to find the result
with high probability using a constant number of queries,
independent ofn, x, andt.

We conducted several simulations and experiments to eval-
uate the effectiveness of our algorithms. Our results show that
tcast primitive is especially low-cost forx≪ t andx≫ t, and,
naturally, requires more queries forx ≈ t, wherex denotes the
number of positive nodes andt denotes the threshold. Since
x ≈ t is the rare case andx≪ t andx≫ t are the common
cases in most realistic detection applications, tcast provides
an effective and efficient solution. Our results also show that

while CSMA performs well for smallx, tcast performs much
better than CSMA as the number of positive replies increase,
due to the inherent scaling problem of CSMA. We discuss
these experiments in the corresponding sections in the paper.

While we present the tcast operation for the WSN domain,
the tcast operation may also be useful and adopted for RFID
inventory management systems due to the scalability require-
ments of those systems [25].
Outline of the paper. We discuss the related work in Sec-
tion II. In Section III, we present the design issues behind our
methods and also provide a description of the system model.
Then in Section IV, we present the basic tcast algorithm along
with its implementation and simulation results. In SectionV,
we present our adaptive bin number selection algorithm, andin
Section VI we describe our probabilistic solution to threshold
querying. We conclude the paper in Section VII.

II. RELATED WORK

A. Singlehop collaborative feedback primitives

For exploiting the time advantage of simultaneous trans-
mission while alleviating the effects of collisions Demirbas
et al. proposed a two phase polling primitivepollcast [10]
which exploits RCD. Pollcast implements RCD by using the
Clear Channel Assessment (CCA) signal from the radio chip.
In a later study, Duttaet al. [14] presentedbackcast, a three
phase primitive where a poller initially broadcasts a predicate
message that contains an ephemeral identifier. All nodes for
whichP hold, start listening on that ephemeral identifier. Then
the poller multicasts a poll message to the ephemeral address
specified by the predicate message, and all nodes that match
the destination respond with identical hardware acknowl-
edgments (HACKs). The poller radio receives these HACK
packets to detect the existence of one or more positive answers
within the queried nodes. In backcast, HACKs are identical
and thus interfere non-destructively, so the radio can latch
onto and decode the superposition of multiple simultaneous
HACKs. The advantage of backcast is that it provides a very
robust implementation of pollcast primitive in the presence of
interferences. Since the initiator radio is tuned to the HACK,
it is unaffected by other interference. Traffic from neighboring
regions cannot trigger a false-positive on HACK, and hence
backcast is suitable to do singlehop feedback collection even
in noisy multihop network environments.

Both pollcast and backcast are designed for “at least one
positive answer” semantics, and they do not solve the threshold
querying problem directly. However, as we show in our
algorithms we can build a threshold querying solution using
pollcast and backcast as building blocks.

In [13], a method which is also capable of detecting the
exact neighbors that participate in voting has been proposed.
Their method is based on the well-knownOrtogonal Fre-
quency Division Multiplexing(OFDM). However, this method
is designed for 802.11 type wireless networks and the com-
plexity of the method makes it infeasible for WSN radios.

Aspnes at al. [4] study the more general problem of
computing an arbitrary aggregate functionf over the bits of
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information in the sensor nodes and proves asymptotic bounds
on the number of pollcast/backcast queries needed to compute
f . Their main result is that the number of queries is very
closely related to the “fatness” of the best “decision tree”for f .
In this paper we only consider the case whenf is the threshold
function. For the threshold function, Aspnes at al. show that
O(t log(n/t)) queries suffice andΩ(t log(n/t)/ log t) queries
are necessary. In fact, theO(t log(n/t)) bound is proved by
the “2tbin algorithm” in Section IV.

Unlike the theoretical results in [4], which are asymptotic
in nature and are geared towards the worst-case input, in this
paper we try to achieve good bounds for every possible input.
Further, we also care about the constants in the upper bounds,
which [4] did not. Finally, this paper investigates practical
issues in the implementation of the threshold primitive and
compares and contrasts this primitive with existing alterna-
tives.

B. WSN programming abstractions

Several programming abstractions have been proposed for
WSNs [17], [26], [27]. Our tcast primitive can be employed by
these programming abstractions for implementing quick and
ad hoc feedback collection from singlehop. Singlehop wireless
broadcast has been identified as a narrow-waist suitable for
standardization efforts in the WSNs [7]. Our tcast primitive
supports in-network processing, and may help boost these
standardization efforts.

C. Applications

Some applications of tcast operation are false-positive sup-
pression, clustering, and the querying of the neighborhoodfor
debugging purposes. These uses-cases are especially prevalent
in intrusion survillance applications [2], [3] for querying of
the neighborhood for classification of an intruder (say as
a soldier, car, or tank) by counting the detections in the
neighborhood. Other applications that involve these uses-cases
include pursuer-evader tracking [8] and using robots as mobile
basestations in WSNs [11], [21]. Finally, tcast operation may
also find use-cases in RFID inventory management systems
due to the scalability requirements in those systems [25].

III. M ODEL

In our model, one of the nodes is designated as an initiator
for a threshold querying session. The initiator is not necessar-
ily more powerful than other nodes in terms of energy, memory
or computational resources. Any node can become the initiator
and start a threshold querying session.

We model the threshold querying problem in a group
testing framework. We haveN participant nodes (excluding
the initiator), wherex (unknown to the initiator) of the nodes
arepositiveand the remainingN −x nodes arenegativewith
respect to a query predicateP . The goal of the initiator is
to find out in fewest number of queries whether the amount
of positive nodes exceed a thresholdt or not. For solving
it efficiently, the initiator can divide the nodes intob bins
(groups) and then query each bin with one query cost. We say

that a bin isemptyif there is no positive node in the bin, and
a bin isnonemptyif there is at least one positive node in the
bin. When the initiator queries a bin, it can only learn whether
the bin is empty or nonempty.

Although our querying model is the same as that of group
testing [12], our objectives are different. Group testing aims
to determine the positiveness or negativeness of each node,
whereas in threshold querying our objective is to answer
whether threshold number of positive nodes exists or not.

A. 1+ versus2+ Collision Model

We consider two models in this study based on the capa-
bilities of the radios. In1+ model, there is either silence or
channel activity in the vote phase. If the leader node does
not hear any reply to its query, it understands that no nodes
hold the query. If there is an activity, it cannot identify the
message and therefore cannot be sure whether there is only a
single message or multiple messages. This scenario is simple
and does not require the acquisition of any message and can
be accomplished by just monitoring the channel activity using
a method such as RSSI, CCA, or by HACKs.

In 2+ scenario, the radio has the capability of locking to
a message and receiving it correctly while omitting all other
messages. In case of an activity in the channel, the initiator can
get the message if there is only one reply. Moreover, due to the
capture effectphenomena [28], there is a chance to get one of
the messages when there are multiple replies with decreasing
probability as the number of messages increase. This situation
also has an important side effect: If there was no capture effect,
when a message is received correctly in2+ scenario, it would
be certain that there is only one replier. Thus, all nodes in
that group except the replier could be excluded from the next
round since it is clear that none of them has a positive answer
to the query. But in the presence of capture effect, when a
message is received correctly, it is not certain that it is the
only positive reply. Therefore no other nodes can be excluded
from the next round. The advantages of2+ scenario over1+

can be listed as follows:

• When an activity is detected but no message is received,
we can conclude that at least two nodes replied.

• When a message is received correctly, since we can get
its node ID, we can exclude it from the next round.

B. Network Model

We assume all nodes are within singlehop, however, the
tcast operation can also be used to query a singlehop neigh-
borhood in a multihop WSN. As we discussed in the related
works section, the backcast operation is tolerant to interference
from neighboring regions in that it will not have false-positives
due to interference. (Since the initiator concludes a “non-
empty” feedback only if it receives a HACK, the interference
cannot yield a false-positive “non-empty” decision.) As a
result, using backcast as a building block, tcast is also tolerant
to false-postives due to interference. However, backcast (and
as a result) can still be prone to false-negative decisions in
a multihop environment, because due to interference from
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neighboring regions the initiator may not lock onto a HACK
successfully. While superposition of HACKs strengthen the
signal and improve the probability of successful receptioneven
in the presence of other interference, there are no guarantees
for the absence of a false-negative. Employing another service
for reducing interference from neighboring regions can help
improve the situation further. Testing and evaluation of tcast
in a multihop network environment with interfering traffic is
part of our future work.

IV. BASIC TCAST ALGORITHM

In this section, we give a basic tcast algorithm in Sec-
tion IV-A, and a small variation of this algorithm in Sec-
tion IV-B. We present simulation results for these algorithms
in Section IV-C. Finally, in Section IV-D, we present experi-
ment results from our implementation of the basic algorithm
on the WSN motes, which corroborates the findings in our
simulations.

A. 2tBins Algorithm

We present the 2tBins algorithm in Algorithm 1. This algo-
rithm is the same as the algorithm we discussed in [4] with the
exception that the distribution of nodes to the bins is performed
randomly here whereas it was performed deterministically
in [4].

In the beginning of each round, the initiator divides the
sensor nodes into2t equal-sized groups (bins) randomly, hence
the name 2tBins. The initiator also resetssilentBins to 0 at
the start of a round. The initiator then starts querying each
group one after the other. If a group responds to the query
with silence as in Line 7, the initiator knows that all nodes
in this group are negative and excludes those nodes fromn,
the set of nodes that may potentially be positive. In this case,
the initiator also increments thesilentBins count by 1. The
initiator then checks whether it can terminate the algorithm
yet. On Line 11, the initiator checks whether it has seen at
least t non-empty bins in this round. Since a non-empty bin
implies at least one positive node, the condition on Line 11
guarantees that the initiator can declare that the threshold is
satisfied by the nodes. On Line 14, the initiator checks whether
it can conclude that the threshold is impossible to satisfy and
terminate the algorithm. This is clearly the case if|n| < t.

When the initiator completes querying all the groups in
a round, it moves to the next round and repeats the same
process with the remaining nodes inn. Notice that, at the
end of each round, the initiator manages to halven from
the previous round: Since the algorithm did not terminate in
the previous round, that impliessilentBins ≥ t, in another
words at least half of the2t bins queried have been detected
as empty and the nodes in those bins have been disposed. In
the worst case scenario, by assuming that at each roundt + 1
bins are discarded, we get an upper bound of2t · (log N

2t
)

queries for the query cost of the 2tBins algorithm. In the
average case, the algorithm achieves much better results as

1Note that in the worst case the algorithm terminates whenn reduces below
2t, hence the upperbound on the rounds forlog N

2t
.

we show in Section IV-C. Since in the companion theoretical
work [4], we had proved thatany algorithm needs to make
Ω(t · (log(N/t) · log t)) queries for solving threshold querying
problem, our 2tBins algorithm is optimal up to alog(t) factor.

Algorithm 1 2tBins algorithm
1: Given P poll predicate,t threshold value,n set of voters
2: ForEach roundDo
3: silentBins← 0
4: Group nodes inn into 2t equal-sized bins randomly
5: ForEach groupg Do
6: Multicast the poll predicateP to groupg
7: If groupg is silentThen
8: remove nodes ing from n
9: silentBins + +

10: EndIf
11: If g.index− silentBins ≥ t Then
12: Returntrue //threshold achieved
13: EndIf
14: If |n| < t Then
15: Returnfalse //threshold is impossible to achieve
16: EndIf
17: EndFor
18: EndFor

B. Exponential Increase Algorithm

It is easy to see that 2tBins algorithm can become wasteful
for x ≪ t. For instance, forx = 1 and t = 2 the 2tBins
algorithm pays at least2t querying cost in the first round,
and upto a total of2t · log N queries in total. To address this
inefficiency with respect to smallx values, we present a small
variation of the 2tBins algorithm, calledexponential increase
algorithm.

We present the exponential increase algorithm in Algo-
rithm 2. This algorithm differs from the 2tBins algorithm only
in Lines 1, 4, and 18. In the first round, the initiator divides
the nodes intobinNum = 2 groups and starts by testing
these two groups. This is for eliminating a large number of
negative nodes quickly for improving the performance for the
casex ≪ t. At the end of each round, as shown in Line 18,
the initiator doubles thebinNum to get the number of bins to
be used in the next round. This doubling is used for increasing
the number of bins quickly so that the algorithm also handles
the case wherex≫ t.

We tried some variations on the exponential increase algo-
rithm as well. One variation was apause-and-continuescheme
which does not double the number of groups if a significant
number of nodes are eliminated in a round, and continues
with doubling if that is not the case. Another variation was to
increase the number of groups in the next round to four-folds
rather than two-folds of the number in the current round when
all groups tested non-empty. We experimented with both of
these variations in simulations extensively but neither ofthem
gave a consistent improvement. Therefore, we excluded these
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results from the paper, so in Section IV-C we discuss results
for the basic exponential increase algorithm.

Algorithm 2 Exponential Increase algorithm
1: binNum← 2
2: ForEach roundDo
3: silentBins← 0
4: Groupn into binNum equal-sized bins randomly
5: ForEach groupg Do
6: Multicast the poll predicateP to groupg
7: If groupg is silentThen
8: remove nodes ing from n
9: silentBins + +

10: EndIf
11: If g.index− silentBins ≥ t Then
12: Returntrue //threshold achieved
13: EndIf
14: If |n| < t Then
15: Returnfalse //threshold is impossible to achieve
16: EndIf
17: EndFor
18: binNum← binNum ∗ 2
19: EndFor

C. Tcast Simulations

Simulation setup. We assume every node is in the single-
hop neighborhood of each other. We repeated each configu-
ration with 1000 runs and calculated the average number of
queries. Note that when a bin is empty, we do not count it
as a query and skip it. In the experiments it is handled by
arranging the order of bins so that empty bins are at the end.
Since early termination is used in all experiments these empty
bins never occupy a time slot in the simulations.

We compared our tcast algorithms with two simple solu-
tions: CSMAandsequential ordering.

In CSMA, we put no restriction on the reply times of the
nodes. The nodes use carrier sensing and send when they sense
the medium as idle. In case of a collision they use exponential
backoff to calculate the next time slot to send their messages.
The initiator does not need to wait to receive all the replies,
the initiator declares the querying finished when it receives
sufficient number of answers from the nodes to conclude either
x ≥ t or that it is impossible achieve the threshold.

In sequential ordering, the initiator assigns a sequence
number for all participating nodes to enable the nodes to send
the reply messages without collisions. To implement sequential
ordering, the initiator puts the nodes in order, calculates
the reply sending times for each node and then broadcasts
the schedule. The problem with this solution is the time
syncronization requirement to prevent inconsistencies between
the local clocks of the nodes. An alternative implementation is
to make the initiator contact the next node after a successful
message reception from the previous node. This alternative
takes longer but avoids the time synchronization requirement.

In our simulations we used the first solution which favors the
sequential ordering results more.
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Fig. 1. Performance of tcast in 1+ scenario

1) 1+ Simulations: Figure 1 shows the simulation results
for 1+ scenario. The figure shows that while the tcast primitive
is low-cost forx ≪ t and x ≫ t, for x ≈ t tcast requires
naturally more queries. Under the observation thatx ≈ t is
the rare case andx≪ t andx≫ t are the common cases in
most realistic intrusion detection applications, tcast provides
an effective and efficient solution.

Figure 1 also shows the comparison of CSMA with the
methods proposed in this study. CSMA cost increases propor-
tional to x, and while CSMA is acceptable forx << t, it
becomes inacceptable forx > t. For largen the overhead of
CSMA becomes more significant.

In the comparison of theexponential increasescheme with
the 2tBins scheme, we see that whenx ≪ t, exponential
increasealgorithm is more successful since it can aggressively
eliminate the negative nodes. On the other hand, whenx≫ t,
exponential increase performs consistently worse than 2tBins
due to the initial redundant rounds ofexponential increase
scheme in which no node is eliminated.

In all curves of Figure 1, we see that the worst case occurs
whenx ≈ t. This is explained by the fact that when there aret
positive nodes, it becomes harder to determine in a few queries
whether it is less than or more thant. When the number of
positive replies is sufficiently large, the result is found only
in t queries by seeing more thant non-empty groups without
the completion of a round. Thus, the required query number
decreases as the number of responders approaches ton. In the
other direction; whenx ≪ t, again the result is found in a
few queries by observing that many bins are empty so that
even if the remaining bins are full of positive nodes,x ≥ t
is impossible. In the extreme case, when there are no positive
replies, the query number becomes(n − t)/( n

2t
) where n

2t
is

the number of nodes in a group andn − t is the required
number of nodes that should be eliminated so that at mostt
nodes remain.

Figure 1 shows that the sequential ordering scheme starts
with a large cost overhead (approximatelyn − x) for x ≪ t.
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The query cost of sequential ordering starts to become more
acceptable only forx≫ t.

��

��

��

��

��

��

�
�

	



�
�


�
�


�
�

�
��

�
�

��������

����������

����������

���������� 
!�"���������

���������� 
!�"���������

�

�

��

��

��

��

��

��

��

� � �� �� �� �� ��

�
�

	



�
�


�
�


�
�

�
��

�
�

��	
��
��
������#�
��� ���

��������

����������

����������

���������� 
!�"���������

���������� 
!�"���������

Fig. 2. Performance of tcast in 2+ scenario

2) 1+ model versus 2+ model:As expected, Figure 2
shows that using2+ collision model we can achieve lower
number of queries compared to the1+ model. This superiority
results from the two advantages of2+ scenario over1+: First,
in case of a collision2+ can deduce that at least two nodes
replied in that group while1+ can detect the existence of
one positive reply. Second, since2+ is capable of getting the
identity of a node correctly, it is possible to exclude this node
from the next round.

The superiority of2+ is especially evident aroundx = t−1
in the 2tBins method. This advantage comes from the fact that
most bins contain exactly one positive node around thisp value
and therefore no in-group collision occurs in the time slotsof
these bins. So when we use the2+ scheme, we can identify
and eliminate many positive nodes in the first round and then
start with a very low number of bins in the second round.
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Fig. 3. Performance of tcast as threshold changes

Figure 3 shows the behaviour of tcast as the thresholdt
changes while the number of positive nodesx is kept constant
at 4. The maximum number of queries peaks aroundx = t and
declines ast approaches to 0 orn. Moreover, the relationship

between1+ and 2+ is preserved for allt values supporting
the fact that the latter always performs better than the former.

D. TCast Experiments on the Motes

1) Methodology:In TCast the initiator broadcasts a predi-
cateP along with a group identifier that maps each participant
node to a group, and then query each group separately. For
our implementation, we use backcast [14] as it provides a
robust implementation of pollcast [10]. Backcast employs an
ephemeral identifier to be used for radio hardware address
enabling group querying. Any broadcast to a radio address that
matches the ephemeral identifier triggers a hardware acknowl-
edgement(HACK) from the node. CC2420 radio supports two
hardware addresses 16-bit and 64-bit long addresses enabling
two concurrent backcasts at most. In our experiments, we
employ the radio’s short address to match the ephemeral
identifier.

The 802.15.4 MAC exposes an acknowledgement request
flag. The receiver acknowledges any incoming frame with ac-
knowledgement request flag set if it is configured for automatic
acknowledgements only when the incoming frame passes
both CRC and radio’s hardware address recognition checks.
Importantly, the transmitted ACKs are identical for a given
sequence number, which enables nondestructive superposition
of simultaneous HACKs to be successfully received at the
querying node [6].

2) Setup:We implement our TCast primitive in the TinyOS
2.0 embedded operating system [16]. The experiments are
based on the widely-used Telos motes [20] with the CC2420
radio and IEEE 802.15.4 stack.
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Fig. 4. Experimental results for TCast with 2tBins algorithm

Our experimental setup consists of an initiator and 12
participant TelosB motes. All motes are directly connectedto
a central controlling unit (in our case the laptop) via serial
port interface. The initiator mote exposesconfigure, query
and reboot functions via serial interface to the laptop, while
the participant provides onlyconfigureandrebootprocedures.
The laptop first configures the motes with corresponding run
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settings then stimulates the initiator to start querying the
participant nodes using TCast over the radio and finally the
laptop collects the query result from the initiator by invoking
the corresponding procedures. We repeat each run 100 times.
Each mote is rebooted between two consecutive runs in order
to remove the effect of the previous run.

3) Results: The experiments capture the overall perfor-
mance of TCast for the number of participant nodes is set to 12
and the threshold to 2,4,6 respectively. We implemented 2tBins
algorithm as an example to demonstrate that the proposed
algorithms are applicable and yield similar results to the
simulations. In each scenario, the experimental results shown
in figure 2 follow similar patterns to that of the outlined
simulation results except the fact that we observe some false
negatives due to radio irregularities. We report no false-
positives runs but only 102 false-negative runs out of 7,200
separate TCast. This renders an error rate of %1.4, which
is acceptable given the non-ideal radio assumptions. It is
notable here that majority of the false-negatives occur when
the queried group has only one positive node, a participant
node with positive answer. As the number of superposing
HACKs increase, the error rate slashes down.

V. A DAPTIVE BIN NUMBER SELECTION (ABNS)

The 2tBins Algorithmand Exponential Increase Algorithm
are not designed to adapt tox during the selection of bin
numbersb. For instance, whenx = n, the optimalb value
should bet: Since all bins will be full, t queries will suffice to
find the answer. On the other extreme, ifx = 0, just one bin
that spans all nodes will reveal that no nodes hold a positive
answer to the query. In this section we present an adaptive bin
number selection procedure based on a statistical estimatep
on the expected value ofx.

A. Theoretical Background

Since the initiator does not knowx, the best we can do is
to usep as a guess forx. Since the optimalb value is affected
by p, as well asn and t, we know thatb must be a function
in the form:

b = f (n, t, p) (1)

In order to derivef , we use the following approximate func-
tion g(b) which maximizes the expected number of eliminated
nodes in a query:

g(b) =

(

1−
1

b

)p

·
n

b
(2)

Here,1− 1

b
is the probability of a positive node not entering

a particular bin. Since there arep positive nodes,
(

1− 1

b

)p

gives the probability of a particular bin being empty. We
multiply this probability with n

b
, the expected size of a bin,

to find a good estimate on the expected number of eliminated
nodes in a query. Since we want to maximizeg(b), we take
the derivative of (2) with respect tob and set the result to 0.
The solution gives the optimal value ofb.

∂

∂b
g(b) = 0 (3)

⇒

(

p ·

(

1−
1

b

)p−1

·
n

b3

)

−

((

1−
1

b

)p

·
n

b2

)

= 0

⇒

(

1−
1

b

)p−1

· n · b−3 · (p− b + 1) = 0

⇒b = p + 1 (4)

Equation 4 says that optimal bin number is independent
from n and t and directly proportional top. We also made
simulations which yielded best results whenb = p + 1 sup-
porting theoretical findings. However, our simulation results
showed that this equation is valid only whenp < t. This
makes sense because the optimization function which aims at
maximizing the number of eliminated nodes per query is not
meaningful whenp ≥ t. When p ≥ t, the purpose becomes
finding at leastt non-empty bins so as to reveal that the answer
to the threshold problem is positive with minimum number of
queries.

Still, we have an important problem left: we do not know
the realp value. p is supposed to be the estimate forx the
unknown quantity of positive nodes. But we can start the
simulation with an initial random or expectedp value, p0,
and then update our estimate at each round. To findpi+1,
we can use the result of the current round. If we compare
the number of empty bins,ereal, in the current round to the
expected number of empty bins,eexpected, we can estimate
pi+1.

eexpected =

(

1−
1

b

)p

· b (5)

If we setereal = eexpected, we can calculatep as follows:

p =
log ereal − log b

log
(

1− 1

b

) (6)

B. ABNS Algorithm

In the previous subsection, we have derived equations to
calculateb at roundi using pi (Equation 4), andpi+1 from
ereal at round i (Equation 6). Using this information, we
present an iterative threshold querying algorithm which tries
to optimize the bin numberb at each round.

Algorithm 3 ABNS Algorithm
1: ereal : # of empty bins in a round
2: i← 0
3: p0 ← 2t //initial p estimate
4:
5: While threshold query is unresolvedDo
6: bi = pi + 1
7: run tcast round withbi bins and find newereal

8: pi+1 = (log ereal − log bi)/(log
(

1− 1

bi

)

)

9: i = i + 1
10: EndWhile
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In Algorithm 3, at each iteration ofwhile loop, the initiator
first determines how many bins will be used in this round
of T-Cast (Line 3). Then it runs that round and acquires the
number of empty bins at that round. By using the result, it
calculates the newp estimate in Line 3. Note thatpi is just a
rough estimate onp which is utilized in solving the threshold
querying faster.

C. ABNS Simulations

We performed simulations to investigate the performance
of the ABNS algorithm with variations on the bin selection
strategy. In the simulations, we used two differentp0 values;
p0 = t andp0 = 2t. We run each method 1000 times and took
an average of the runs to increase precision.

To assess the performance of ABNS algorithm, we defined
an oracle bin number selection algorithm assuming we have
always precise knowledge ofp = x. Oracle algorithm gives the
lower bound on the number of queries in tcast. We calculate
the bin numbers to be used in oracle algorithm with respect
to p = x values as follows:

• Firstly, we have shown in (4) that for small x values
b = x + 1 is the optimal selection. In our preliminary
experiments, we saw that this situation holds whenx ∈
{0, t

2
}. Therefore, in this region the bin number is chosen

asx + 1.
• Secondly, we stated in Section IV-C thatx ≈ t is the

hardest case for threshold querying problem and2t is the
optimal bin number for this case.

• Finally, whenx = n, since all nodes will answer, it is
clear that onlyt bins will be enough to disclose that
x ≥ t.

By interpolating these three cases, for the oracle algorithm
we can calculateb values that gives the lower bound on query
numbers.

b =







x + 1 if x ≤ t/2
3x− t if t/2 < x ≤ t

t · (1 + n− x
n− t + 1) if x > t

When we analyze Figure 5, we see that 2tBins algorithm
consistently performs almost as good as oracle whenx > t/2.
Thus, we can deduce it is not easy to get an improvement
over 2tBins algorithm in this region. On the other hand, when
x ≤ t/2, the gap between 2tBins and Oracle increases asp
decreases. Therefore, we need a method to anticipate ifx ≤
t/2 and if it is, we must use appropriateb values.

In a WSN deployment, given historical data about previous
x values, we can make an inference about the realx value
and use it in the selection ofp0 in the first tcast round. If we
do not have any information about whetherx ≤ t/2, then we
would need to start with a smallp0 and improve it gradually
at each round. While this method improves the performance
when x ≤ t/2, it will worsen the performance whenx > t.
This situation is exemplified in Figure 5: If we selectp0 = t
instead of2t, it decreases the query count at the left edge of the

��

��

��

���

�
�
�
	


��


��
�
�


��


�

����������

�����


������

������� ���!

������� ����!

�

��

��

��

��

���

� �� �� "� �� #� ��

�
�
�
	


��


��
�
�


��


�

���	
��
���
����$
��
%
���&!

����������

�����


������

������� ���!

������� ����!

Fig. 5. Performance of Adaptive Bin Number Selection (ABNS) algorithm

figure, while adding some overhead for the cases wherex≫ t.
Overall the ABNS algorithm leads to improvement because
it makes the buckling pattern stand out more especially for
x≪ t.

D. Probabilistic ABNS

Since a better estimate on initialp value, p0, is a key
factor in improving the overall success of ABNS algorithm,
we make use of the probabilistic approach here to get a better
estimate onp0. As we mentioned above the 2tBins algorithm
performs almost as good as oracle whenx > t/2, but when
x < t/2 ABNS performs much better than 2tBins. Based on
this observation, we adopt a probabilistic sampling approach
from data streams algorithms [18] to estimatep0 as follows.
We use only one bin, hence one query. We put the nodes into
this bin with 2

t
probability. We then query this bin, which

has an expectedn
2t

nodes. If the bin is empty, we deduce
that p0 < t/2 and assignp0 = t/4. Otherwise, if the bin is
nonempty, we conclude thatp0 > t/2 and in this case we do
not use the probabilistic approach: since 2tBins is consistently
successful whenp0 > t/2, we simply switch to 2tBins method.

Remark:We discuss this probabilistic sampling method [18]
further in the next section in the context of probabilistic
querying for the case where the distribution of positive replies
for a query exhibits a bimodal distribution. However, we note
that in the case of probabilistic ABSN, this method still works
for providing us a hint, without the assumption or requirement
for bimodal distribution. The simulation results in Figure6
show that this hint is often correct and helps to improve the
performance of ABSN.End of Remark.

Figure 6 shows the simulation results of probabilistic ABNS
algorithm. We see that the probabilistic ABNS algorithm
eliminates both the cost of ABNS(p0 = t) when t < x < 2t
and the cost of ABNS(p0 = 2t) when x < t/2. Moreover,
the probabilistic ABSN performs almost as good as oracle
function, which can be regarded a lower bound on the required
number of queries in the threshold querying problem.
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Fig. 6. Performance of the probabilistic ABNS algorithm
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Fig. 7. Probabilistic ABNS vs. CSMA

Figure 7 shows the comparison of the probabilistic ABNS
algorithm with CSMA forN = 32 and t = 8. We see that
the probabilistic ABNS algorithm performs close to CSMA
for x < t, and outperforms CSMA significantly forx > t.

VI. PROBABILISTIC MODEL

In some WSN applications, such as intrusion detection [2],
[3], [8], the distribution of positive replies for a query exhibits
a bimodal distribution: If there is no activity in the network,
there are only a few replies which are possibly false positives.
If there is an activity, we expect a significant number of nodes
to detect it. The first situation can be simulated as a normal
distribution with meanµ1 and varianceσ2

1 where µ1 ≈ 0.
The latter can be represented by another normal distribution
around meanµ2 such thatk ≤ µ2 ≤ n and varianceσ2

2 . The
value of k depends on the application. But most of the time
k ≫ 0 and variance of the two constituent distributions are
small. Therefore, when there arex positive nodes in a query,

it is possible to guess whether there is a real activity in the
network or it is just a false alarm.

In addition, since the distribution ofx follows a bimodal
distribution with distant peaks, we can solve the threshold
querying problem in this model by adopting a probabilistic
sampling approach [18] as follows.

1) Put the nodes to a bin one by one with probability1

b
for

each. Query this bin:

a) If there is no answer, conclude that there is no
activity in the network with ahigh probability.

b) If there is an answer, it means there is an activity (x
belongs to theN (µ2, σ

2
2)) with a high probability.

2) Repeat Steps 1 until you get the desired reliability of
estimate.

The main advantage of this method is that it has a time
complexity of O(1). In other words, the number of queries
is independent from alln, t and x values. The only factor
that affects the runtime is the degree of seperation of two sub-
distributions which form the bimodal distribution.

On the other hand, unlike the methods that were described
in Sections IV and V, this algorithm cannot guarantee the
correctness of the result. But in most cases it is easy to get an
error rate less than5% with a few queries.

A. System Model

Assume we have history information which shows that most
of the time eitherx ≤ tl or x ≥ tr where tl and t2 are the
two boundary values selected astl = µ1 + 2σ1 and tr =
µ2− 2σ2 in our simulations. We know from Section V-A that
the probability ofith bin bi being non-empty is1−

(

1− 1

b

)x

where recall thatb is the number of bins. So we can derive
the following inequalities:

Pr{bi is 1+} ≤ 1−

(

1−
1

b

)tl

if x ≤ tl (7a)

Pr{bi is 1+} ≥ 1−

(

1−
1

b

)tr

if x ≥ tr (7b)

These inequalities give the probabilities for a single bin.If
we repeat the procedurer times, we find the expected number
of 1+ bins in r queries as:

E(1+ bins) ≤ r.

(

1−

(

1−
1

b

)tl

)

= m1 if p ≤ tl (8a)

E(1+ bins) ≥ r.

(

1−

(

1−
1

b

)tr

)

= m2 if p ≤ tr (8b)

There is a gap between the ranges of Equation 8a and 8b.
If we call the size of this gap∆ = |m1−m2|, we can tolerate
at most an error ofε < ∆

2
(see Figure 8).

After performing r queries, if x ≤ tl we expect the
number of1+ bins to satisfy Equation 8a. However, despite
the toleranceε, the occurrence of an incorrect decision (i.e.
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2

m

Fig. 8. ∆ increases as the two sub-distributions of the bimodalx distribution
move away from each other (i.e. m1 moves leftwards asµ1 decreases and
m2 moves rightwards asµ2 increases)

system findsx < t while in reality x ≥ t) is still possible.
The probability of this possibility has an upper bound given
by the additiveChernoff inequality:

Pr

[

{# of 1+ bins} > r.

(

1−

(

1−
1

b

)tl

+ ε

)]

≤ e

−εr

2

(9)
Same situation holds for the casex ≥ tr. In Equation 9, if

we want the failure probability to be less thanδ/2, then the
right-hand side in (9) must be less thanδ/2 which gives the
required number of repeats as:

r ≥ f(δ) =
2 log (1/δ)

ε log 2e
(10)

Here, if we relax the upper bound for the overall failure
probability, δ, the number of required repeats decreases. For
example in (10) if we taken = 128, µ1 = 16 and µ2 = 96
when δ = 1% we need 19 repeats, while forδ = 5% the
required number of repeats decreases to 12.

B. Probabilistic Model Simulations

We carried out a number of simulations with differentr
values (number of repeats) and measured the accuracy of the
probabilistic model. Accuracy is the percentage of correct
decisions made by the system. For example, assumex = 3 and
n = 128 which means the 3 positive nodes are probably false
positives in the network. If the system decides that there isa
real activity in the network, then this is an incorrect decision.

In each simulation, we did 1000 runs and estimated the
percentage of correct decisions made by the probabilistic
model. If the number of repeats,r, is larger than one, the
final decision is made by checking whether the number of
answers is more or less than(m1 + m2)/2.

Figure 9 depicts the change in accuracy as the distance
between peaks (d = µ1−µ2

2
) increase whereµ1, µ2 are selected

asµ1 = n
2
− d andµ2 = n

2
+ d. We observe that the increase

in r increases accuracy for all distances. In addition, even
nine repeats is sufficient to get more than90% accuracy when
the two sub-distributions are distant enough (d > 32). This
is a significant reduction in query cost compared to the exact
threshold querying algorithms. But it can be used only when
the application is tolerant to error.

We also see that selectingr based on (10) ensures at least
90% accuracy if the two sub-distributions are totally seperated.
As the bimodality increases, the required number of repeats
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Fig. 9. Accuracy of probabilistic model as the number of repeats changes
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Fig. 10. Estimated number of repeats for95% success rate

to maintain a high accuracy decreases (Figure 10). This total
seperation occurs whend > 16. On the other hand, when
d ≈ 8, the probabilistic algorithm has a great difficulty in
answering the threshold query having accuracies as low as
70%. The seperation of distributions whend = 8 andd = 16
are shown in Figure 11.

VII. C ONCLUDING REMARKS

In this paper, we presented an efficient threshold querying
primitive for singlehop collaborative feedback collection. Our
results indicate that rather than using CSMA or sequential
querying, by exploiting RCD and group testing nodes adap-
tively, we can answer the threshold queries more efficiently
and scalably. Our extensive simulation results show that tcast
primitive is especially low-cost forx ≪ t and x ≫ t, and
naturally requires more queries forx ≈ t, wherex denotes the
number of positive nodes andt denotes the threshold. Since
x ≈ t is the rare case andx≪ t andx≫ t are the common
cases in most realistic detection applications, tcast provides an
effective and efficient solution.
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Fig. 11. The distribution ofx is the combination of two normal distributions
with seperation ofµ1 − µ2 = 2d

We have also implemented our basic threshold querying
primitive on WSN motes and deployed singlehop experiments
with 14 motes. In our future work, we will deploy our
implemention on the Kansei testbed [23], to get experimental
results in a multihop network environment with interfering
traffic. In future work we will also investigate implementations
on RFID platforms [5], [25] as well.
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