Singlehop Collaborative Feedback Primitives
for Threshold Querying in Wireless Sensor Networks

Murat Demirbas Serafettin Tasci Hanifi Gunes Atri Rudra
Department of Computer Science and Engineering
University at Buffalo, SUNY, Buffalo, NY, 14260
{ demirbas| serafett| hanifigu| atri }@buffalo.edu

Abstract—In wireless sensor network (WSN) deployments, initiator then decides on the action to perform based on the
Receiver-side Collision Detection (RCD) has been proposed for number of positive answers from the queried participants. F
speeding up collaborative feedback collection from a singlehop example, if at least a thresholdnumber of positive nodes

neighborhood. Using RCD, an initiator node can query the S L oo .
existence of a predicateP in its neighborhood in constant time report to the initiator, the initiator notifies the basestatof

by making all P-positive nodes answer simultaneously. Despite the threat, and otherwise it logs the event as a false-pesiti

the collisions, the initiator is still able to infer useful information  In such a scenario, the initiator does not need to know the
from a broadcast using RCD: an activity in the network means dentities of the responding nodes or even the exact number
the predicate P holds for at least one node while silence indicates of detected threats. It is only concerned about whether the

that P does not hold at any queried node in the network. .
In this study we investigate the threshold querying problem, number of detected threats is above the threshold value. We

where the initiator has to learn whether P holds in the network Call this as thethreshold querying problem

for at least threshold ¢+ number of nodes in singlehop of the ini- Due to the absence of a priori knowledge of which nodes
tiator. To answer the threshold queries in an efficient fashion, we || report positive, the initiator cannot propose a repugt
present a number of adaptive RCD-based querying mechanisms oo qyle that includes only the positive nodesn order to

that dynamically re-groups the queried nodes in the network. We . . .
evaluate our algorithms on a real sensor network implementation avoid collisions, all nodes in the network should be assigne

and also carry out several simulations to contrast our approach different time slot to reply. In the worst case, such an appno
with the traditional techniques. The experiments reveal that our has a time complexity o (n) wheren denotes the number of
algorithms achieve significant time improvements in threshold nodes in the network. This does not scale well as the number of
queries over traditional techniques. nodes increase and hence it is impractical for dense neswork

An alternative solution to the threshold querying problem
is to set no ordering on the reply messages and use CSMA

Wireless sensor networks (WSNs) comprise of a large provide successful delivery of the messages. This swiuti
number of inexpensive low-power sensor nodes that ai@s a time complexity o (xlogz) wherez is the number
spread accross an area for the purpose of monitoring hiepositive answers to the query. Although CSMA achieves
pyhsical environment [2], [3], [22], [24]. Each sensor noda decent time wher: is small, it has an unacceptably high
is battery powered and has certain amount of processiti@ie cost when as gets larger. Moreover, CSMA is prone to
power, short-range wireless communication capabiliied amessage collisions and loss due to hidden terminal problem,
integrated sensors. The large scale deployment of sensad the situation worsens for large Thus, it is impossible to
networks and the resource scarcity of sensor nodes motivik whetherz >t or z <t holds with certainty using CSMA.
the need to design efficient data aggregation and in-networkn this study, we investigate Receiver-side Collision Bete
information processing techniques. In order to cope with thion (RCD) approaches for collaborative feedback coltecti
bandwidth, energy and latency concerns related to ceredili from singlehop. Recently Demirbas et al. proposenll-
approaches, in-network processing has been advocated east[10], an RCD based primitive for collaborative feedback
widely adopted [1], [9], [15], [19]. In-network informatio collection in WSNs. Using pollcast, an initiator node can
processing exploits the computation capacity of sensoesioduery the existence of a predicafe in its neighborhood
to process data locally close to where it originates fromsThin constant time by making all th&-positive nodes answer
can be achieved either by (1) summarizing the data relaysighultaneously. Despite the collisions, the initiator il s
towards basestation or (2) performing decisions locally #ble to infer useful information from a broadcast using RCD:
avoid contacting the basestation for each decision made. an activity in the network means the predicateholds for

An example of both scenarios appears in intrusion detectign least one node, while silence indicates tifatdoes not
applications, where a node that locally detects an evenbld at any queried node. RCD based approaches, such as
initiates a protocol to collect the feedback of its neighior pollcast, are particularly well suited for applications e
nodes to confirm the event. Each positive answer indicates th
detection of a threat at the corresponding participant ndde  Nor can the positive nodes coordinate to agree on such a siehedsily.

I. INTRODUCTION



traffic explodes in a bursty manner and a fast responsewhile CSMA performs well for smalk, tcast performs much

required. By performing tests on cleverly chosen groups bétter than CSMA as the number of positive replies increase,
nodes, RCD based approaches are able to scale well withe to the inherent scaling problem of CSMA. We discuss
increasing number of positive nodes in the network. these experiments in the corresponding sections in therpape

More specifically, in this paper, we tackle the problem of an- While we present the tcast operation for the WSN domain,
swering threshold queries in WSNs efficiently by a variatibn dhe tcast operation may also be useful and adopted for RFID
group testing. We propose a family of algorithms to implemeimventory management systems due to the scalability requir
a threshold querying primitivetcast We discuss the basic ments of those systems [25].
algorithm in Section IV. In the basic algorithm, which wa®utline of the paper. We discuss the related work in Sec-
derived from [4], the initiator first partitions the nodesar2¢ tion Il. In Section Ill, we present the design issues behiad o
equal-sized groups, and then using pollcast the initiaterigs methods and also provide a description of the system model.
each group (bin) one after the other. Each positive node inTaen in Section IV, we present the basic tcast algorithmgalon
group sends its reply message simultaneously. In this pspcewith its implementation and simulation results. In Sectign
in-group collision does not pose a problem since this methag present our adaptive bin number selection algorithmjmand
does not require the acquisition of messages correctherAfiSection VI we describe our probabilistic solution to thrash
one such round, the initiator marks to exclude the nodes guerying. We conclude the paper in Section VII.
the silent groups from the next rounds, and re-calculates th
range of values: can have, and if threshold question cannot
be precisely answered with the available data, it moves onAe Singlehop collaborative feedback primitives
the next round to repeat the same process. For exploiting the time advantage of simultaneous trans-

Using the above process the initiator gets a precise answ#ssion while alleviating the effects of collisions Denash
for the threshold value ih)g% rounds where is the threshold et al. proposed a two phase polling primitipelicast [10]
and N is the total number of participant nodes. The intuitiowhich exploits RCD. Pollcast implements RCD by using the
behind this result is as follows. At a given round there ar€lear Channel Assessment (CCA) signal from the radio chip.
two cases to consider %) groups replied positively, henceln a later study, Duttat al. [14] presentebackcasta three
threshold is reached and algorithm stops, or 2) more tharphase primitive where a poller initially broadcasts a praté
groups returned silence meaning that the initiator canuebecl message that contains an ephemeral identifier. All nodes for
all the nodes in those groups in the next round (i.e., the mamhvhich P hold, start listening on that ephemeral identifier. Then
of nodes to be queried has at least halved in this rounthe poller multicasts a poll message to the ephemeral agidres
Note that in the worst case the algorithm terminates wheapecified by the predicate message, and all nodes that match
the number of nodes to be queried reduces belowand, the destination respond with identical hardware acknowl-
hence, the upperbound on the roundsl&gr%. In Section V, edgments (HACKs). The poller radio receives these HACK
we present an extended version of this algorithm, where tpackets to detect the existence of one or more positive asswe
group number selection is performed adaptively with respaaithin the queried nodes. In backcast, HACKs are identical
to the estimate that the initiator has abaytthe number of and thus interfere non-destructively, so the radio canhlatc
positive nodes. onto and decode the superposition of multiple simultaneous

In Section VI, we adopt a probabilistic approach for threstHACKs. The advantage of backcast is that it provides a very
old querying in applications where the expected number msbust implementation of pollcast primitive in the preseint
positive answers follows a bimodal distribution. For exémp interferences. Since the initiator radio is tuned to the HAC
in an intrusion detection WSN deployment withnodes, we it is unaffected by other interference. Traffic from neighbg
may know from the system model in advance that at any tinnegions cannot trigger a false-positive on HACK, and hence
either there is a false detection with a few positive answebackcast is suitable to do singlehop feedback collecti@nev
(x < t1) or a true detection with a significant number ofn noisy multihop network environments.
positive answersa > t3), wheret; < to. In this case, Both pollcast and backcast are designed for “at least one
the probabilistic sampling approach we adopt from the dap@sitive answer” semantics, and they do not solve the tbidsh
stream algorithms community [18] enables us to find the tesqguerying problem directly. However, as we show in our
with high probability using aconstant number of queries, algorithms we can build a threshold querying solution using
independent of:, z, andt. pollcast and backcast as building blocks.

We conducted several simulations and experiments to evaldn [13], a method which is also capable of detecting the
uate the effectiveness of our algorithms. Our results sthaw t exact neighbors that participate in voting has been prapose
tcast primitive is especially low-cost for < ¢t andz > t, and, Their method is based on the well-knowdrtogonal Fre-
naturally, requires more queries for~ ¢, wherex denotes the quency Division MultiplexingOFDM). However, this method
number of positive nodes anddenotes the threshold. Sinces designed for 802.11 type wireless networks and the com-
x ~ t is the rare case and <« ¢t andx > t are the common plexity of the method makes it infeasible for WSN radios.
cases in most realistic detection applications, tcastigesv  Aspnes at al. [4] study the more general problem of
an effective and efficient solution. Our results also shoat thcomputing an arbitrary aggregate functignover the bits of

Il. RELATED WORK



information in the sensor nodes and proves asymptotic ®unbat a bin isemptyif there is no positive node in the bin, and
on the number of pollcast/backcast queries needed to cempaitbin is nonemptyif there is at least one positive node in the
f. Their main result is that the number of queries is veryin. When the initiator queries a bin, it can only learn whethe
closely related to the “fatness” of the best “decision triee”f.  the bin is empty or nonempty.
In this paper we only consider the case wifeis the threshold  Although our querying model is the same as that of group
function. For the threshold function, Aspnes at al. showt thesting [12], our objectives are different. Group testinigns
O(tlog(n/t)) queries suffice an@(¢log(n/t)/logt) queries to determine the positiveness or negativeness of each node,
are necessary. In fact, th@(tlog(n/t)) bound is proved by whereas in threshold querying our objective is to answer
the “2tbin algorithm” in Section IV. whether threshold number of positive nodes exists or not.
Unlike the theoretical results in [4], which are asymptotic
in nature and are geared towards the worst-case input,sn thi
paper we try to achieve good bounds for every possible input.We consider two models in this study based on the capa-
Further, we also care about the constants in the upper bpuritities of the radios. Ini* model, there is either silence or
which [4] did not. Finally, this paper investigates praatic channel activity in the vote phase. If the leader node does
issues in the implementation of the threshold primitive arpt hear any reply to its query, it understands that no nodes
compares and contrasts this primitive with existing atiernhold the query. If there is an activity, it cannot identifyeth

1T versus2t Collision Model

tives. message and therefore cannot be sure whether there is only a
) ) single message or multiple messages. This scenario iseimpl
B. WSN programming abstractions and does not require the acquisition of any message and can

Several programming abstractions have been proposed fieraccomplished by just monitoring the channel activityngsi
WSNSs [17], [26], [27]. Our tcast primitive can be employed by method such as RSSI, CCA, or by HACKs.
these programming abstractions for implementing quick andIn 2% scenario, the radio has the capability of locking to
ad hoc feedback collection from singlehop. Singlehop wssl a message and receiving it correctly while omitting all othe
broadcast has been identified as a narrow-waist suitable feessages. In case of an activity in the channel, the init&to
standardization efforts in the WSNs [7]. Our tcast primitivget the message if there is only one reply. Moreover, duego th
supports in-network processing, and may help boost thezpture effecphenomena [28], there is a chance to get one of

standardization efforts. the messages when there are multiple replies with deciggasin
o probability as the number of messages increase. This isituat
C. Applications also has an important side effect: If there was no captueegff

Some applications of tcast operation are false-positige swhen a message is received correctly2inscenario, it would
pression, clustering, and the querying of the neighbortfond be certain that there is only one replier. Thus, all nodes in
debugging purposes. These uses-cases are especiallieptevthat group except the replier could be excluded from the next
in intrusion survillance applications [2], [3] for querginof round since it is clear that none of them has a positive answer
the neighborhood for classification of an intruder (say ae the query. But in the presence of capture effect, when a
a soldier, car, or tank) by counting the detections in thBessage is received correctly, it is not certain that it & th
neighborhood. Other applications that involve these gasgs only positive reply. Therefore no other nodes can be exdude
include pursuer-evader tracking [8] and using robots asilmobfrom the next round. The advantages2df scenario oved *
basestations in WSNs [11], [21]. Finally, tcast operatiorymaan be listed as follows:
also find use-cases in RFID inventory management systems When an activity is detected but no message is received,
due to the scalability requirements in those systems [25]. we can conclude that at least two nodes replied.

« When a message is received correctly, since we can get

Ill. MoDEL its node ID, we can exclude it from the next round.

In our model, one of the nodes is designated as an initiator
for a threshold querying session. The initiator is not neges B- Network Model
ily more powerful than other nodes in terms of energy, memory We assume all nodes are within singlehop, however, the
or computational resources. Any node can become the mnitiatcast operation can also be used to query a singlehop neigh-
and start a threshold querying session. borhood in a multihop WSN. As we discussed in the related
We model the threshold querying problem in a grouworks section, the backcast operation is tolerant to iaterfce
testing framework. We havéV participant nodes (excluding from neighboring regions in that it will not have false-pags
the initiator), wherer (unknown to the initiator) of the nodesdue to interference. (Since the initiator concludes a “non-
arepositiveand the remainingv — z nodes aranegativewith empty” feedback only if it receives a HACK, the interference
respect to a query predicate. The goal of the initiator is cannot yield a false-positive “non-empty” decision.) As a
to find out in fewest number of queries whether the amourgsult, using backcast as a building block, tcast is alserani
of positive nodes exceed a threshaldr not. For solving to false-postives due to interference. However, backeast (
it efficiently, the initiator can divide the nodes intobins as a result) can still be prone to false-negative decisions i
(groups) and then query each bin with one query cost. We saymultihop environment, because due to interference from



neighboring regions the initiator may not lock onto a HACKve show in Section IV-C. Since in the companion theoretical
successfully. While superposition of HACKs strengthen theork [4], we had proved thaany algorithm needs to make
signal and improve the probability of successful receptioen Q(t- (log(N/t) -logt)) queries for solving threshold querying
in the presence of other interference, there are no guasntgroblem, our 2tBins algorithm is optimal up td@(t) factor.

for the absence of a false-negative. Employing anotheiicserv

for reducing interference from neighboring regions carphepigorithm 1 2tBins algorithm

improve the situation further. Testing and evaluation @Stc —y."Gjven P poll predicate/ threshold valueyn set of voters

in a multihop network environment with interfering traffis i ,. ForEach round Do

part of our future work.

silentBins < 0
IV. BASIC TCAST ALGORITHM 4:  Group nodes im into 2t equal-sized bins randomly
5. ForEach groupg Do

w

In this section, we give a basic tcast algorithm in Sec-_
tion IV-A, and a small variation of this algorithm in Sec-
tion IV-B. We present simulation results for these algarith
in Section IV-C. Finally, in Section IV-D, we present experi
ment results from our implementation of the basic algorithnfoj

6: Multicast the poll predicaté’® to groupg
7 If groupyg is silentThen
8 remove nodes iy from n

silentBins + +

. - X : EndIf
on tr;et.WSN motes, which corroborates the findings in our. If g.index — silentBins > t Then
simulations. 12: Returntrue //threshold achieved
A. 2tBins Algorithm 13: EndIf

We present the 2tBins algorithm in Algorithm 1. This algo# If [n| <¢ Then o _ _
rithm is the same as the algorithm we discussed in [4] with the>" Return false /fthreshold is impossible to achieve
exception that the distribution of nodes to the bins is pented Endif
randomly here whereas it was performed deterministicalyy: _ EndFor
in [4]. is: EndFor

In the beginning of each round, the initiator divides the
sensor nodes int?¢ equal-sized groups (bins) randomly, hence
the name 2tBins. The initiator also reseigentBins to 0 at B. Exponential Increase Algorithm

the start of a round. The initiator then starts querying eachy; ig easy to see that 2tBins algorithm can become wasteful
group one after the other. If a group responds to the quepyt . « ¢ For instance, for: = 1 andt = 2 the 2tBins

with silence as in Line 7, the initiator knows that all ”Odeélgorithm pays at leastt querying cost in the first round
in this group are negative and excludes those nodes fioMaynq pto a total oft - log N queries in total. To address this
the set of nodes that may potentially be positive. In thi®casgnefficiency with respect to small values, we present a small

the initiator also increments thelent Bins count by 1. The \ariation of the 2tBins algorithm, callegxponential increase
initiator then checks whether it can terminate the algm'thalgorithm

yet. On Line 11, the initiator checks whether it has seen atyy, present the exponential increase algorithm in Algo-

least¢ non-empty bins in this round. Since a non-empty bify, 1y 5 This algorithm differs from the 2tBins algorithmlgn

implies at least one positive node, the condition on Line 31 inas 1, 4, and 18. In the first round, the initiator divides
guarantees that the initiator can declare that the thrdsisol the nodes intobinNum — 2 groups and starts by testing

satisfied by the nodes. On Line 14, the initiator checks wétethy, oo 1o groups. This is for eliminating a large number of
it can conclude that the threshold is impossible to satisfy anegative nodes quickly for improving the performance fa th

terminate the algorithm. This is clearly the casenif <?. 550, « ¢ At the end of each round, as shown in Line 18,
When the initiator completes querying all the groups iy jnitiator doubles théin Num to get the number of bins to
a round, it moves to the next round and repeats the Saie seq in the next round. This doubling is used for increpsin

process with the remaining nodes 4n Notice that, at the o hymper of bins quickly so that the algorithm also handles
end of each round, the initiator manages to halvdrom the case where > t.

the previous round: Since the algorithm did not terminate in We tried some variations on the exponential increase algo-

the c[i')re\/;()lus rtOI}]JHI?, ;ht?ltélmbplleﬁlentBénﬁ = t’bm arélotthert rithm as well. One variation wasgause-and-continuscheme
words at feast half o ¢ bins queried have been detecteq, i, joes not double the number of groups if a significant

;}S empt;i and the nod_es tl)n those t_)lnstﬂa;/etbeenhdgggge dﬂ]ber of nodes are eliminated in a round, and continues
€ worst case scenario, by assuming that at each r with doubling if that is not the case. Another variation was t

. ! N
bins are discarded, we get an upper bound2of (log 5;) increase the number of groups in the next round to four-folds

queries for thet;]uenl/ cqtsr: of thhg 2tBins alr?obrlt?[m. In Itth?ather than two-folds of the number in the current round when
average case, Ine aigorithm achieves much betier resu Saf'flsgroups tested non-empty. We experimented with both of
INote that in the worst case the algorithm terminates wheeduces below these variations in simulations extensively but neithethefn

2t, hence the upperbound on the roundslfes 27 gave a consistent improvement. Therefore, we excludea thes




results from the paper, so in Section IV-C we discuss resultsour simulations we used the first solution which favors the

for the basic exponential increase algorithm. sequential ordering results more.
Algorithm 2 Exponential Increase algorithm n=32,t=8
1: binNum «— 2 0
2: ForEach round Do » =y
3 silentBins «— 0 20 e~ s ieiuin 2tBins(1+)
4:  Groupn into binNum equal-sized bins randomly g, “©-Exponential Increase(1+)
5: FOI’EaCh groupg DO Ez . -»-Sequential Ordering
6: Multicast the poll predicaté® to groupg B
7: If groupg is silentThen 5" o 00060606000
8: remove nodes iy from n 1
9: silentBins + + s
10: EndIf .8
11: If g.index — silentBins >t Then 0 s 10 1 20 s 0
12: Returntrue //threshold achieved Number of posltive reples
13: Endif Fig. 1. Performance of tcast in 1+ scenario
14: If |[n| <t Then
15: Return false /threshold is impossible to achieve
16: Endlif 1) 1+ Simulations: Figure 1 shows the simulation results
17 EndFor for 1+ scenario. The figure shows that while the tcast primitive
18:  binNum — binNum x 2 is low-cost forz < ¢t andz > ¢, for x ~ ¢ tcast requires
19: EndFor naturally more queries. Under the observation that t is

the rare case and < t andx > ¢ are the common cases in
most realistic intrusion detection applications, tcasivjtes
an effective and efficient solution.
Figure 1 also shows the comparison of CSMA with the
Simulation setup. We assume every node is in the singlemethods proposed in this study. CSMA cost increases propor-
hop neighborhood of each other. We repeated each configignal to =, and while CSMA is acceptable for << t, it
ration with 1000 runs and calculated the average number ﬂgcomes inacceptab|e for> t. For |argen the overhead of
queries. Note that when a bin is empty, we do not count@SMA becomes more significant.
as a query and skip it. In the experiments it is handled by |n the comparison of thexponential increasscheme with
arranging the order of bins so that empty bins are at the efife 2¢tBins scheme, we see that when < ¢, exponential
Since early termination is used in all experiments thesetgmpncreasealgorithm is more successful since it can aggressively

C. Tcast Simulations

bins never occupy a time slot in the simulations. eliminate the negative nodes. On the other hand, whent,
We compared our tcast algorithms with two simple solusxponential increase performs consistently worse thaimgtB
tions: CSMAand sequential ordering due to the initial redundant rounds ekponential increase

In CSMA we put no restriction on the reply times of thescheme in which no node is eliminated.
nodes. The nodes use carrier sensing and send when they senigeall curves of Figure 1, we see that the worst case occurs
the medium as idle. In case of a collision they use exporlentighenz ~ ¢. This is explained by the fact that when there are
backoff to calculate the next time slot to send their messaggositive nodes, it becomes harder to determine in a few gsieri
The initiator does not need to wait to receive all the replieshether it is less than or more thanWhen the number of
the initiator declares the querying finished when it receivgositive replies is sufficiently large, the result is founalyo
sufficient number of answers from the nodes to concludeeithr ¢ queries by seeing more thamon-empty groups without
x >t or that it is impossible achieve the threshold. the completion of a round. Thus, the required query number
In sequential ordering the initiator assigns a sequencealecreases as the number of responders approachesrtdhe
number for all participating nodes to enable the nodes td sesther direction; whenr < ¢, again the result is found in a
the reply messages without collisions. To implement setigien few queries by observing that many bins are empty so that
ordering, the initiator puts the nodes in order, calculateven if the remaining bins are full of positive nodes> ¢
the reply sending times for each node and then broadcastimpossible. In the extreme case, when there are no pesitiv
the schedule. The problem with this solution is the timeeplies, the query number becom@s— t)/(3;) where 3 is
syncronization requirement to prevent inconsistenciéwédsen the number of nodes in a group amd— ¢ is the required
the local clocks of the nodes. An alternative implementetso number of nodes that should be eliminated so that at most
to make the initiator contact the next node after a successfindes remain.
message reception from the previous node. This alternativeFigure 1 shows that the sequential ordering scheme starts
takes longer but avoids the time synchronization requirgmewith a large cost overhead (approximately- x) for = < t.



The query cost of sequential ordering starts to become mdietweenl™ and 2% is preserved for alt values supporting

acceptable only for: > t. the fact that the latter always performs better than the éorm
h=32.1-8 D. TCast Experiments on the Motes
* 2tBins(14) 1) Methodology:In TCast the initiator broadcasts a predi-
3 e 2Bins(2+) cate P along with a group identifier that maps each participant

node to a group, and then query each group separately. For
our implementation, we use backcast [14] as it provides a
robust implementation of pollcast [10]. Backcast emplogs a
ephemeral identifier to be used for radio hardware address
6-6-0-6-0-0-6-660 enabling group querying. Any broadcast to a radio address th
10 S matches the ephemeral identifier triggers a hardware adknow
"""" edgement(HACK) from the node. CC2420 radio supports two
. hardware addresses 16-bit and 64-bit long addresses mgabli
° 5 1 & 20 2 30 two concurrent backcasts at most. In our experiments, we
Number of positive replies employ the radio’s short address to match the ephemeral
identifier.

The 802.15.4 MAC exposes an acknowledgement request
flag. The receiver acknowledges any incoming frame with ac-
2) 1+ model versus 2+ model:As expected, Figure 2 knowledgement request flag set if it is configured for autdenat
shows that usin@™ collision model we can achieve |0W9facknowledgements only when the incoming frame passes
number of queries compared to thé model. This superiority hoth CRC and radio’s hardware address recognition checks.
results from the two advantagesdf scenario ovei ™ First, |mportantly, the transmitted ACKs are identical for a given

in case of a collisio2™ can deduce that at least two nOdegequence number, which enables nondestructive supeéoposit
replied in that group whilel™ can detect the existence ofof simultaneous HACKs to be successfully received at the
one positive reply. Second, sinee is capable of getting the querying node [6].

identity of a node correctly, it is possible to exclude thigle ) setup:We implement our TCast primitive in the TinyOS
from the next round. 2.0 embedded operating system [16]. The experiments are

~ The superiority oR* is especially evident around=t—1 pased on the widely-used Telos motes [20] with the CC2420
in the 2tBins method. This advantage comes from the fact thalio and IEEE 802.15.4 stack.

most bins contain exactly one positive node aroundjiivislue
and therefore no in-group collision occurs in the time stdts
these bins. So when we use t2& scheme, we can identify
and eliminate many positive nodes in the first round and the
start with a very low number of bins in the second round.

-©-Exponential Increase(1+)

-B-Exponential Increase(2+)

Number of Queries
N
3

Fig. 2. Performance of tcast in 2+ scenario

n=16, x=4

2tBins (1+)

=3 2tBins (2+)

Number of Queries

~©-Exponential Increase (1+)

-8~ Exponential Increase (2+)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Queries

Number of positive nodes (x)

2 4 6 8 10 2 14 16 Fig. 4. Experimental results for TCast with 2tBins algorithm
Threshold (t)

Our experimental setup consists of an initiator and 12
participant TelosB motes. All motes are directly connedted
a central controlling unit (in our case the laptop) via deria
Figure 3 shows the behaviour of tcast as the thresholdort interface. The initiator mote exposesnfigure query
changes while the number of positive nodeis kept constant and reboot functions via serial interface to the laptop, while
at 4. The maximum number of queries peaks aratirdt and the participant provides onlgonfigureandrebootprocedures.
declines ag approaches to 0 ot. Moreover, the relationship The laptop first configures the motes with corresponding run

Fig. 3. Performance of tcast as threshold changes



settings then stimulates the initiator to start querying th
participant nodes using TCast over the radio and finally the b
laptop collects the query result from the initiator by inirk %g(b)
the corresponding procedures. We repeat each run 100 times. p—1 P
. . . 1 n 1 n
Each mote is rebooted between two consecutive runs in order = | p - — )= 0
to remove the effect of the previous run.
3) Results: The experiments capture the overall perfor- 1\*! _3
- ; =|1-- n-b"-(p—b+1)=0
mance of TCast for the number of participant nodes is set to 12 b
and the threshold to 2,4,6 respectively. We implementeth2tB _
. =b=p+1 (4)
algorithm as an example to demonstrate that the proposed _ _ _ o
algorithms are applicable and yield similar results to the Equation 4 says that optimal bin number is independent
simulations. In each scenario, the experimental resuttsvssh from n andt and directly proportional tp. We also made
in figure 2 follow similar patterns to that of the outlinedsimulations which yielded best results wher= p + 1 sup-
simulation results except the fact that we observe some fapprting theoretical findings. However, our simulation fesu
negatives due to radio irregularities. We report no falsehowed that this equation is valid only when< ¢. This
positives runs but only 102 false-negative runs out of 7,200akes sense because the optimization function which aims at
separate TCast. This renders an error rate of %1.4, whiglaximizing the number of eliminated nodes per query is not
is acceptable given the non-ideal radio assumptions. It reeaningful whery > ¢. Whenp > ¢, the purpose becomes
notable here that majority of the false-negatives occurnwh@nding at least non-empty bins so as to reveal that the answer
the queried group has only one positive node, a participdatthe threshold problem is positive with minimum number of
node with positive answer. As the number of superposiriyeries.

Il
o

3

b

HACKSs increase, the error rate slashes down. Still, we have an important problem left: we do not know
the realp value. p is supposed to be the estimate forthe
V. ADAPTIVE BIN NUMBER SELECTION (ABNS) unknown quantity of positive nodes. But we can start the

) ) ) _simulation with an initial random or expected value, py,
The 2tBins Algorithmand Exponential Increase Algorithm 54 then update our estimate at each round. To find
are not designed to adapt to during the selection of bin e can use the result of the current round. If we compare
numbersb. For instance, when: = n, the optimalb value ihe number of empty bing;,..q;, in the current round to the

should bef: Since all bins will be full, t queries will suffice to expected number of empty biNg,upeccq, WE cCan estimate
find the answer. On the other extremegif= 0, just one bin

. it
that spans all nodes will reveal that no nodes hold a posmvé
answer to the query. In this section we present an adaptive bi N
number selection procedure based on a statistical estimate Cempected = (1 - ) b (5)

on the expected value of. b
If we sete,cql = €cupected, WE Can calculate as follows:
A. Theoretical Background ' logepear — logb ©
Since the initiator does not know, the best we can do is p= log (1— 1)
to usep as a guess far. Since the optimab value is affected .
by p, as well asn andt, we know thath must be a function B. ABNS Algorithm
in the form: In the previous subsection, we have derived equations to
b= f(n,t,p) (1) calculateb at roundi using p; (Equation 4), ancp;,; from

ereqr @t roundi (Equation 6). Using this information, we

_ Inorder to derivef, we use the following approximate func-present an iterative threshold querying algorithm whicastr
tion g(b) which maximizes the expected number of eliminateg, optimize the bin numbe at each round.

nodes in a query:

1IN’ n Algorithm 3 ABNS Algorithm
g(b) = {1~ v b @ - erea; - # Of empty bins in a round
2:1+0
Here,1 — % is the probability of a positive node not entering . po — 2t finitial p estimate

a particular bin. Since there age positive nodes,(1 — )"

gives the probability of a particular bin being empty. We 5: While threshold query is unresolvedo
multiply this probability with 2, the expected size of a bin, 6 b =p; +1 L .

to find a good estimate on the expected number of eliminate§ ~ "un tcast round withy; bins and find 1nev‘e“al
nodes in a query. Since we want to maximizgé), we take &  Pi+1 = (10g¢erear —logbi)/(log (1 — 3 )

the derivative of (2) with respect thand set the result to 0. 9 ¢ =7+1

The solution gives the optimal value bf 10: EndWhile




In Algorithm 3, at each iteration abhile loop, the initiator n=128,t-16
first determines how many bins will be used in this rounc
of T-Cast (Line 3). Then it runs that round and acquires th ===Oracle
number of empty bins at that round. By using the result, 2tBins
calculates the new estimate in Line 3. Note that; is justa | ® \ == =ABNS (p_0=t)
rough estimate op which is utilized in solving the threshold | £ '.“ o ® *ABNS (p_0=21)
querying faster. z® \

S \

C. ABNS Simulations g 20 ,\’g. \\‘

We performed simulations to investigate the performancZ \., \\\
of the ABNS algorithm with variations on the bin selection """-Mn.m..m,_u‘_u
strategy. In the simulations, we used two differpptvalues;
po = t andpy = 2t. We run each method 1000 times and took
an average of the runs to increase precision. 0 10 20 40 50 60

Number of positive nodes (x)

To assess the performance of ABNS algorithm, we defineu
an oracle bin number selection algorithm assuming we have
always precise knowledge pf= x. Oracle algorithm gives the Fig.
lower bound on the number of queries in tcast. We calculate
the bin numbers to be used in oracle algorithm with respect
to p = x values as follows: figure, while adding some overhead for the cases wheset.

« Firstly, we have shown in (4) that for small x value$Overall the ABNS algorithm leads to improvement because

b =z + 1 is the optimal selection. In our preliminaryit makes the buckling pattern stand out more especially for
experiments, we saw that this situation holds whea ¥ <1
: . ) . )
{0, 51 ;I'herefore, in this region the bin number is choseR  p,papilistic ABNS
asx + 1. . . _— .
. Secondly, we stated in Section IV-C that~ ¢ is the _ SINCe @ better estimate on initigl value, po, is a key

hardest case for threshold querying problem 2his the factor in improving the overall success of ABNS algorithm,
optimal bin number for this case. we make use of the probabilistic approach here to get a better

« Finally, whenz = n, since all nodes will answer, it is estimate orpy. As we mentioned above the 2tBins algorithm
clear that only¢ bins will be enough to disclose thatP€forms aimost as good as oracle when- /2, but when
> L x < t/2 ABNS performs much better than 2tBins. Based on

his observation, we adopt a probabilistic sampling apgioa

. . b
By interpolating these three cases, for the oracle algnrlthfrom data streams algorithms [18] to estimateas follows.

we can calculaté values that gives the lower bound on aueny e use only one bin, hence one query. We put the nodes into

5. Performance of Adaptive Bin Number Selection (ABNS)oaithm

numbers. this bin with 2 probability. We then query this bin, which
has an expected; nodes. If the bin is empty, we deduce
r+1 if z <t/2 that po < t/2 and assignp, = t/4. Otherwise, if the bin is
b={ 3zt ift/2<x<t nonempty, we conclude that, > ¢/2 and in this case we do
t-(+tyfy)  ifa>t not use the probabilistic approach: since 2tBins is cossibt

successful whepy > t/2, we simply switch to 2tBins method.

When we analyze Figure 5, we see that 2tBins algorithm RemarkWe discuss this probabilistic sampling method [18]
consistently performs almost as good as oracle whent¢/2. further in the next section in the context of probabilistic
Thus, we can deduce it is not easy to get an improvemanterying for the case where the distribution of positivdiesp
over 2tBins algorithm in this region. On the other hand, whebr a query exhibits a bimodal distribution. However, weenot
x < t/2, the gap between 2tBins and Oracle increasep aghat in the case of probabilistic ABSN, this method still We&r
decreases. Therefore, we need a method to anticipate<if for providing us a hint, without the assumption or requireine
t/2 and if it is, we must use appropriatevalues. for bimodal distribution. The simulation results in Figuge

In a WSN deployment, given historical data about previowshow that this hint is often correct and helps to improve the
z values, we can make an inference about the reahlue performance of ABSNEnd of Remark.
and use it in the selection @f in the first tcast round. If we  Figure 6 shows the simulation results of probabilistic ABNS
do not have any information about whethek t/2, then we algorithm. We see that the probabilistic ABNS algorithm
would need to start with a small, and improve it gradually eliminates both the cost of ABNg{ = ¢) whent < z < 2t
at each round. While this method improves the performaneed the cost of ABNS( = 2t) whenz < t/2. Moreover,
whenz < ¢/2, it will worsen the performance when > t. the probabilistic ABSN performs almost as good as oracle
This situation is exemplified in Figure 5: If we selegt =t function, which can be regarded a lower bound on the required
instead of2¢, it decreases the query count at the left edge of tmeimber of queries in the threshold querying problem.



it is possible to guess whether there is a real activity in the

network or it is just a false alarm.

===Oracle In addition, since the distribution of follows a bimodal
Probabilistic ABNS distribution with distant peaks, we can solve the threshold

= =ABNS (p_0=t) querying problem in this model by adopting a probabilistic

o @ ©ABNS (p_0=2t) sampling approach [18] as follows.

\ 1) Put the nodes to a bin one by one with probabiﬁtjor

‘ \ each. Query this bin:

* a) If there is no answer, conclude that there is no

activity in the network with aigh probability.

---------- b) If there is an answer, it means there is an activity (
belongs to theV (u2, 03)) with a high probability.

2) Repeat Steps 1 until you get the desired reliability of

Number of positive nodes (x) estimate.

The main advantage of this method is that it has a time
Fig. 6. Performance of the probabilistic ABNS algorithm complexity of O(1). In other words, the number of queries
is independent from alh, ¢ and x values. The only factor
that affects the runtime is the degree of seperation of tve su
n=32, t=8 distributions which form the bimodal distribution.
On the other hand, unlike the methods that were described
40 in Sections IV and V, this algorithm cannot guarantee the
35 correctness of the result. But in most cases it is easy torget a
error rate less thah% with a few queries.

n=128,t=16

100
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40

Number of queries
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25 @ CSMA A SyStem MOde|

20 bropabilistic ABNS Assume we have history information which shows that most
of the time eitherz < ¢; or x > t, wheret; andt, are the

two boundary values selected §s= py + 207 and ¢, =

e — 209 in our simulations. We know from Section V-A that

s the probability ofi** bin b; being non-empty id — (1 — £)*

0 where recall thab is the number of bins. So we can derive

0 5 10 15 20 25 30 i i iti .
Number of positive nodes (x) the following inequalities:

15

Number of queries

10

ty
. ™ . 1 .
Fig. 7. Probabilistic ABNS vs. CSMA Pribis 1t} <1— (1 - b) if x <t (7a)

"
Pribjis1™}y>1—-(1-= if z>t, 7
Figure 7 shows the comparison of the probabilistic ABNS ribiis 17} = ( b) Mozt (70)

algorithm with CSMA for N = 32 andt¢ = 8. We see that
the probabilistic ABNS algorithm performs close to CSMA These inequalities give the probabilities for a single Ibin.
for x < ¢, and outperforms CSMA significantly far > ¢. we repeat the proceduretimes, we find the expected number
of 17 bins inr queries as:
VI. PROBABILISTIC MODEL

In some WSN applications, such as intrusion detection [2], 4 1\" )
[3], [8], the distribution of positive replies for a querytekits (17 bins) <. | 1 - <1 - b) =my  if p<t (83)

a bimodal distribution: If there is no activity in the netior .

there are only a_fe_w replies which are _p_055|bly false pasitiv E(1* bins) > r. (1 - <1 _ 1> ) —my  if p<t,(8b)

If there is an activity, we expect a significant number of reode b

to detect it. The first situation can be simulated as a normal

distribution with meanu; and variances? where j; ~ 0. There is a gap between the ranges of Equation 8a and 8b.
The latter can be represented by another normal distributis we call the size of this gap\ = |m; —ms|, we can tolerate
around meanus such thatk < u» < n and variancer3. The at most an error of < % (see Figure 8).

value of k¥ depends on the application. But most of the time After performing r queries, ifx < ¢, we expect the

k > 0 and variance of the two constituent distributions aneumber of1™ bins to satisfy Equation 8a. However, despite
small. Therefore, when there arepositive nodes in a query, the tolerances, the occurrence of an incorrect decision (i.e.



A Probabilistic Model (n=128)
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Fig. 8. A increases as the two sub-distributions of the bimaddistribution 08
move away from each other.€. m; moves leftwards ag; decreases and
mgo moves rightwards ags increases)
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Percentage of Correct Estimation

system findse < t while in reality « > t) is still possible.
The probability of this possibility has an upper bound giver 0s .
by the additiveChernoff inequality: 8 18 28 38 8 58

Distance between mean values (d)

0.55
—|-r=9

—E&r

<e 2 Fig. 9. Accuracy of probabilistic model as the number of repefianges

9)

Same situation holds for the case> ¢,.. In Equation 9, if
we want the failure probability to be less than2, then the
right-hand side in (9) must be less th&f2 which gives the
required number of repeats as: 100
~ 2log(1/9)

TZf(fs)—Tng (10)

ty
Pr [{# of 11 bins} > r. (1— (1— i) +€>

Probabilistic Model (n=128)
120

p —o-r=f(5), 6=0.01

80

60

Here, if we relax the upper bound for the overall failure
probability, §, the number of required repeats decreases. F
example in (10) if we taker = 128, u; = 16 and uy = 96 20 *
whend = 1% we need 19 repeats, while for = 5% the
required number of repeats decreases to 12. 10 20 30 ) 50 60

Distance between mean values (d)

40

Number of Repeats

\aaa d

B. Probabilistic Model Simulations

We carried out a number of simulations with different
values (number of repeats) and measured the accuracy of the
probabilistic model. Accuracy is the percentage of correct
decisions made by the system. For example, assume and
n = 128 which means the 3 positive nodes are probably falte maintain a high accuracy decreases (Figure 10). This tota
positives in the network. If the system decides that them isseperation occurs whed > 16. On the other hand, when
real activity in the network, then this is an incorrect demis d =~ 8, the probabilistic algorithm has a great difficulty in

In each simulation, we did 1000 runs and estimated tlamswering the threshold query having accuracies as low as
percentage of correct decisions made by the probabilistie%. The seperation of distributions whein=8 andd = 16
model. If the number of repeats, is larger than one, the are shown in Figure 11.
final decision is made by checking whether the number of
answers is more or less thém, + ms)/2.

Figure 9 depicts the change in accuracy as the distancdn this paper, we presented an efficient threshold querying
between peaksi(= “5%2) increase wherg,, 1o are selected primitive for singlehop collaborative feedback collecticOur
aspy = 5 —d andus = 5 +d. We observe that the increaseesults indicate that rather than using CSMA or sequential
in r increases accuracy for all distances. In addition, eveperying, by exploiting RCD and group testing nodes adap-
nine repeats is sufficient to get more tH#% accuracy when tively, we can answer the threshold queries more efficiently
the two sub-distributions are distant enough> 32). This and scalably. Our extensive simulation results show tresttc
is a significant reduction in query cost compared to the exgmimitive is especially low-cost for <« ¢ andx > t, and
threshold querying algorithms. But it can be used only wheraturally requires more queries for~ ¢, wherez denotes the
the application is tolerant to error. number of positive nhodes anddenotes the threshold. Since

We also see that selectingbased on (10) ensures at least ~ ¢ is the rare case and < t andz > ¢ are the common
90% accuracy if the two sub-distributions are totally sepatatecases in most realistic detection applications, tcastigesvan
As the bimodality increases, the required number of repeatffective and efficient solution.

Fig. 10. Estimated number of repeats fiit% success rate

VIl. CONCLUDING REMARKS
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Fig. 11. The distribution of is the combination of two normal distributions
with seperation ofu; — pu2 = 2d

(17]

We have also implemented our basic threshold querying
primitive on WSN motes and deployed singlehop experiments

with

14 motes. In our future work, we will deploy our19]

implemention on the Kansei testbed [23], to get experimenta
results in a multihop network environment with interfering{ZO]
traffic. In future work we will also investigate implemeritats 21
on RFID platforms [5], [25] as well.
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