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Abstract

We study the following problem related to pricing over
time. Assume there is a collection of bidders, each of
whom is interested in buying a copy of an item of which
there is an unlimited supply. Every bidder is associated
with a time interval over which the bidder will consider
buying a copy of the item, and a maximum value the
bidder is willing to pay for the item. On every time unit
the seller sets a price for the item. The seller’s goal is to
set the prices so as to maximize revenue from the sale
of copies of items over the time period.

In the first model considered we assume that all
bidders are impatient, that is, bidders buy the item at
the first time unit within their bid interval that they
can afford the price. To the best of our knowledge,
this is the first work that considers this model. In
the offline setting we assume that the seller knows
the bids of all the bidders in advance. In the online
setting we assume that at each time unit the seller
only knows the values of the bids that have arrived
before or at that time unit. We give a polynomial time
offline algorithm and prove upper and lower bounds on
the competitiveness of deterministic and randomized
online algorithms, compared with the optimal offline
solution. The gap between the upper and lower bounds
is quadratic.

We also consider the envy free model in which
bidders are sold the item at the minimum price during
their bid interval, as long as it is not over their limit
value. We prove tight bounds on the competitiveness
of deterministic online algorithms for this model, and
upper and lower bounds on the competitiveness of
randomized algorithms with quadratic gap. The lower
bounds for the randomized case in both models uses a
novel general technique.
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1 Introduction

The problems considered in this paper are motivated by
the application illustrated in following example. Con-
sider a Video On Demand (VOD) service that multicasts
a movie at different times and sets the subscription price
dynamically. Suppose that the potential customers sub-
mit requests in which they specify an interval of time
when they wish to watch the movie and a limit value
for their subscription (similar to a “limit order” in the
stock market). At each time unit, based on the informa-
tion available to the VOD server, it sets a subscription
price for the time unit. The customers are assumed to
be “impatient”: they subscribe to the service at the first
time unit within their interval whose subscription price
is no more than their limit value. The goal of the VOD
server is to set the prices to maximize its revenue.

Note that, unlike the situation in the stock market,
in our case the seller (the VOD server) has information
on the limit orders when it sets the price. To “compen-
sate” for this we also consider an “envy free” variant in
which customers subscribe in the time unit within their
interval with the lowest subscription price, as long as
this price is no more than their limit value.

We consider both offline and online versions of the
problem. In the offline version the VOD server has full
information on current and future limit orders while in
the online version it only knows the limit values of the
active customers at each time unit.

The pricing problem described above is formalized
as follows. Assume there is a collection of bidders, each
of whom is interested in buying a copy of an item of
which there is an unlimited supply. Every bidder i
is associated with a tuple (si, ei, bi), where the range
[si, ei] denotes the time interval over which bidder i
will consider buying a copy of the item, and bi is the
maximum amount the bidder is willing to pay for a copy
of the item. We refer to the tuple (si, ei, bi) as the bid
of bidder i, the quantity bi as her bid value, the interval
[si, ei] as her bid interval, and si and ei as the start and
expiration time respectively.

From now on we assume that the time units in
which si and ei are specified are days. On every day
t = 1, 2, . . . , T , the seller (or the VOD server) sets a
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price p(t) for the item. The seller’s goal is to set the
prices {p(1), . . . , p(T )} so as to maximize revenue from
the sale of copies of items over the time period.

In the first model considered we assume that all
bidders are impatient, that is, bidders buy the item on
the first day within their bid interval they can afford
the price. More formally, bidder i buys (a copy of) the
item on the first day t ∈ [si, ei], such that p(t) ≤ bi.
We call this model the IB-model (where IB stands for
impatient bidders). To the best of our knowledge, ours
is the first work that considers this model.

In the offline setting we assume that the seller
knows the bids of all the bidders in advance. In the more
realistic online setting we assume that on day t, the
seller only knows about the bids that have arrived before
or on day t, i.e., all bids i such that si ≤ t.1 In fact, we
assume that the seller only knows the value bi of these
bids, and does not necessarily know the expiration date
ei of bid i. We use the classical approach of competitive
analysis to study the online model. That is, our aim
is to design algorithms for setting prices that minimize
the competitive ratio, which is the maximum ratio (over
all possible bid sequences) of the revenue of the optimal
offline solution to that of the online algorithm.

Our model is closely related to the pricing over
time variant of the envy-free model first considered by
Guruswami et al. [7]. Their setting is similar to ours,
except that a bidder is sold the item at the minimum
price during her bid interval, provided that she can
afford it. That is, the bidder buys the item at the price
mint∈[si,ei]p(t) (provided this price is less than bi). In
this model, a bidder is never “envious” of another bidder
and the pricing is envy-free [7]. We call this model the
EF-model (where EF stands for envy free).

1.1 Notation and PreliminariesWe will assume
that the bid values are in the interval [1, h]. In the online
setting, the value of h is not known to the algorithm.
The total number of bidders will be denoted by n. For
every bidder i, the quantity ei − si + 1 will sometimes
be referred to as the bid length of bid i. We will say
that a bid i is alive at time t if t ∈ [si, ei] and the
bidder has not bought a copy of the item by day t − 1.
For any set of bids B, OPT (B) denotes the optimal
offline revenue obtainable from B. OPT will denote
the optimal revenue from the set of all input bids. For

1Note that we assume that on day t, the seller knows the
values of bids that arrive on day t in addition to the ones that
have arrived before. This is required in our model to obtain non-

trivial results (at least for deterministic algorithms). Otherwise,
the adversary can only give bids of duration one, and make the
performance arbitrarily bad since these bids expire before the
online algorithm is even aware of their value.

notational convenience, we will use OPT for both the
EF-model and the IB-model, since the model under
consideration will always be clear from the context.

For several pricing problems, randomized algo-
rithms that have a logarithmic competitive ratio often
follow trivially using the “classify and randomly select”
technique. In particular, consider the algorithm that
rounds down the bid values to the nearest powers of 2,
randomly chooses one of these O(log h) bid values and
sets this same price every day. The expected revenue ob-
tained by this algorithm is at least 1/(2 log h) fraction
of the total bid values in the instance, and hence this
algorithm is trivially O(log h) competitive for both the
IB-model and the EF-model. For most pricing prob-
lems in the literature (including the EF-model) these
are essentially the best randomized algorithms known.
Our focus in this paper will be to either give algorithms
that improve on this straightforward guarantee, or show
close to logarithmic lower bounds which suggest that
the trivial “classify and randomly select” algorithm is
essentially close to the best possible.

1.2 Our Results and TechniquesWe show that the
offline version of the IB-model can be solved in polyno-
mial time by a dynamic programming based algorithm.
The rest of the results are in the online setting. For
the EF-model, we show an Ω(

√

log h/ log log h) lower
bound on the competitive ratio of any randomized algo-
rithm. This may suggest that the trivial O(log h) com-
petitive randomized “classify and select algorithm” is
close to the best possible in this model. We also show
that any deterministic algorithm must have a competi-
tive ratio Ω(h). Note that the deterministic algorithm
that sets the price of 1 every day is trivially h com-
petitive, and hence the lower bound implies that this
seemingly trivial algorithm is the best possible (up to a
constant factor).

For the IB-model, we give a randomized algorithm
with competitive ratio O(log log h). We also show that
any randomized algorithm has a competitive ratio of
Ω(
√

log log h/ log log log h), which again may suggest
that O(log log h) is close to the best possible randomized
guarantee in this model. For deterministic algorithms,
we show that any deterministic algorithm must have
a competitive ratio Ω(

√
log h), and present a simple

greedy (and well known) deterministic algorithm that
is O(log h)-competitive.

Note that our results imply an exponential separa-
tion between the EF-model and IB-model in terms
of competitive ratio for both deterministic and random-
ized algorithms. We summarize the results for online
algorithms in Table 1.

Technically, the most interesting results of the
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Deterministic Randomized
Upper Bound Lower Bound Upper Bound Lower Bound

IB-model O(log h)† Ω(
√

log h) O(log log h) Ω(
√

log log h
log log log h )

EF-model O(h)† Ω(h) O(log h)† Ω(
√

log h
log log h )

Table 1: Our results for online algorithms. (The upper bounds with † are previously known and/or trivial.)

paper are the lower bounds for randomized algorithms.
Recall that the “classify and randomly select” algorithm
achieves in expectation a revenue of at least a 1/(2 log h)
fraction of total bid values in the instance. Thus to
show, say an Ω(log h) lower bound the instance must
be such that the optimum can satisfy almost all bids at
essentially their bid values, and yet any online algorithm
must perform poorly. For any online algorithm to
perform poorly, the bids in the instance must be such
that their bid intervals have substantial overlap and
dependence among each other. However, the goal is to
do this without reducing the offline profit significantly.

It is instructive to consider the following “binary
tree” like instance where bid intervals have a non-trivial
dependence among each other. There is one bid with
value h and interval [0, T ], two bids with value h/2
and intervals [0, T/2− 1] and [T/2, T ] respectively, four
with value h/4 and intervals [0, T/4 − 1], . . . , [3T/4, T ]
respectively, and so on. We can view this instance as
a binary tree in the natural way. The total value of
bids in the instance is O(h log h) and each price level
contains a value of h. While any reasonable algorithm
can obtain a revenue of h (for example by setting the
same price every day), it is a simple exercise to see that
in the EF-model no algorithm can achieve a revenue
of more than 2h. Intuitively, if the algorithm sets
low prices at some time to gain some bids with low
value, it loses all the high value bids that overlap with
this time. Interestingly, we use a randomized version
of this binary tree like instance to obtain our lower
bound for the EF-model. We show that if the instance
is such that number of children of each node is an
exponentially distributed random variable (instead of
exactly two in the binary tree instance) then there are
sufficiently many “disjoint” and “high value” regions in
the tree such that the offline algorithm can obtain an
expected revenue of Ω(h ·

√

log h/ log log h). To show
this, we analyze a natural branching process associated
with this construction and carefully exploit the variance
(second order effects) of the exponential distribution.
We believe that this technique should be useful in other
contexts. To get the bound for the IB-model we define
an intricate one-to-many mapping of the bids defined
by the binary tree. The mapping ensures that also in

this model it “does not pay” to set low prices.

1.3 Related WorkPricing and auctions have re-
ceived a lot of attention in economics and recently also
in computer science literature. In an auction, given the
bids (in either offline or online fashion), the auctioneer
has to decide on an allocation of items to the bidders
and the price to charge them. (Note that in particular
every bidder can be charged a different price while in
our model every bidder is offered the same price on any
given day.) Generally, the focus of these works is on
one of the following: maximize the social welfare of all
bidders or maximize the revenue of the seller. Our work
falls in the latter category. In the rest of the section,
we attempt to summarize a few previous works that are
related to ours.

The work closest to ours is that of Guruswami et
al. [7], which considers the EF-model. They give a
polynomial time algorithm to compute the optimal set
of prices for the offline version of EF-model, which
is based on a dynamic program. In fact, our dynamic
program-based algorithm for the offline IB-model is
similar in structure to theirs.

For unit bid length setting, Goldberg et al. [6] look
at competitive truthful offline auctions for a single good
with unlimited supply, where truthfulness requires that
the bidders are best off not lying about their true values.
The goal is to design truthful auctions that are still
competitive. Online truthful auctions have also been
considered for this model [2, 3]. We point out two
key differences between this model and ours. First,
in the truthful offline auctions model every bidder can
be offered a different price. Second, the benchmark is
not the best offline performance (as we consider in this
work) but the revenue of the auction is compared to
that of the best fixed-price auction. It is worthwhile to
note that the requirement of truthfulness is important
in this model as it is trivial to generate optimal revenue
without this extra requirement (by selling the good to
all bidders at their bid value). Note that we do not
consider truthful auctions in this paper.

Auctions for the case when the bid intervals can be
arbitrary have been considered in [9, 10, 8]. However,
these are in some sense orthogonal to this work as they
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are either concerned with maximizing the social welfare
or the items are available in limited supply. Again,
every bidder can be offered a different price and these
works deal with truthful auctions. We again note that
maximizing the social welfare of an item with unlimited
supply without the constraint on truthfulness is trivial
by giving the items “for free”.

The work of Guruswami et al. [7] also considered
other envy-free pricing problems. Some progress has
been made on those problems. For example, for subse-
quent work on single minded pricing see [1, 5].

2 Results for the EF-model

We present lower bound results for the EF-model.
Recall that the algorithm that sets the price of 1 on
each day is trivially an h competitive deterministic
algorithm. Theorem 2.1 below shows that this is the
best possible for any deterministic algorithm (up to a
factor of φ ≈ 1.618). Next, we describe our randomized
lower bound for the EF-model.

Theorem 2.1. Any deterministic online algorithm A
for EF-model must have a competitive ratio of at least
h/φ, where φ ≈ 1.618 is the “golden ratio”.

Proof. Consider the following game that the adversary
plays with the online algorithm A. On day 1, φ · h2

bids (1, h2, h) arrive (i.e., each has value h and is valid
until day h2). In addition, on each day t ≥ 1, h2 bids
(t, t, 1) arrive.2 These bids arrive either until A first
sets p(t) = 1, or until t = h2. At this point the game
stops, that is, no more new bids are introduced by the
adversary.

Let t∗ ≤ h2 be the day the game stops. We consider
two cases:
Case 1: Algorithm A never sets its price to 1. In this
case t∗ = h2. The revenue of A consists only of the
φ ·h2 bids with value h and hence is at most φ ·h3. The
optimum sets its price to 1 on each day and thus its
revenue is at least t∗h2 = h4, yielding a ratio of h/φ.
Case 2: Algorithm A sets its price to 1 at time t∗ ≤ h2.
In this case all the φ·h2 bids with value h contribute only
1 to its revenue (by the property of the EF-model).
Additionally, it gets exactly a revenue of h2 due to the
h2 unit value bids that arrive on day t∗, and hence
total revenue is exactly (1 + φ)h2. The optimum sets
its price to h on each day until day h2 and thus its

2The quantities φ ·h2 and h2 need not be integral– the correct
numbers should be ⌊φ · h2⌋ and ⌊h2⌋. We however, use the

expression without the floors for ease of notation– of course the
calculation of the asymptotics are not affected. We make similar
notational assumptions later in the paper when talking about
number of bidders that depend on h.

revenue is at least φ · h2 · h = φ · h3, yielding a ratio of
φ · h/(1 + φ) = h/φ.

In the remainder of this section we focus on prov-
ing the lower bound on the competitive ratio of any
randomized algorithm. Our main result is as follows:

Theorem 2.2. Any randomized online algorithm for

EF-model has competitive ratio of Ω
(√

log h
log log h

)

.

We use Yao’s min-max theorem ([4]). To do this, we
define a set of bid instances I1, I2, . . ., and a probability
distribution D on them. By Yao’s principle [4], the

quantity minA
EI←DOPT (I)
EI←DRevA(I) is a lower bound on the

competitive ratio of any randomized algorithm. Here
the minimum is taken over all possible deterministic
online algorithms A and RevA(I) is the revenue of
algorithm A on instance I.

Geometric distribution will be a key building block
in our lower bound constructions. Let G(p) denote the
discrete distribution on positive integers m = 1, 2, 3, · · ·
such that Pr(m) = (1 − p)m−1p. We need the following
well known facts about this distribution.

Fact 2.1. A random variable X drawn from G(p) has
the following properties:

1. The expectation is given by E(X) = 1
p

2. Pr[X ≤ m] = 1 − (1 − p)m.

3. E(X|X > m) = m + E(X), that is, the geometric
distribution is memoryless.

We also need the following technical fact, the proof
of which is deferred to the full version of the paper.

Fact 2.2. Let k be a fixed positive integer and let c
be a real such that c > k. Consider the sequence
xk, xk−1, . . . , x0, where xk = 1 and xi is recursively
defined in terms of xi+1 for i = k − 1, . . . , 0 as

xi = 1 + xi+1

(

1 − 1

c

)
c

xi+1

− (1 + xi+1)

(

1 − 1

c

)c2

.

Then x0 >
√

k/4.

We now describe the set of instances for the lower
bound. We will not describe the distribution explicitly
but instead describe a procedure that will implicitly de-
scribe both the instances and the probability distribu-
tion over them.

We have the following k + 1 distinct bid values:
h, h/ log h, h/(log h)2, · · · , 1. We say bids with bid value
pi = h/(log h)i are at level i. Note that p0 > p1 > . . . >
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pk and k = Θ(log h/ log log h). To simplify notations,
let c denote the quantity log h.

The instances have the property that for each i, the
bids at level i are completely disjoint. Moreover, every
bid at level i is completely contained inside a bid at level
j for each j < i. Thus we can view each instance as a
tree with k levels (with the root having level 0) where
a bid b at level i is a child of a bid b′ at level i − 1 if
and only if the bid interval of b is completely contained
in the bid interval of b′.

Consider the following procedure for generating
random trees. (We refer the reader to Figures 1 and
2 below for an example.) Each tree has k levels.
Starting with the root, each node v at level i such that
0 ≤ i < k − 1, independently generates mv children,
where mv is chosen from the geometric distribution
G(1/c). However, if mv exceeds c2 then it is truncated
to c2. Given such a tree instance, we associate an
instance with bids as follows: each node at level i
is a bid with bid length (h/ci)2 = h2/c2i and bid
value h/ci. If u is the jth child of node v (which is
at level i), then the bid corresponding to node u is
(sv + (j − 1) ·h2/(c2i+2), sv + (j ·h2/c2i+2)− 1, h/ci+1),
where sv is the start date of the bid corresponding to
v. The root node has the bid (1, h2, h). We will refer
to an instance from this distribution by I and use D to
denote the induced distribution on the instances.

v
1

v
2 v

3

v
4 v

5 v
6

v
7 v

8
v

10v
9

Figure 1: A tree structure which can be generated by the
random process described above with h = 16, c = log h = 4
and k = 3. The root is v1. The bids corresponding to this
example are in Figure 2.

Since the expected number of children of each node
is at most c, it follows by a simple inductive argument
that expected number of nodes (bids) at level i is at
most ci and hence expected total value of bids in level
i is at most ci · h/ci = h. Thus the expected total
value of all the bids in the tree is at most (k + 1)h =
Θ(h log h/ log log h) = o(h log h).

v8

4

1

16

0 1 2 3 4 5 6 16 32 256

Time

v2 v3

v1

Bid Value

v9
v10v7v5

v6v4

Figure 2: The bids corresponding to the tree structure in
Figure 1. The figure is to scale except the time axis is broken
between day 32 and day 256 = h

2.

For technical convenience, we consider the following
modified version of the EF-model. For a bid b at level i,
if the price is set to a value pj strictly less than pi during
the duration of b, then b is lost and we obtain a revenue
of 0 from b. Note that in the actual EF-model, this
bid might yield a revenue of pj which could be as large
as pi/ log h. However, since the expected total value of
the bids in the tree is at most (k + 1)h = o(h log h) and
the bid values between any two levels differ by at least
log h, for any setting of prices, the (additive) difference
between the revenue of the EF-model and modified
model is at most (1/ log h) · (k + 1)h = o(h), which will
be insignificant for our purposes.

Our first lemma shows that the expected revenue
of any deterministic online algorithm is O(h). This
essentially follows from the memoryless property of the
geometric distribution.

Lemma 2.1. The expected revenue (w.r.t to the distri-
bution D) of any deterministic online algorithm is O(h).

Proof. We show by induction on the number of levels
in the tree that the optimum strategy for the online
algorithm in the modified version of EF-model is to
set the highest fixed price h at all times and hence best
achievable expected revenue is h. Clearly, this is true
for the base case of k = 1. Inductively, assume that
this is the best online strategy for all trees up to depth
k. Consider an instance with k + 1 levels. If the online
algorithm decides not to set the (highest) price h at any
time t ∈ [1, h2], then this bid is lost and yields revenue
0, no matter how prices are set at other times. So the
algorithm might as well never set price to h at any time
in this case. By the inductive hypothesis, the expected
achievable revenue for each subtree of the root is no
more than h/ log h and since the expected number of
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subtrees is strictly less than log h (since the geometric
distribution is truncated at mv = c2, and hence has
mean strictly less than c = log h), the expected revenue
is no more than h. Thus the best possible strategy is to
set the price to h at all times.

We now show (the harder part) that the expected
value of OPT (I), where I is chosen according to D, is
quite large. Clearly, Lemma 2.1 and Lemma 2.2 (below)
imply Theorem 2.2 by Yao’s principle.

Lemma 2.2. Let D be the distribution on instances as
describe above, then

EI←D[OPT (I)] = Ω

(

h

√

log h

log log h

)

Proof. Again, it is convenient to consider the modified
EF-model. In this model, given an instance I, OPT (I)
can be computed recursively starting from the leaves in
a bottom up fashion. In particular, let Rev(v) denote
the optimal revenue obtainable from the subtree rooted
at v at level i. Let u1, . . . , umv

denote the children of v.
Then, the algorithm can either set price pi at all times
during the duration of v, or else try to obtain optimum
revenue from each of the subtrees rooted at u1, . . . , umv

.
Thus we obtain that

(2.1) Rev(v) = max





h

ci
,

mv
∑

j=1

Rev(uj)



 .

Note that given an instance I, OPT (I) =
Rev(r), where r is the root. Thus we have that
EI←D[OPT (I)] = E(Rev(r)). By definition of expec-
tation, for any node v and any positive real number
α, E(Rev(v)) = E (Rev(v) | mv ≤ α) · Pr [mv ≤ α] +
E (Rev(v) | mv > α) ·Pr [mv > α]. Thus, from (2.1) and
the linearity of expectation,

E(Rev(v)) ≥(h/ci) · Pr [mv ≤ α] +

E





mv
∑

j=1

Rev(uj)|mv > α



 · Pr [mv > α]

Further, note that since the random coin tosses in sub-
trees rooted at the children u1, · · · , umv

are indepen-
dent, E(Rev(u1)) = E(Rev(u2)) = · · · = E(Rev(umv

))
and hence,

E(Rev(v)) ≥(h/ci) · Pr [mv ≤ α] +

(2.2)

E(Rev(u1)) · E (mv | mv > α) · Pr [mv > α]

To simplify notation, we will use xi to denote the
expected optimal revenue generated from any node at

level i when the bid values are normalized such that the
bid value at level i is 1. That is, for any node v at level
i,

xi =
ci

E(Rev(v))

h
.

Note that by the above definition, E(Rev(u1)) =
xi+1h/ci+1. Thus equation (2.2) can be written as

xi ≥ Pr[mv ≤ α] +
xi+1

c
E(mv|mv > α) · Pr[mv > α]

(2.3)

Define q to be (1−1/c). By Fact 2.1, Pr[mv ≤ α] =
1 − qα. To bound E(mv|mv > α) · Pr[mv > α], observe
that E(mv|mv > α) = α+c for a geometric distribution.
However, we need a slightly more careful accounting
since we truncate our distribution at c2. Thus,

Pr[mv > α]·E(mv|mv > α)

=
∑

α<j≤c2

jqj−1 (1/c) +
∑

j>c2

c2qj−1 (1/c)

= (α + c)qα − (c2 + c)qc2

+ qc2

(c2)

= (α + c)qα − cqc2

≥ (α + c)(qα − qc2

)

Choosing α = c/xi+1, and plugging the values
above, equation (2.3) can be written as

xi ≥ (1 − qα) +
xi+1

c
(α + c)(qα − qc2

)

= (1 − qα) + (1 + xi+1)(q
α − qc2

)

= 1 + xi+1q
α − (1 + xi+1)q

c2

As q = (1 − 1/c) and α = c/xi+1, the above recursion

is exactly that in Fact 2.2. Thus, we have x0 >
√

k
4 or

E(Rev(r)) = hx0 > h·
√

k/4 (where r is the root), which
proves the lemma.

3 Results for the IB-model

We now consider the IB-model. Recall that in this
model, the bidders are impatient and buy the item at
the earliest time they can afford it.

3.1 Optimal Offline AlgorithmAs in the
EF-model, the pricing problem in the offline
IB-model can be solved by dynamic program-
ming. Our solution is similar in spirit to that of
[7].

Theorem 3.1. The optimal set of prices for the offline
IB-model can be computed in polynomial time.
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Proof. We describe a dynamic program to compute the
optimal revenue (the set of prices will be a by-product).
Let the bids be numbered such that the bid values
b1 ≥ b2 ≥ · · · ≥ bn are in decreasing order. Let
p1 > p2 > . . . > pL denote the distinct bid values where
L ≤ n. Note that any optimum algorithm sets prices
from the set {p1, . . . , pL}. (Otherwise, the solution can
be trivially improved by increasing the price to the
nearest larger element in the set {p1, . . . , pL}.)

The idea of the dynamic program is the following:
consider the optimum solution subject to the constraint
that all prices used are at least pk. If we consider
the times where the price is exactly set to pk, then
the solution between every two such consecutive time
steps has prices that are at least pk−1. Thus, given
precomputed pieces of the solution where the prices are
constrained to be at least pk−1, we can stitch these
together to obtain a solution where the prices are at
least pk. We now give the details.

For any pair of days s and e, where s ≤ e, and
parameters ℓ ∈ {0, 1, 2, · · · , n} and k ∈ {1, 2, · · · , L},
let Ak(s, e, ℓ) denote the optimal revenue obtainable
under the following constraints: (1) the subset of bids
considered consists only of bids i such that bi ≥ pk and
si ∈ [s, e], (2) mint∈[s,e] p(t) ≥ pk, and (3) ℓ bids with
bid value at least pk are still alive on day e + 1. We
also define Ck(s, e) to be the optimal revenue obtainable
under the following constraints: (1) the subset of bids
considered consists only of bids i such that bi ≥ pk and
si ∈ [s, e], (2) mint∈[s,e−1] p(t) > pk, and (3) p(e) = pk;
that is, Ck(·, ·) is like Ak(·, ·, 0) with the additional
constraint that the price pk is used on the last day.

Let nk
s,t denote the number of bids i with si ∈ [s, t],

ei ≥ t and bi = pk, and let mk
s,t denote the number of

bids i with si ∈ [s, t], ei ≥ t + 1 and bi = pk.
We now spell out the recurrence relation for

Ak(s, e, ℓ) (assuming ℓ > 0).

Ak(s, e, ℓ) = max(Ak−1(s, e, ℓ − mk
s,e),

max
t′∈[s,e−1]

(Ck(s, t′) + Ak(t′ + 1, e, ℓ)))

Note that for the optimal revenue Ak(s, e, ℓ) there
are two options: either only use prices greater than or
equal to pk−1 or use the price pk somewhere in the
time interval [s, e]. The first case is captured by the
term Ak−1(s, e, ℓ − mk

s,e), we subtract out mk
s,e from ℓ

because, by definition, the last argument in Ak−1(·, ·, ·)
is the number of bids with value greater than pk−1 that
are still alive on day e + 1. In the second case when the
price pk is used, let t′ be the first time it is used. This
implies that for days in [s, t′−1] the price is at least pk−1.
Then by definition, the revenue obtained on the first t′

days is Ck(s, t′). Note that any bid with value at least

pk that was alive on day t′ cannot be alive on day t′+1.
This implies that the optimal revenue obtainable from
days [t′ + 1, e] such that ℓ bids with bid value greater
than pk are alive on day e + 1 is Ak(t′ + 1, e, ℓ). Of
course, for the optimal revenue Ak(s, e, ℓ) one has to
pick the best possible value of t′. This is obtained by
the expression maxt′∈[s,e−1](Ck(s, t′) + Ak(t′ + 1, e, ℓ)).

Using similar reasoning and defining for any ℓ < 0,
Ak(s, e, ℓ) = 0, we get the following recurrence relation:

Ak(s, e, 0) = max(Ak−1(s, e,−mk
s,e),

max
t′∈[s,e−1]

(Ck(s, t′) + Ak(t′ + 1, e, 0)) , Ck(s, e))

We now give the recurrence relation for Ck(s, e). Note
that in this case the minimum price used in the time
range (s, e − 1) is at least pk−1. If there are ℓ′ many
bids with value greater than pk−1 that are alive on day
e, then the maximum revenue obtainable from the days
(s, e − 1), by definition, is Ak−1(s, e − 1, ℓ′). Further,
on day e, ℓ′ + nk

s,e copies of items are sold at price pk.
Finally optimizing over the choice of ℓ′, we get

Ck(s, e) = max
ℓ′∈{0,1,··· ,n}

(

Ak−1(s, e − 1, ℓ′) + (ℓ′ + nk
s,e)pk

)

The base cases of the recurrences are pretty simple. For
any s ≤ e and ℓ

A0(s, e, ℓ) = 0

A1(s, s, ℓ) = 0 if ℓ 6= 0

C1(s, e) = n1
s,e · p1

We are interested in the quantity AL(1,maxi=1..n ei, 0).
The optimality of the above follows from considering the
prices set and the days in non-increasing order. Further,
it is easy to see that the prices set by the optimal
algorithm have to be among the bid values.

We finally need to show that the dynamic program
runs in polynomial time. The number of days considered
in the above recurrence relations is maxn

i=1 ei which
need not be polynomial in n. However, one can assume
w.l.o.g. that mini{si} = 1 and maxi{ei} ≤ n + 1.
To see this note that we may consider only “efficient”
algorithms, i.e., algorithms for which p(t), for every time
t, is no more than the maximum bid value of the bidders
at this time (if such exist). This implies that if there
are bidders at day t, at least one of them buys a copy
of the item at this day. It follows that by a simple
preprocessing the bid intervals can be “shortened” in
such a way that either maxi{ei} = n + 1 or there exists
t < maxi{ei} such that t is not contained in any bid
interval in which case the problem can be broken into
two subproblems. In the preprocessing we scan the bid
intervals [si, ei) in increasing order of their start day,
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and set ei = si + ℓ, where ℓ is the minimum index such
that ℓ bid intervals intersect the interval [si, si + ℓ).
Since there are at most n different price levels that
are considered by the dynamic program, at most n3

entries need to be considered for Ak(·, ·, ·) and at most
n2 entries for Ck(·, ·). Further, for each level k, only
entries in the level k− 1 need to be accessed. Thus, the
above dynamic program runs in polynomial time.

3.2 Deterministic Online AlgorithmsNext we fo-
cus on online algorithms. In this section we study de-
terministic algorithms and Section 3.3 contains our re-
sults for randomized algorithms. To simplify the anal-
ysis we round down each bid value to the closest power
of 2. This may decrease the revenue by no more than
a factor of 2, which is insignificant since all our bounds
are not constants. Thus, from now on we assume that
the bid values are powers of 2 and hence lie in the set
{1, 2, 4, · · · , h/2, h}.

We first show a trivial (and well-known) O(log h)
competitive deterministic algorithm, and then show
that any deterministic algorithm has a competitive ratio
of Ω(

√
log h).

Theorem 3.2. The algorithm that on day t only con-
siders the bids that arrive on that day and sets the price
that yields the maximum revenue among these bids is
O(log h) competitive.

Proof. Let bi,t denote the sum of bid values for bids that
have bid value 2i each and arrive at time t. Clearly
the optimum is upper bounded by the sum of all bid
values, i.e. OPT ≤ ∑

t

∑log h
i=0 bi,t. On the other hand,

on each day t the online algorithm obtains a revenue of
at least

∑

i bi,t/(log h+1) (by the pigeon hole principle)
on the bids that arrive on day t. Since the bidders are
impatient the bids sold on day t are not affected by the
prices set on days after t. Thus the online algorithm
obtains a revenue of at least

∑

t

∑

i bi,t/(log h + 1).

Theorem 3.3. Any deterministic online algorithm A
for IB-model must have a competitive ratio of
Ω(

√
log h).

Proof. Consider the following game that the adversary
plays with the online algorithm A. On day 1, 2i bids
(1, log h, h/2i) arrive, for every i = 0, 1, 2, · · · , log h− 1.
In addition, on each t ≥ 1, h

√
log h bids (t, t, 1) arrive.

These bids arrive either until A first sets p(t) = 1, or
until t = log h. At this point the game stops, that is, no
more new bids are introduced by the adversary.

Let t∗ ≤ log h be the day that the game stops.
The revenue of the offline algorithm is lower bounded
by the revenue obtained using two possible algorithms.

The first algorithm is to set price 1 on each day and
obtain a revenue of at least t∗ · h

√
log h. The second

algorithm sets price p(t) = 2log h+1−t on day t, for
t = 1, 2, . . . , log h. On each day t = 1, . . . , log h, this
algorithm gets a revenue of h due to the 2t−1 bids
with value h/2t−1, and thus h log h overall. Thus,
OPT ≥ max

{

h log h, t∗ · h
√

log h
}

.
Note that by the way the bids are set up, setting

price p(t) = 2i for i ≥ 1 results in a revenue of

2i ·
(

∑

j≥i h/2j
)

≤ 2h. It follows that on each day

before t∗ algorithm A gets a revenue of at most 2h since
the price it sets is at least 2. In case A sets p(t∗) = 1 it
gets additional revenue of h

√
log h from the unit value

bids arriving at day t∗. Thus, the competitive ratio of
the algorithm is at least

max{h log h, t∗ · h
√

log h}
t∗ · 2h + h

√
log h

= Ω(
√

log h)

3.3 Randomized Online AlgorithmsWe first
give a randomized O(log log h)-competitive algorithm
for IB-model, and then show that any ran-
domized online algorithm has a competitive ratio
Ω(
√

log log h/ log log log h).
The randomized algorithm is a “classify and ran-

domly select” algorithm. However, here the classifica-
tion is according to bid lengths. The following lemmas
imply the classification by showing that the bid lengths
can be partitioned into log log h + 3 groups such that
there exists an O(1) competitive algorithm if the lengths
are limited to be from a single group.

Lemma 3.1. Let k ≤ log h be a fixed integer, and
consider instances in which the length of every bid lies
between 2k and 4k. If k is known in advance, then there
is an O(1)-competitive randomized algorithm.

Proof. We divide time into intervals of size k. In
particular, for i ≥ 1, let Ti denote the interval [(i −
1)k + 1, ik]. Let Vj(i) denote the sum of all bid
values for bids with value 2j that arrive during Ti.
Let j1(i), j2(i), . . . , jk(i) be the k indices with the k
highest values of Vj(i). Order these indices such that
j1(i) > j2(i) > . . . > jk(i). Let V(i) denote the set of
these k indices j1(i), . . . , jk(i). Finally, let R(i) denote
the value Vj1(i) + Vj2(i) + . . . + Vjk

(i).
Consider the following algorithm that we call

Algeven(k). During Ti, for i = 2, 4, 6, . . . , algorithm
Algeven(k) sets the prices to be 2 to the power of the
indices in the set V(i − 1) in decreasing order. Specifi-
cally, on the ℓth day of interval Ti (i.e., day (i−1)k+ℓ),
it sets the price to 2jℓ(i−1). On the other days dur-
ing intervals T1, T3, T5, . . ., the prices are set to infinity.
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Note that Algeven(k) is a well-defined online algorithm,
as V(i − 1) is known at the start of Ti. Also, as each
bid has length at least 2k, every Ti has length k and
as the prices during Ti−1 are set to infinity, the bids
that arrive during Ti−1 are all alive at the start of Ti

(and have expiration days outside Ti). Finally, since the
prices set during Ti are in a decreasing order, the algo-
rithm Algeven(k) collects a revenue of at least R(i − 1)
during Ti. Thus the total revenue of this algorithm is
at least R(1)+R(3)+ . . .. Analogously, define the algo-
rithm Algodd(k) that sets infinite prices during T2, T4, . . .
and sets prices in V(i − 1) during Ti, for odd i. It is
easy to see that the total revenue of Algodd(k) is at least
R(2)+R(4)+ . . .. Note that both algorithms do not get
any revenue for bids that arrive in the last interval of
size k. However, by the assumption on the bid length
there are no such bids.

Our randomized online algorithm simply tosses one
coin at the beginning and either executes Algodd(k) or
Algeven(k). We call this algorithm Alg(k). Clearly,
the expected revenue of this algorithm is at least
1/2

∑

i≥1 R(i).
We now show that any offline algorithm can get

a total revenue of at most
∑

i≥1 10R(i). Consider the
period Ti for some i ≥ 1. Since each bid has length at
most 4k, the revenue obtained during Ti can only be due
to bids that arrived during Ti−4, .., Ti. Thus it suffices
to show that for q = i−4, . . . , i, the revenue that can be
obtained during Ti due to bids that arrive during Tq is at
most 2R(q). Without loss of generality we assume that
the prices are also powers of 2. Let j′1 > j′2 > . . . > j′ℓ,
where ℓ ≤ k, denote the distinct base 2 logarithms of
the prices that the offline algorithm sets during Ti. The
revenue obtained from bids that arrive during Tq when
the price is set to 2j is at most

∑

s≥0 Vj+s(q)/2s. Thus,
the total revenue due to bids that arrive during Tq is at
most

ℓ
∑

r=1

∑

s≥0

Vj′
r
+s(q)

2s
=
∑

s≥0

1

2s
(

ℓ
∑

r=1

Vj′
r
+s(q))

≤
∑

s≥0

1

2s
R(q) ≤ 2R(q).

The inequality follows since R(q), by definition, is the
sum of the k highest values of the sum of all bids from
one level in interval Tq.

Our next observation implies that the problem is
easy for instances with bid lengths at least 2 log h + 2.

Lemma 3.2. If all bid durations are at least 2 log h+2,
then there is a 2-competitive randomized algorithm.

Proof. The proof is similar to the proof of Lemma 3.1
the only additional observation is that when k = log h+

1 the revenue obtained in each interval equals the total
value of the bids that arrived in the previous interval.
Specifically, consider the following two algorithms. The
first sets its prices to {h, h/2, . . . , 1} during the first
log h+1 time slots, sets price to infinity during the next
log h+1 time steps and repeats this pattern forever. The
second algorithm sets its price to infinity during the first
log h + 1 time slots, sets the prices to {h, h/2, . . . , 1}
during the next log h + 1 time slots and repeats this
pattern forever. Consider the time partitioned into
consecutive intervals of length log h + 1. The profit
obtained by the first algorithm is the total value of bids
arriving in the even intervals, and the profit obtained by
the second algorithm is the total value of bids arriving in
the odd intervals. Thus choosing one of these randomly
obtains at least half of all bid values. Following previous
notation we denote this algorithm Alg(log h + 1).

Finally, if all bids have duration 1, the bids arriving
on different days do not overlap and hence the instance
can be solved optimally, by simply setting the revenue
maximizing price on each day. We call this algorithm
Alg(0).

Theorem 3.4. There is a randomized online algorithm
for the IB-model with a competitive ratio O(log log h).

Proof. Divide the bids into log log h + 3 groups accord-
ing to their bid lengths: group 0 consists of all bids
of length 1, group k, for k = 1, 2, . . . (log h)/2, log h,
consists of all bids whose length lies between 2k and
4k, and group 2 log h consists of all bids of length at
least 4 log h. By Lemmas 3.1 and 3.2 and the discus-
sion above if the bid lengths are taken from a single
group k then the algorithm Alg(k) is O(1) competi-
tive. Consider the “classify and randomly select” al-
gorithm that chooses k uniformly at random from the
set S = {0, 1, 2, 4, . . . , (log h)/2, log h, 2 log h} of cardi-
nality log log h + 3 and executes the algorithm Alg(k).
Thus, this algorithm is O(log log h) competitive.

The algorithm as stated above requires prior knowl-
edge of h. However, this requirement can be removed
using rather standard techniques. In particular, the al-
gorithm that begins afresh whenever the current value
of h changes by more than a factor of 2, can be shown
(rather simply) to yield the same guarantee. We defer
the details to the full version.

We now show the lower bound of
Ω(
√

log log h/ log log log h) on the competitive ra-
tio of any randomized algorithm.

Theorem 3.5. Any randomized online algorithm for

IB-model has competitive ratio of Ω
(√

log log h
log log log h

)

.
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Proof. (Sketch) We modify the construction in proof of
Theorem 2.2. We use a tree construction similar to
the one used in the proof of Theorem 2.2, but replace
a bid of value v and duration t (say its interval is
(τ, τ + t − 1)), that corresponds to a node in the tree,
with t levels of bids such that level i has 2i bids, each
of which has value v/(t2i) and interval (τ, τ + t − 1).
Thus, the value v is distributed over t different price
levels. The main observation relating the EF-model

to the IB-model is the following. Suppose that the
algorithm for EF-model obtains the value v from the
bid in the interval (τ, τ + t − 1), recall that in this
case this algorithm sets the price to v during the entire
interval (τ, τ +t−1). Since in the IB-model bidders are
impatient there is no need to fix the price for the entire
interval to obtain the value of the bid. Instead, the
corresponding algorithm for IB-model sets the price to
v/(t2i) at time τ +i for 0 ≤ i ≤ t−1 to collect the entire
value v that is now distributed over t levels. Clearly, the
addition of the levels for each node reduces the depth
of the tree and this is the reason for the smaller lower
bound. Below, we give the details of the construction.

As in the construction in the proof of Theorem 2.2,
we consider the bid instances as a tree. There will be
k+1 tree levels with the root being at level 0. Define d =
log log h. A node v at level i consists of bids at d2(k−i)

distinct bid values that are exponentially decreasing.
Let Si =

∑i
j=0 d2(k−j) = (d2(k+1) − d2(k−i))/(d2 − 1)

be the total number of bid values from the root to
tree level i (inclusive). Let k be such that 2Sk =

2(d2k+2−1)/(d2−1) = h. Note that k = Ω
(

log log h
log log log h

)

.

For each node v at tree level i, for ℓ =
0, · · · , d2(k−i) − 1, there are 2ℓ many bids

(

su + (j − 1)d2(k−i), su + jd2(k−i) − 1,
h

di2Si−1+ℓ

)

where su is the start time of the parent u of v (and v
is the jth child of u for 1 ≤ j ≤ mu). Further, each
v at level i has mv children where mv is chosen from
G(1/d). However, if mv exceeds d2, then it is truncated
to d2. Finally, the level 0 node has d2k distinct price
levels. For every ℓ = 0, · · · , d2k − 1, there are 2ℓ bids
(0, d2k − 1, h/2ℓ).

Using arguments similar to the ones used in Theo-
rem 2.2, the optimum strategy for the online algorithm
is the analog of staying at the root (which is to visit
all the d2k levels in decreasing order during the time
t = 0, . . . , d2k − 1, and get a revenue of O(h)).

Repeating the argument in the proof of Lemma
2.2 (and considering the analog in the IB-model, as
discussed above), one can show that the expected value

of the optimal revenue is Ω(h
√

k) = Ω
(

h
√

log log h
log log log h

)

which proves Theorem 3.5.
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