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Abstract. Motivated by applications in online dating and kidney ex-
change, we study a stochastic matching problem in which we have a ran-
dom graph G given by a node set V and probabilities p(i, j) on all pairs
i, j ∈ V representing the probability that edge (i, j) exists. Additionally,
each node has an integer weight t(i) called its patience parameter. Nodes
represent agents in a matching market with dichotomous preferences, i.e.,
each agent finds every other agent either acceptable or unacceptable and
is indifferent between all acceptable agents. The goal is to maximize the
welfare, or produce a matching between acceptable agents of maximum
size. Preferences must be solicited based on probabilistic information
represented by p(i, j), and agent i can be asked at most t(i) questions
regarding his or her preferences.
A stochastic matching algorithm iteratively probes pairs of nodes i and
j with positive patience parameters. With probability p(i, j), an edge ex-
ists and the nodes are irrevocably matched. With probability 1− p(i, j),
the edge does not exist and the patience parameters of the nodes are
decremented. We give a simple greedy strategy for selecting probes which
produces a matching whose cardinality is, in expectation, at least a quar-
ter of the size of this optimal algorithm’s matching. We additionally show
that variants of our algorithm (and our analysis) can handle more com-
plicated constraints, such as a limit on the maximum number of rounds,
or the number of pairs probed in each round.

1 Introduction

Matching is a fundamental primitive of many markets including job markets,
commercial markets, and even dating markets [3–5, 16–18]. While matching is a
well understood graph-theoretic concept, its stochastic variants are considerably
less well-developed. Yet stochastic variants are precisely the relevant framework
for most markets which incorporate a degree of uncertainty regarding the pref-
erences of the agents. In this paper we study a stochastic variant of matching
motivated by applications in the kidney exchange and online dating markets,
or more generally, for matching markets with dichotomous preferences in which
each agent finds every other agent either acceptable or unacceptable and is indif-
ferent between acceptable agents (see, e.g., [6]). The basic stochastic matching
problem, which is the main focus of this paper, can be stated as follows:



Let G be a random undirected graph given by a node set V (representing
agents in the matching market) and a probability p(i, j) on any pair
i, j of nodes, representing the probability that an edge exists between
that pair of nodes (i.e., the probability that the corresponding agents
find each other acceptable). Whether or not there is an edge between a
pair of nodes is not revealed to us unless we probe this pair (solicit the
preference information from the relevant agents). Upon probing a pair,
if there is an edge between them, they are matched and removed from
the graph. In other words, when a pair (i, j) is probed, a coin is flipped
with probability p(i, j). Upon heads, the pair is matched and leaves the
system. Also, for every node i, we are given a number t(i) called the
patience parameter of i, which specifies the maximum number of failed
probes i is willing to participate in.
The goal is to maximize the welfare, i.e., design a probing strategy to
maximize the expected number of matches.

The above formulation of the problem is similar in nature to the formulation
of other stochastic optimization problems such as stochastic shortest path [12, 7]
and stochastic knapsack [8]. The stochastic matching problem is an exponential-
sized Markov Decision Process (MDP) and hence has an optimal dynamic pro-
gram, also exponential. Our goal is to approximate the expected value of this dy-
namic program in polynomial time. We show that a simple non-adaptive greedy
algorithm that runs in near-linear time is a 4-approximation (Section 3). The
algorithm simply probes edges in order of decreasing probability. Our algorithm
is practical, intuitive, and near-optimal. Interestingly, the algorithm need not
even know the patience parameters, but just which edges are more probable.

It is easy to see that the above greedy algorithm is a good approxima-
tion when the patience parameters are all one or all infinite: when the pa-
tience parameters are all one, the optimal algorithm clearly selects a maximum
matching and so the maximal matching selected by the greedy algorithm is a
2-approximation; when the patience parameters are all infinite, for any instan-
tiation of the coin flips, the greedy algorithm finds a maximal matching and
hence is a 2-approximation to the (ex-post) maximum matching. To prove that
the greedy algorithm is a constant approximation in general, we can no longer
compare our performance to the expected size of the maximum matching. As
we show in Appendix A, the gap between the expected size of the maximum
matching and the expected value of the optimum algorithm may be larger than
any constant. Instead, we compare the decision tree of the greedy algorithm to
the decision tree of the optimum algorithm. Using induction on the graph as
well as a careful charging scheme, we are able to show that the greedy algorithm
is a 4-approximation for general patience parameters. Unfortunately, we do not
know if computing the optimal solution is even NP-hard. Further, we do not
know whether if the analysis of the greedy algorithm is tight. We leave these as
open questions and conjecture that (i) computing the optimal strategy is indeed
NP-hard and (ii) the greedy algorithm is indeed a 2-approximation.



We also show that our algorithm and analysis can be adapted to handle more
complicated constraints (Section 4). In particular, if probes must be performed
in a limited number of rounds, each round consisting of probing a matching, a
natural generalization of the greedy algorithm gives a 6-approximation in the
uniform probability case. For this generalization, the problem does turn out to
be NP-hard (Appendix B). We can also generalize the algorithm to a case where
we only probe a limited number of edges in each round (Section 4).

1.1 Motivation

In addition to being an innately appealing and natural problem, the stochastic
matching problem has important applications. We outline here two applications
to kidney exchange and online dating.

Kidney Exchange. Currently, there are 98,167 people in need of an organ in the
United States. Of these, 74,047 patients are waiting for a kidney.6 Every healthy
person has two kidneys, and only needs one kidney to survive. Hence it is possi-
ble for a living friend or family of the patient to donate a kidney to the patient.
Unfortunately, not all patients have compatible donors. At the recommendation
of the medical community [14, 15], in year 2000 the United Network for Organ
Sharing (UNOS) began performing kidney exchanges in which two incompatible
patient/donor pairs are identified such that each donor is compatible with the
other pair’s patient. Four simultaneous operations are then performed, exchang-
ing the kidneys between the pairs in order to have two successful transplants.

To maximize the total number of kidney transplants in the kidney exchange
program, it is important to match the maximum number of pairs. This problem
can be phrased as that of maximum matching on graphs in which the nodes
represent incompatible pairs and the edges represent possible transplants based
on medical tests [17, 18]. There are three main tests which indicate the likelihood
of successful transplants. The first two tests, the blood-type test and the anti-
body screen, compare the blood of the recipient and donor. The third test, called
crossmatching combines the recipient’s blood serum with some of the donor’s red
blood cells and checks to see if the antibodies in the serum kill the cells. If this
happens (the crossmatch is positive), then the transplant can not be performed.
If this doesn’t happen (the crossmatch is negative), then the transplant may be
performed.7

Of course, the feasibility of a transplant can only be determined after the final
crossmatch test. As this test is time-consuming and must be performed close to
the surgery date [2, 1], it is infeasible to perform crossmatch tests on all nodes
in the graph. Furthermore, due to incentives facing doctors, it is important to
perform a transplant as soon as a pair with negative crossmatch tests is identified.
Thus the edges are really stochastic; they only reflect the probability, based on

6 Data retrieved on November 19th, 2007 from United Network for Organ Shar-
ing (UNOS) — The Organ Procurement and Transplantation Network (OPTN),
http://www.optn.org/data.

7 Recent advances in medicine actually allow positive crossmatch transplants as well,
but these are significantly more risky.



the initial two tests and related factors, that an exchange is possible. Based on
this information alone, edges must be selected and, upon a negative crossmatch
test, the surgery performed. Hence the matching problem is actually a stochastic
matching problem. The patience parameters in the stochastic matching problem
can be used to model the unfortunate fact that patients will eventually die
without a successful match.

Online Dating. Another relevant marketplace for stochastic matching is the on-
line dating scene, the second-largest paid-content industry on the web, expected
to gross around $600 million in 2008 [9]. In many online dating sites, most no-
tably eHarmony and Just Lunch, users submit profiles to a central server. The
server then estimates the compatibility of a couple and sends plausibly compat-
ible couples on blind dates (and even virtual blind dates). The purported goal
of these sites is to create as many happily married couples as possible.

Again, this problem may be modeled as a stochastic matching problem. Here,
the people participating in the online match-making program are the nodes in
the graph. From the personal characteristics of these individuals, the system
deduces for each pair a probability that they are a good match. Whether or not
a pair is actually successful can only be known if they are sent on a date. In this
case, if the pair is a match, they will immediately leave the program. Also, each
person is willing to participate in at most a given number of unsuccessful dates
before he/she runs out of patience and leaves the match-making program. The
online dating problem is to design a schedule for dates to maximize the expected
number of matched couples.

2 Preliminaries

The stochastic matching problem can be represented by a random graph G =
(V, E), where for each pair (α, β) of vertices, there is an undirected edge between
α and β with a probability p(α, β) ∈ [0, 1].8 For the rest of the paper, w.l.o.g.
we will assume that E contains exactly the pairs that have positive probability.
These probabilities are all independent. Additionally, for each vertex γ ∈ V a
number t(γ) called the patience parameter of γ is given. The existence of an
edge between a pair of vertices of the graph is only revealed to us after we
probe this pair. When a pair (α, β) is probed, a coin is flipped with probability
p(α, β). Upon heads, the pair is matched and is removed from the graph. Upon
tails, the patience parameter of both α and β are decremented by one. If the
patience parameter of a node reaches 0, this node is removed from the graph. This
guarantees that each vertex γ can be probed at most t(γ) times. The problem
is to design (possibly adaptive) strategies to probe pairs of vertices in the graph
such that the expected number of matched pairs is maximized.

An instance of our problem is thus a tuple (G, t). For a given algorithm ALG,
let EALG(G, t) (or EALG(G) for simplicity, when t is clear from the context) be

8 Note that here we do not impose any constraint that the graph G should be bipartite.
In settings such as heterosexual dating where such a constraint is natural, it can be
imposed by setting the probabilities between vertices on the same side to zero.



the expected number of pairs matched by ALG, where the expectation is over the
realizations of probes and (possible) coin tosses of the algorithm itself.
Decision Tree Representation. For any deterministic algorithm ALG and any
instance (G, t) of the problem, the entire operation of ALG on (G, t) can be
represented as an (exponential-sized) decision tree TALG. The root of TALG, r,
represents the first pair e = (α, β) ∈ E probed by ALG. The left and the right
subtrees of r represent success and failure for the probe to (α, β), respectively.
In general, each node of this tree corresponds to a probe and the left and the
right subtrees correspond to the respective success or failure.

For each node v ∈ TALG, a corresponding sub-instance (Gv, tv) of the prob-
lem can be defined recursively as follows: The root r corresponds to the initial
instance (G, t). If a node v that represents a probe to a pair (α, β) corresponds
to (Gv, tv),

– the left child of v corresponds to (Gv \ {α, β}, tv), and
– the right child of v corresponds to (Gv \ {(α, β)}, t′v), where Gv \ {(α, β)}

denotes the instance obtained from Gv by setting the probability of the edge
(α, β) to zero, and t′v(α) = tv(α) − 1, t′v(β) = tv(β) − 1 and t′v(γ) = tv(γ)
for any other vertex γ.

For each node v ∈ TALG, let Tv be the subtree rooted at v. Let TL(v) and
TR(v) be the left and right subtree of v, respectively. Observe that Tv essentially
defines an algorithm ALG′ on the sub-instance (Gv, tv) corresponding to v. Define
EALG(Tv) to be the expected value generated by the algorithm corresponding to
ALG′, i.e. EALG(Tv) = EALG′(Gv, tv).

The stochastic matching problem can be viewed as the problem of computing
the optimal policy in an exponential-sized Markov Decision Process (for more
details on MDPs, see the textbook by Puterman [13]). The states of this MDP
correspond to subgraphs of G that are already probed, and the outcome of
these probes. The actions that can be taken at a given state correspond to the
choice of the next pair to be probed. Given an action, the state transitions
probabilistically to one of two possible states, one corresponding to a success,
and the other corresponding to a failure in the probe. We denote by OPT the
optimal algorithm, i.e., the solution of this MDP. Note that we can assume
without loss of generality that OPT is deterministic, and therefore, a decision
tree TOPT representing OPT can be defined as described above. Observe that by
definition, for any node v of this tree, if the probability of reaching v from the
root is non-zero, the algorithm defined by Tv must be the optimal for the instance
(Gv, tv) corresponding to v. To simplify our arguments, we assume without loss
of generality that the algorithm defined by Tv is optimal for (Gv, tv) for every
v ∈ TOPT, even for nodes v that have probability zero of being reached. Note that
such nodes can exist in TOPT, since OPT can probe edges of probability 1, in which
case the corresponding right subtree is never reached.

Note that it is not even clear that the optimal strategy OPT can be described
in polynomial space. Therefore, one might hope to use other benchmarks such
as the optimal offline solution (i.e., the expected size of maximum matching in



G) as an upper bound on OPT. However, as we show in Appendix A, the gap
between OPT and the optimal offline solution can be larger than any constant.

3 Greedy Algorithm

We consider the following greedy algorithm.

GREEDY.

1. Sort all edges in E by probabilities, say, p(e1) ≥ p(e2) ≥ · · · ≥ p(em)
(ties are broken arbitrarily)

2. For i = 1, . . . , m
3. if the two endpoints of ei are available, probe ei

Our main result is as follows.

Theorem 1 For any instance graph (G, t), GREEDY is a 4-approximation to the
optimal algorithm, i.e. EOPT(G, t) ≤ 4 ·EGREEDY(G, t).

In the rest of this section, we will prove Theorem 1. The proof is inductive
and is based on carefully charging the value obtained at different nodes of TOPT

to TALG. We will begin by establishing two lemmas that will be useful for the
proof. (The proofs are deferred to Appendix C.)

Lemma 1. For any node v ∈ TOPT, EOPT

(
TL(v)

) ≤ EOPT

(
TR(v)

) ≤ 1+EOPT

(
TL(v)

)
.

Lemma 2. For any node v ∈ TOPT, assume v represents the edge e = (α, β) ∈ E,
and let p = p(α, β) be the probability of e. If we increase the probability of v to
p′ > p in TOPT, then EOPT(TOPT) will not decrease.

Note that Lemma 2 does not mean we increase the probability of edge e in
graph G. It only says for a particular probe of e in TOPT, which corresponds to
node v in the claim, if the probability of e is increased, the expected value of
OPT will not decrease.

Fig. 1. Greedy tree TGREEDY Fig. 2. Optimum tree TOPT

These two lemmas provide the key ingredients of our proof. To get an idea
of the proof, imagine that the first probe of the greedy algorithm is to edge
(α, β) represented by node r at the root of TGREEDY as in Figure 1 and suppose
that TOPT is as in Figure 2. Let pr be the probability of success of probe (α, β).



Note the algorithm ALG1 defined by subtree A in TOPT is a valid algorithm for
the left subtree of greedy (since the optimum algorithm has already matched
nodes α and β upon reaching subtree A, all probes in subtree A are valid probes
for the left-subtree of TGREEDY). Furthermore, ALG1 achieves the same value, in
expectation, as the optimum algorithm on subtree A. Similarly the algorithm
ALG2 defined by subtree D in TOPT is a valid algorithm for the right subtree of
greedy except ALG2 may perform a probe to (α, β). Thus we define a secondary
(randomized) algorithm ALG′2 which follows ALG2 but upon reaching a probe
to (α, β) simply flips a coin with probability pr to decide which subtree to follow
and does not probe the edge. Hence ALG′2 is a valid algorithm for the right
subtree of greedy, and gets the same value as the optimum algorithm on subtree
D minus a penalty of pr for the missed probe to (α, β). The value of ALG1 and
ALG′2 on the left and right subtree of TGREEDY respectively is at most the value of
the optimum algorithm on those subtrees and so, by the inductive hypothesis, at
most four times the value of the greedy algorithm on those subtrees. By Lemma 2,
we can assume the probes at nodes x, y, and z in TOPT have probability pr of
success. Furthermore, we can use Lemma 1 to bound the value of the optimum
algorithm in terms of the left-most subtree A and the right-most subtree D.
With a slight abuse of notation, we use A to denote the expected value of the
optimum algorithm on subtree A (and similarly, B, C, and D). Summarizing
the above observations, we then get:

EOPT(G, t) ≤ p2
r(A + 2) + pr(1− pr)(B + 1) + pr(1− pr)(C + 1) + (1− pr)2D

= 2pr + p2
rA + pr(1− pr)B + pr(1− pr)C + (1− pr)2D

≤ 2pr + p2
rA + pr(1− pr)(A + 1) + pr(1− pr)D + (1− pr)2D

= 3pr − p2
r + prA + (1− pr)D

≤ 4pr + prA + (1− pr)(D − pr)
= 4 · (pr(1 + EALG1) + (1− pr)EALG′2

)

≤ 4EGREEDY(G, t)

where the first inequality is by Lemma 2, the second inequality is by Lemma 1,
and the last inequality is by the inductive hypothesis.

The above sketch represents the crux of the proof. To formalize the argu-
ment, we must account for all possibilities of TOPT. We do this by considering
“frontiers” in TOPT representing initial probes to α and β, and then follow the
general accounting scheme suggested above via slightly more complicated alge-
braic manipulations.

Proof of Theorem 1. The proof is by induction on the set of edges in the graph
G and the patience parameters. In particular, (G′, t′) is a sub-instance of (G, t)
if G′ is an edge subgraph of G and for every vertex v ∈ V (G′), t′(v) ≤ t(v). In
the base case where the graph has only one edge, the claim is obviously true.
Assume that for any sub-instance (G′, t′) of instance (G, t),

EOPT(G′, t′) ≤ 4 ·EGREEDY(G′, t′).



Given the induction hypothesis, we will show EOPT(G, t) ≤ 4 ·EGREEDY(G, t).
Let r be the root of TGREEDY, which represents probing the edge (α, β) ∈ E,

and pr be the probability of edge (α, β). Let (GL, tL) and (GR, tR) be the sub-
instances corresponding to the left and right child of r, respectively. Note that

EGREEDY(G, t) = pr + pr ·EGREEDY(GL, tL) + (1− pr) ·EGREEDY(GR, tR). (1)

We consider two cases based on whether pr = 1 or pr < 1. If pr = 1, then
it is easy to see that the inductive hypothesis holds. Namely, let (G′, t′) be the
subinstance of (G, t) obtained by removing edge (α, β). Then,

EOPT(G, t) ≤ EOPT(G′, t′) + 1 ≤ 4 ·EGREEDY(G′, t′) + 1 ≤ 4 ·EGREEDY(G, t),

where the second inequality follows from the inductive hypothesis.
If pr < 1, then for every node v ∈ TOPT, the probability pv of the edge

corresponding to v satisfies 0 < pv < 1 by the definition of the greedy algorithm:
We define qv to be the probability that OPT reaches node v in TOPT. That is,

qv is the product of probabilities of all edges on the path from the root of TOPT

to v. The following equality follows from the definition of qv:

EOPT(G, t) =
∑

v∈TOPT

pv · qv. (2)

Define X ⊆ TOPT to be the set of nodes that correspond to the first time
where OPT probes an edge incident to α or β. In other words, X is the set of
nodes v ∈ TOPT such that OPT probes an edge incident to α or β (or both) at v
and at none of the vertices on the path from the root to v (see figure 3 at the
end of the paper for an example). Observe that no node in X lies in the subtree
rooted at another node in X. Thus, X essentially defines a “frontier” in TOPT.

Take a node v ∈ X. If v represents probing an edge incident to α, consider
the set of all nodes in TL(v) that correspond to the first time an edge incident to
β is probed; otherwise, consider all nodes in TL(v) that correspond to the first
time an edge incident to α is probed. Let Y1 be the union of all these sets, taken
over all v ∈ X. Define Y2 ⊆

⋃
v∈X TR(v) similarly, with L(v) replaced by R(v)

(see Figure 3 at the end of the paper for an example).
For any subset of nodes S ⊆ TOPT, define T (S) =

⋃
v∈S Tv. In appendix C,

we show that

EOPT(G, t) ≤ 3pr +
∑

v∈Y1

qv ·EOPT

(
TL(v)

)
+

∑

u∈X

∑

v∈TL(u)\T (Y1)

pv · qv

+
∑

v∈Y2

qv ·EOPT

(
TR(v)

)
+

∑

u∈X

∑

v∈TR(u)\T (Y2)

pv · qv +
∑

v∈TOPT\T (X)

pv · qv.(3)

Define an algorithm ALG1 that works as follows: ALG1 follows the decision tree
of OPT except that when the algorithm reaches a node v ∈ X∪Y1, it will not probe
the edge corresponding to v and go to the left subtree TL(v) directly. Since in



ALG1 for every path from the root to a node in ∪u∈T (Y1) (and ∪u∈XTL(u)\T (Y1))
has two (and one resp.) less successful probes in X ∪Y1 than OPT, it follows that

EALG1 =
∑

u∈X

∑

v∈Y1∩TL(u)

∑

w∈TL(v)

pw · qw

pupv
+

∑

u∈X

∑

w∈TL(u)\T (Y1)

pw · qw

pu
+

∑

w∈TOPT\T (X)

pw · qw

=
∑

u∈X

∑

v∈Y1∩TL(u)

qv

pu
·EOPT

(
TL(v)

)
+

∑

u∈X

∑

w∈TL(u)\T (Y1)

pw · qw

pu
+

∑

w∈TOPT\T (X)

pw · qw,(4)

(recall pu > 0, and hence the division is valid). In the second equality above, we
have used the following fact. Fix v ∈ Y1. For every w ∈ TL(v) let qw = qv ·pv · q′w.
Then EOPT

(
TL(v)

)
=

∑
w∈TL(u)

q′w · pw.
On the other hand, by the definition of X and Y1, ALG1 will not probe any

edge incident to α and β. Thus it is a valid algorithm for the instance (GL, tL).
By the induction hypothesis, we have

EALG1 ≤ EOPT(GL, tL) ≤ 4 ·EGREEDY(GL, tL). (5)

Define an algorithm ALG2 that works as follows: ALG2 follows the decision
tree of OPT except that when the algorithm reaches a node v ∈ X ∪ Y2, it will
not probe the edge corresponding to v and proceed to the right subtree TR(v)

directly. Using an argument similar to the one used for EALG1 , we get

EALG2 =
∑

u∈X

∑

v∈Y2∩TR(u)

∑

w∈TR(v)

pw · qw

(1− pu)(1− pv)
+

∑

u∈X

∑

w∈TR(u)\T (Y2)

pw · qw

1− pu

+
∑

w∈TOPT\T (X)

pw · qw

=
∑

u∈X

∑

v∈Y2∩TR(u)

qv

1− pu
·EOPT

(
TR(v)

)
+

∑

u∈X

∑

w∈TR(u)\T (Y2)

pw · qw

1− pu

+
∑

w∈TOPT\T (X)

pw · qw (6)

(recall pu < 1, and hence the division is valid).
We define a variant ALG′2 from ALG2 where whenever ALG2 reaches a node

corresponding to edge (α, β), ALG′2 will only make a coin toss with the same
distribution to decide which subtree to go, but not probe the edge (α, β). I.e.,
the contribution of edge (α, β) is not included in ALG′2. It is easy to see that

EALG2 ≤ EALG′2 + pr. (7)

By the definition of X and Y2, ALG′2 is a valid algorithm for the instance (GR, tR).
By the induction hypothesis, we have

EALG′2 ≤ EOPT(GR, tR) ≤ 4 ·EGREEDY(GR, tR). (8)

Now consider nodes u ∈ X and imagine increasing the probability of success,
pu, to pr for each such node. By Lemma 2, this can only increase the value



of EOPT(G, t) but it clearly does not change the value of ALG1 or ALG2. Let
EOPT(G, t)′ be the value of the algorithm TOPT on this new instance. From (3),

EOPT(G, t)′ ≤ 3pr +
∑

u∈X

∑

v∈Y1∩TL(u)

pr
qv

pu
·EOPT

(
TL(v)

)
+

∑

u∈X

∑

v∈TL(u)\T (Y1)

pv · pr
qv

pu

+
∑

u∈X

∑

v∈Y2∩TR(u)

(1− pr)
qv

1− pu
·EOPT

(
TR(v)

)

+
∑

u∈X

∑

v∈TR(u)\T (Y2)

pv · (1− pr)
qv

1− pu
+

∑

v∈TOPT\T (X)

pv · qv

= 3pr + pr ·EALG1 + (1− pr) ·EALG2 , (9)

where the last line follows from (4) and (6). Now consider the following sequence:

EOPT(G, t) ≤ EOPT(G, t)′ ≤ 3pr + pr ·EALG1 + (1− pr) ·EALG2

≤ 4pr + pr ·EALG1 + (1− pr) ·EALG′2 (10)
≤ 4pr + 4pr ·EGREEDY(GL, tL) + 4(1− pr) ·EGREEDY(GR, tR) (11)
= 4 ·EGREEDY(G, t). (12)

In the above, (10) follows from (7), (11) follows from (5) and (8), and (12) follows
from (1). This completes the proof.

4 Multiple Rounds Matching
In this section, we consider a generalization of the stochastic matching problem
defined in Section 2. In this generalization, the algorithm proceeds in rounds,
and is allowed to probe a set of edges (which have to be a matching) in each
round. The additional constraint is a bound, k, on the maximum number of
rounds. We show in Appendix B that finding the optimal strategy in this new
model is NP-hard. Note that when k is large enough, the problem is equivalent
to the model discussed in previous sections.

In the rest of this section, we will study approximation algorithms for the
problem. By looking at the probabilities as the weights on edges, we have the
following natural generalization of the greedy algorithm.

GREEDYk.

1. For each round i = 1, . . . , k
2. compute the maximum weighted matching in the current graph

3. probe all edges in the matching

Let OPTk be the optimal algorithm under this setting. We would like to
compare EGREEDYk against EOPTk . Unfortunately, as the example in Appendix F
shows, with no restriction on the instance, GREEDYk can be arbitrarily bad.

However, we can still prove that GREEDYk is a constant-factor approximation
algorithm in two important special cases: when all nodes have infinite patience,
and when nodes have arbitrary patience but all non-zero probability edges of



G have bounded probability (which contains the equal probability case). Fur-
thermore, we observe that the latter result can be used to give a logarithmic
approximation for the general case of the problem.
Special Cases. When the patience of all vertices are infinity, we will show that
GREEDYk is a 4-approximation. (The proof is deferred to Appendix G.)

Theorem 2 For any graph G = (V, E), EOPTk [G] ≤ 4 · EGREEDYk [G], when the
patience of all vertices are infinity.

Next, we study the approximability of GREEDYk on instances where nodes have
arbitrary patience, but all edges of G have probabilities in a bounded range. (The
proof is deferred to Appendix H.)

Theorem 3 Let (G, t) be an instance such that for all pairs α, β of vertices,
p(α, β) is either 0 or in [pmin, pmax], for 0 < pmin ≤ pmax ≤ 1. Then EOPTk [G] ≤
(4 + 2pmax/pmin) ·EGREEDYk [G].

The General Case. Theorem 3 can be used to obtain a (randomized) approx-
imation algorithm for the general case of the multi-round stochastic matching
problem with an approximation factor of O(log n). This follows from the obser-
vations that one can delete all edges with probability less than pmax/n2 and the
fact that Theorem 3 gives a constant factor approximation on subgraphs of G
with edge weight in the range (pmax/2i, pmax/2i+1], for some integer i ≥ 0. The
details are in Appendix I.
A Further Extension. We also consider the following extension of the k-rounds
model. In each round, an algorithm is only allowed to probe a matching of size at
most C, where 1 ≤ C ≤ b|V |/2c is another parameter (V is the set of vertices in
the graph). Note that till now we have only considered the cases C = 1 and C =
b|V |/2c. Theorems 2 and 3 for the natural extension of the GREEDYk algorithm
also hold in this model. Further, it can be shown that for the arbitrary patience
and probability case, GREEDYk is a Θ(min(k, C))-approximation algorithm. See
Appendix I for more details.

5 Conclusions
We studied natural greedy algorithms for the stochastic matching problem with
patience parameters and proved that these algorithms are constant factor ap-
proximations. A natural question to ask is if designing the optimal strategy is
computationally hard (this is even unknown for infinite patience parameters).
In Appendix B we show the following two variants are NP-hard: (i) The al-
gorithm can probe a matching in at most k rounds (the model we studied in
Section 4) and (ii) the order in which the edges need to be probed are fixed (and
the algorithm just needs to decide whether to probe an edge or not). In terms of
positive results, it is well known that the greedy algorithm in Section 3 for the
special cases of (i) all probabilities being 1 and (ii) all patience parameters being
infinity is a 2-approximation. However, we proved that the greedy algorithm is
a factor 4-approximation. We conjecture that the greedy algorithm is in fact a
2-approximation even for the general stochastic matching problem.



Another interesting variant of the problem is when edges also have weights
associated with them and the objective is to maximize the (expected) total
weight of the matched edges. In Appendix D we give an example that shows
that the natural greedy algorithm has an unbounded approximation ratio. The
greedy algorithm considered in Section 3 is non-adaptive, that is, the order of
edges to probe are decided before the first probe. A natural question to ask
is if there is a “gap” between the non-adaptive and adaptive optimal values?
In Appendix E we show that the adaptive optimal is strictly larger than the
non-adaptive optimal.
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A The Gap between OPT and the Optimal Offline Solution

In this appendix we give an example to show that the gap between the expected
value of the optimal algorithm OPT and the expected value of the optimal algo-
rithm that knows the realization of G (that is, the expected size of the maximum
matching in G, denoted by EMM[G]) can be arbitrarily large. This means that one
cannot hope to obtain an approximation algorithm for the stochastic matching
problem using the optimal offline solution as a benchmark.

Proposition 1 For every constant c, there exists a bipartite instance (G, t) of
the stochastic matching problem such that EOPT(G) < cEMM[G].

Proof. Define G to be a complete bipartite graph with parts A and B each of
size n and p(α, β) = 2 log n

n for every pair α ∈ A and β ∈ B. By a result due to
Erdös and Réyni [10, 11], it is known that with at least a constant probability, a
random realization of G has a perfect matching. In other words, EMM[G] = Ω(n).

It is easy to see that for any algorithm ALG, and any vertex α ∈ A,

Pr[α is matched by ALG] ≤ t(α) · 2 log n
n

.

Therefore, if we let t(α) = o
(

n
log n

)
for every α, by linearity of expectation,

EALG[G] = o(n), which completes the proof.

Note that the above example relied heavily on the patience parameters being
finite. This is not a coincidence, as a simple argument shows that when the
patience parameters are infinite, the gap between OPT and the expected size of
the maximum matching is at most 2. We do not know if this bound is tight, but
the following example gives a lower bound.

Example 1 The following observation shows a gap even for the infinite patience
case. Consider the G = K2,2 graph with a probability of 1

2 on every edge. The
following straightforward calculations show that EMM[G] = 22

16 , while EOPT[G] =
21
16 .

Note that all possible realizations occur with the same probability (and equal
to 1

16). Now, in 7 realizations, the size of the maximum matching is 2. Thus, we
have:

EMM[G] = 2 · 7
16

+ 1 · 15− 7
16

=
22
16

.

Now to calculate the optimal value, first observe that the any edge can be probed
first. After that we are left with a path of length three, for which we use the fact
that the optimal algorithm always probes one of the “outer” edges. Thus, the
optimal value is:

1
2

(
1 +

1
2

)
+

1
2

(
1
2

(
1 +

1
2

)
+

1
2

(
3
4

))
=

3
4

+
3
8

+
3
16

=
21
16

,

where in the above we have used the fact that the optimal values on paths of
lengths two and one are 3

4 and 1
2 respectively.

In fact, by setting the probability of edges to a number p ≈ 0.7 instead of 1/2,
one can improve this example to get a gap of ≈ 1.06.



B Hardness

In this appendix, we show that two more restricted versions of the stochastic
matching problem are NP-hard. The NP-hardness of the basic stochastic match-
ing problem (with no limit on the number of rounds) remains an open question.

B.1 Hardness of the Multi-round Stochastic Matching Problem

In the multiple rounds setting, it is NP-hard to find an optimal strategy to probe
edges, even when all patience are infinite. Formally,

Theorem 4 Finding the optimal algorithm for the multiple rounds matching
problem is NP-hard.

Proof. We reduce from the edge-coloring problem: Given a graph G = (V, E),
where m = |E|, we are asked if the edge set E is k-colorable (i.e. all edges
incident to a same vertex have different colors).

The reduction is straightforward: We use the same graph G for the k-round
matching problem, and for each edge e ∈ E, the probability that the edge is
present is ε = 1/m3.

If graph G is k-colorable, then for each round i = 1, . . . , k, we probe all edges
with color 1, . . . , k, respectively. Note that the probe is feasible since edges have
the same color form a matching. Thus, the expected number of matched edges
is at least ∑

e∈E

ε−
(

m

2

)
ε2 ≥ m · 1

m3
−m2 · 1

m6
=

1
m2

− 1
m4

,

where the second term
(
m
2

)
ε2 is due to the following observation. For any pair

of edges, with probability ε2 both of them are present. However, we can probe
only one edge when they are incident to a same vertex.

On the other hand, assume G is not k-colorable. For any algorithm, since in
each round the algorithm probes a matching, we know at most m− 1 edges can
be probed in k rounds. Thus, the expected number of matched edges is at most

(m− 1)ε = (m− 1) · 1
m3

=
1

m2
− 1

m3
<

1
m2

− 1
m4

.

Therefore, if we can find the optimal algorithm in polynomial time, we are
able to distinguish if the expected number of matched edges is at least 1

m2 − 1
m4

or at most 1
m2 − 1

m3 , which is a contradiction.

B.2 A Hardness Result for a Given Order of Edges

Theorem 5 For a graph G, assume we have to probe edges in a given order,
say e1, . . . , em. That is, when it is the turn of edge ei, we can either probe it or
pass (in the latter case, we cannot probe ei in the future). Then it is NP-hard to
decide the best strategy to probe edges.



Proof. (sketch) We reduce from the following restricted 3SAT problem: For a
given formula φ(x1, . . . , xn) = C1 ∧ · · · ∧Cm, where m ≥ n ≥ 12 and each literal
xi and x̄i appear at most 4 times, we are asked if there is an assignment that
satisfies all clauses.

We construct a graph G as follows: the vertex set is {ai, ui, vi | i = 1, . . . , n}∪
{bj | j = 1, . . . , m}, where ui corresponds to xi = false and vi corresponds to
xi = true, and edge set is

{(ai, ui), (ai, vi) | i = 1, . . . , n}∪{(ui, bj) | Cj contains xi}∪{(vi, bj) | Cj contains x̄i}.

The probability of edge (ai, ui) and (ai, vi) is 1, for i = 1, . . . , n, and is ε = 1
m2

for the rest of edges. The patience of vertex bj is 1, for j = 1, . . . , m, and
is infinity of the rest of vertices. Now we assume the given order of edges is
(a1, u1), (a1, v1), . . . , (an, un), (an, vn), . . ..

If φ is satisfiable, then it can be seen that the expected number of matched
edges is at least

n + m · ε− 2n

(
4
2

)
ε2 ≥ n +

1
m
− 12m

1
m4

= n +
1
m
− 12

m3
,

where the second term 2n
(
4
2

)
ε2 means for each literal, with probability ε2, we

can probe only one edge.
On the other hand, if φ cannot be satisfied, then the expected number of

matched edges is at most

n + (m− 1)ε = n +
1
m
− 1

m2
≤ n +

1
m
− 12

m3
.

Therefore, it is NP-hard to find the optimal strategy to probe edges in the
given order.

C Missing Proofs from Section 3

C.1 Proof of Lemma 1

Let the node v in TOPT correspond to probing the edge e = (α, β) ∈ E. Since
OPT reaches TL(v) if the probe to e succeeds and reaches TR(v) if the probe to e
fails, TL(v) defines a valid algorithm on the instance (GR(v), tR(v)) corresponding
to R(v). By the optimality of OPT on every subtree, we have EOPT

(
TL(v)

) ≤
EOPT

(
TR(v)

)
.

On the other hand, since TR(v) is a valid algorithm for the sub-instance
(Gv, tv) corresponding to v,

EOPT

(
TR(v)

) ≤ EOPT(Tv) = p(e) · (1 + EOPT

(
TL(v)

))
+ (1− p(e)) ·EOPT

(
TR(v)

)
,

where the equality follows from the problem definition. The above implies that
EOPT(TR(v)) ≤ 1 + EOPT(TL(v)) as p(e) > 0.



C.2 Proof of Lemma 2

By Lemma 1 and the assumption that p′ > p,

(p′ − p)EOPT

(
TR(v)

) ≤ (p′ − p)
(
1 + EOPT

(
TL(v)

))
,

which implies that

p·(1 + EOPT

(
TL(v)

))
+(1−p)·EOPT

(
TR(v)

) ≤ p′+p′·EOPT

(
TL(v)

)
+(1−p′)·EOPT

(
TR(v)

)
.

The proof is complete by noting that the LHS and RHS of the above inequality
corresponds to EOPT (Tv) before and after the probability of v is increased to p′.

C.3 Proof of Inequality (3)

We start with a couple of observations.
As X essentially defines a “frontier” in TOPT,

∑

v∈X

pv · qv ≤ max
v∈X

pv ≤ pr, (13)

where the last inequality follows from the definition of the greedy algorithm.
Also observe that Y1 ∪ Y2 defines another “frontier” in TOPT and thus,

∑

u∈Y1

pu · qu +
∑

u∈Y2

pu · qu ≤ max
u∈Y1∪Y2

pu ≤ pr. (14)

In addition, for every node v ∈ X, the set Y1 ∩ TL(v) is a frontier in TL(v),
and therefore

∑
u∈Y1∩TL(v)

qu ≤ pvqv. This, combined with (13), implies

∑

u∈Y1

qu ≤ pr. (15)

By (2), we have

EOPT(G, t) =
∑

v∈TOPT

pv · qv =
∑

v∈X∪Y1∪Y2

pv · qv +
∑

v∈TOPT\X∪Y1∪Y2

pv · qv (16)

≤ 2pr +
∑

u∈Y1

∑

v∈Tu\{u}
pv · qv +

∑

u∈X

∑

v∈TL(u)\T (Y1)

pv · qv

+
∑

u∈Y2

∑

v∈Tu\{u}
pv · qv +

∑

u∈X

∑

v∈TR(u)\T (Y2)

pv · qv +
∑

v∈TOPT\T (X)

pv · qv (17)

= 2pr +
∑

v∈Y1

qv ·
(
pv ·EOPT

(
TL(v)

)
+ (1− pv) ·EOPT

(
TR(v)

))

+
∑

u∈X

∑

v∈TL(u)\T (Y1)

pv · qv +
∑

v∈Y2

qv ·
(
pv ·EOPT

(
TL(v)

)
+ (1− pv) ·EOPT

(
TR(v)

))



+
∑

u∈X

∑

v∈TR(u)\T (Y2)

pv · qv +
∑

v∈TOPT\T (X)

pv · qv (18)

≤ 2pr +
∑

v∈Y1

qv ·
(
pv ·EOPT

(
TL(v)

)
+ (1− pv) · (1 + EOPT

(
TL(v)

)))

+
∑

u∈X

∑

v∈TL(u)\T (Y1)

pv · qv +
∑

v∈Y2

qv ·
(
pv ·EOPT

(
TR(v)

)
+ (1− pv) ·EOPT

(
TR(v)

))

+
∑

u∈X

∑

v∈TR(u)\T (Y2)

pv · qv +
∑

v∈TOPT\T (X)

pv · qv (19)

≤ 3pr +
∑

v∈Y1

qv ·EOPT

(
TL(v)

)
+

∑

u∈X

∑

v∈TL(u)\T (Y1)

pv · qv

+
∑

v∈Y2

qv ·EOPT

(
TR(v)

)
+

∑

u∈X

∑

v∈TR(u)\T (Y2)

pv · qv +
∑

v∈TOPT\T (X)

pv · qv. (20)

In the above, (17) follows from (13) and (14) along with the fact that X,Y1 and
Y2 are disjoint sets and by rearranging the second sum in (16). (18) follows from
the definition of TOPT. (19) follows from Lemma 1. (20) follows from (15) and the
fact that 1− pv ≤ 1 for all v.

D Example for the Edge-Weighted Case

An alternative direction where the stochastic matching problem discussed in
this paper can be generalized is to assume that each edge in G has a weight,
representing the reward we receive if the edge is part of the matching. The
objective is to maximize the expected total reward. One might hope that a
natural generalization of GREEDY, namely the algorithm that probes edges in the
order of their probability times their weight, achieves a good approximation for
this generalization. However, the following example shows that this is not the
case.

Consider a graph G where its vertex set is composed of three disjoint compo-
nents A,B, C, where A = {a1, . . . , an}, B = {b1, . . . , bn} and C = {c1, . . . , cn}.
For each i = 1, . . . , n, there is an edge (ai, bi) with weight and probability both
being equal to 1. For each i = 1, . . . , n and j = 1, . . . , n, there is an edge (bi, cj)
with weight n

3 log n and probability 2 log n
n . The patience of every vertex is infinity.

In this example, GREEDY will probe all edges between A and B and result in a
solution of total weight n. However, OPT would try to probe all possible edges
between B and C, where we know with at least a constant probability there is
a perfect matching between B and C [10, 11]. In other words, the total expected
weight of OPT is Ω(n2/ log n).

E Adaptivity Gap

It can be seen that the greedy algorithm discussed in Section 3 is non-adaptive
in the sense that it fixes an ordering of all pairs of nodes in the graph, and probes



edges one by one according to this ordering (if the two endpoints are available).
The optimal algorithm OPT, however, can be adaptive in general, i.e. the decision
of the algorithm at each step can depend on the outcome of previous probes.
Therefore, using the terminology of Dean et al. [8], Theorem 1 implies that the
adaptivity gap, the ratio of the (expected) value of an optimal adaptive solution
to the (expected) value of an optimal non-adaptive solution, is at most 4. On the
other hand, the adaptivity gap is strictly larger than 1, as the following example
shows.

Consider a graph G = {V, E}, where V = {v1, . . . , v7, u}. Vertices v1, . . . , v7

form a cycle of size 7, and the probability on the edges of the cycle is p(v1, v2) =
0.2 and everything else is 0.5. Further, u is connected to v5 with p(u, v5) = 0.1.
Assume the patience of all vertices are infinite. It can be seen that the optimal
adaptive strategy is to probe (u, v5) first; upon a success, probe edges on the
remaining path from one end to the other; and upon a fail, probe (v1, v2) secondly
and follow the same strategy on the remaining path. The expected value of the
algorithm is 2.21875. On the other hand, the optimal non-adaptive ordering,
through a careful calculation, is (u, v5), (v1, v2), (v2, v3), . . . , (v7, v1), which gives
an expected value of 2.2175.

F Bad Example for Greedy Algorithm in Multiple Round
Setting

Consider a bipartite graph G = (A,B;E) where A = {α1, . . . , αn} and B =
{β1, . . . , βn}. Let ε = 1/n3. Let p(α1, βj) = ε and p(αi, β1) = ε for i, j = 1, . . . , n,
and p(αi, βi) = ε

n−2 for i = 2, . . . , n. There are no other edges in the graph.
Further, define patience t(α1) = t(β1) = ∞ and t(αi) = t(βi) = 1 for i =
2, . . . , n. Consider any given k ≤ n − 1. Now, a maximum matching in this
example is {(α1, β2), (α2, β1), (α3, β3), . . . , (αn, βn)}. The expected value that
GREEDYk obtains by probing this matching in the first round is 3ε. After these
probes, in the next round, due to patience restriction, in the best case only edge
(α1, β1) will remain. Thus, GREEDYk obtains another ε, which implies that the
total expected value is at most 4ε. On the other hand, consider another algorithm
which probes edges (α1, βi+1) and (αi+1, β1) for any round i = 1, . . . , k. The
revenue generated by the algorithm is at least 2kε−2

(
n
2

)
ε2 = Ω(kε). (The second

term 2
(
n
2

)
ε2 is due to the following observation. For any pair of edges incident on

α1 or β1, with probability ε2 both of them are present. However, we can probe
only one edge when they are incident to a same vertex.) Thus, GREEDYk can be as
bad as a factor of Ω(k). Note that GREEDYk is trivially a factor k approximation
algorithm.

G Proof of Theorem 2

We will prove the theorem by induction on k and the set of edges in the graph.
For any subgraph G′ ⊆ G, it is not hard to show that GREEDYk is in fact optimal



for k = 1, and hence we have the induction basis. Assume the claim holds for
any 1 ≤ ` < k, i.e. EOPT`

[G′] ≤ 4 · EGREEDY`
[G′]. Given the induction hypothesis,

we will show EOPTk [G] ≤ 4 ·EGREEDYk [G].
For any algorithm ALG, define a decision tree TALG as follows: Each node of

TALG represents a tuple (G′, E′), where G′ is the current graph when ALG reaches
that node and E′ is the set of edges that ALG probes at that point. Each child of
(G′, E′) corresponds to an outcome of different coin tosses of edges in E′. Thus,
(G′, E′) has 2|E

′| children. Note that the height of TALG is at most k since we are
only allowed to probe edges in k rounds.

We have the following two observations about EALG:

– For any edge e ∈ E, e contributes at most p(e) to EALG. Consider all nodes
in TALG that probe e, which forms a “frontier” in TALG, the total contribution
of these probes to EALG is at most p(e).

– For any vertex v ∈ V , v contributes at most one to EALG. That is, consider
all nodes in TALG which probe edges incident to v, the total contribution of
these probes to EALG is at most one.

Assume the root of TGREEDYk represents (G,S), and its children represent
(G1, E1), . . . , (G`, E`), respectively, where ` = 2|S|. Similarly, Assume the root
of TOPTk represents (G,T ), and its children represent (H1, F1), . . . , (Hm, Fm), re-
spectively, where m = 2|T |. Due to the greedy strategy, we know

∑

e∈S

p(e) ≥
∑

e′∈T

p(e′). (21)

For any Gi, i = 1, . . . , `, let Pr[Gi] be the probability that GREEDYk reaches
Gi. In particular, assume GREEDYk reaches (Gi, Ei) by succeeding on all edges in
Si and failing on all edges in S′i, where S′i = S \ Si. Thus, Pr[Gi] =

∏
e∈Si

p(e) ·∏
e′∈S′i

(1 − p(e′)). Let V (Si) and V (S′i) be the set of vertices incident to edges
in Si and S′i, respectively.

For any Hj , note that (Hj \ S) \ V (Si) is a subgraph9 of Gi, which is a
subgraph of G. Hence, by the induction hypothesis, we have

EOPTk−1
((Hj \ S) \ V (Si)) ≤ EOPTk−1

(Gi) ≤ 4 ·EGREEDYk−1
(Gi)

Therefore, according to the second observation above, the following is true for
every 1 ≤ j ≤ n and 1 ≤ i ≤ `:

EOPTk−1
(Hj\S) ≤ EOPTk−1

((Hj\S)\V (Si))+2|Si| ≤ 4·EGREEDYk−1
(Gi)+2|Si|. (22)

Hence,
4 ·EGREEDYk(G) = 4 ·

∑

e∈S

p(e) + 4 ·
∑̀

i=1

Pr[Gi] ·EGREEDYk−1
(Gi)

9 Here (Hj \ S) \ V (Si) denotes the graph obtained from Hj by first removing the
edges in S and then by removing the vertices in V (Si) (and their incident edges).



≥
∑

e′∈T

p(e′) + 3 ·
∑

e∈S

p(e) + 4 ·
∑̀

i=1

Pr[Gi] ·EGREEDYk−1
(Gi) (23)

=
∑

e′∈T

p(e′) +
∑

e∈S

p(e) +
∑̀

i=1

Pr[Gi] ·
(
4 ·EGREEDYk−1

(Gi) + 2 · |Si|
)

≥
∑

e′∈T

p(e′) +
∑

e∈S

p(e) +
∑̀

i=1

Pr[Gi] · max
j=1,...,m

EOPTk−1
(Hj \ S) (24)

≥
∑

e′∈T

p(e′) +
∑

e∈S

p(e) +
m∑

j=1

Pr[Hj ] ·EOPTk−1
(Hj \ S)

≥
∑

e′∈T

p(e′) +
m∑

j=1

Pr[Hj ] ·EOPTk−1
(Hj) (25)

= EOPTk(G),

where Pr[Hj ] is the probability that OPTk reaches Hj . In the above (23) follows
from (21). (24) follows from (22). Finally, (25) follows from the first observation
above. This completes the proof of the theorem.

H Proof of Theorem 3

To prove the theorem, we will need the following lemma.

Lemma 3. For any instance graph (G, t), assume p(e) ≤ pmax ≤ 1 for every
edge e in G. For any vertex v ∈ V , define another instance (G, t′) where t′(v) =
t(v)− 1 and t′(u) = t(u) for any u 6= v. Then EOPTk [G] ≤ EOPTk [G

′] + pmax.

Proof. Consider TOPTk (recall the definition from the proof of Theorem 2) cor-
responding to G. For each root-leaf path in TOPTk , consider the first node (if it
exists) where there is a probe incident to v. Let S denote the set of all such
nodes. Note that S defines a “frontier” on TOPTk . Now consider a new algorithm
ALG that works on TOPTk except that whenever ALG reaches to a node in S, it will
only toss a coin for the edge incident to v (i.e. decide which children to choose
next) but not probe that edge. It can be seen that EOPTk [G] ≤ EALG[G] + pmax.
Further, observe that when ALG runs on graph G, vertex v is probed at most
t(v)− 1 times for any possible outcome of the probes. Thus, ALG is a valid algo-
rithm for G′ and EALG[G] = EALG[G′]. The lemma follows by combining the two
formulas and the fact that EALG[G′] ≤ EOPTk [G

′].

Proof of Theorem 3. The proof is similar to the proof of Theorem 2 and is by
induction on the set of edges in the graph and patience parameters of the vertices.
For any G′ and G, we say G′ is a subgraph of G if G′ is an edge subgraph of G and
for any vertex v, the patience of v in G′ is smaller than or equal to that in G. For
any subgraph G′ ⊆ G, assume the claim holds for any 1 ≤ ` < k, i.e. EOPT`

[G′] ≤



(4 + 2pmax/pmin) · EGREEDY`
[G′]. As before, the base case is trivial. Given the

induction hypothesis, we will show EOPTk [G] ≤ (4 + 2pmax/pmin) ·EGREEDYk [G].
We will be using notation from the proof of Theorem 2. For each Gi and Hj ,

let Hj(i) be the graph obtained from Hj where the patience of each vertex in
V (S′i) is reduced by 1. By Lemma 3, we have

EOPTk−1
[Hj \ S] ≤ EOPTk−1

[Hj(i) \ S] + 2pmax|S′i|. (26)

For any Hj(i), note that (Hj(i) \ S) \ V (Si) is a subgraph of Gi. Hence, by
the induction hypothesis, we have

EOPTk−1
[(Hj(i) \ S) \ V (Si)] ≤ EOPTk−1

[Gi] ≤ (4 + 2pmax/pmin) ·EGREEDYk−1
[Gi].

Therefore, using arguments similar to the ones we used to show (22), we have:

EOPTk−1
[Hj(i)\S] ≤ EOPTk−1

[(Hj(i)\S)\V (Si)]+2|Si| ≤ (4+2pmax/pmin)·EGREEDYk−1
[Gi]+2|Si|

(27)
For each i = 1, . . . , `, define

π(i) = arg max
j=1,...,m

EOPTk−1
[Hj(i) \ S]

and
i∗ = arg min

i=1,...,`
EOPTk−1

[Hπ(i)(i) \ S].

Now, (4 + 2pmax/pmin) ·EGREEDYk [G]

= (4 + 2pmax/pmin) ·
∑

e∈S

p(e) + (4 + 2pmax/pmin) ·
∑̀

i=1

Pr[Gi] ·EGREEDYk−1
[Gi]

≥
∑

e′∈T

p(e′) + (3 + 2pmax/pmin) ·
∑

e∈S

p(e) + (4 + 2pmax/pmin) ·
∑̀

i=1

Pr[Gi] ·EGREEDYk−1
[Gi] (28)

=
∑

e′∈T

p(e′) + (1 + 2pmax/pmin) ·
∑

e∈S

p(e) +
∑̀

i=1

Pr[Gi] ·
(
(4 + 2pmax/pmin) ·EGREEDYk−1

[Gi] + 2 · |Si|
)

≥
∑

e′∈T

p(e′) + (1 + 2pmax/pmin) ·
∑

e∈S

p(e) +
∑̀

i=1

Pr[Gi] ·EOPTk−1

[
Hπ(i)(i) \ S

]
(29)

≥
∑

e′∈T

p(e′) + (1 + 2pmax/pmin) ·
∑

e∈S

p(e) + EOPTk−1

[
Hπ(i∗)(i∗) \ S

]
(30)

≥
∑

e′∈T

p(e′) + (1 + 2pmax/pmin) ·
∑

e∈S

p(e) +
m∑

j=1

Pr[Hj ] ·EOPTk−1
[Hj(i∗) \ S] (31)

≥
∑

e′∈T

p(e′) +
∑

e∈S

p(e) +
m∑

j=1

Pr[Hj ] ·
(
EOPTk−1

[Hj(i∗) \ S] + 2pmax|S′i∗ |
)

(32)

≥
∑

e′∈T

p(e′) +
∑

e∈S

p(e) +
m∑

j=1

Pr[Hj ] ·EOPTk−1
[Hj \ S] (33)



≥
∑

e′∈T

p(e′) +
m∑

j=1

Pr[Hj ] ·EOPTk−1
[Hj ] (34)

= EOPTk [G].

In the above, (28) follows from the fact that GREEDYk probes the maximum
matching in every round. (29) follows from (27) and the definition of π(i). (30)
follows from the definition of i∗. (31) follows from the definition of π(i∗). (32)
follows from the fact that 2pmax/pmin

∑
e∈S p(e) ≥ 2pmax|S| ≥ 2pmax|S′i∗ |. (33)

follows from (26). Finally, (34) follows from the first observation in the proof of
Theorem 2. ¤

I Missing Details from Section 4, Further Extension

I.1 The General Case

We will now see how Theorem 3 can be used to obtain a (randomized) approx-
imation algorithm for the general case of the multi-round stochastic matching
problem with an approximation factor of O(log n). Given an instance (G, t),
denote the maximum probability of an edge in this instance by pmax. First,
we note that EOPT(G, t) ≥ pmax, and therefore removing all edges that have
probability less than pmax/n2 cannot decrease the value of EOPT(G, t) by more
than a constant factor. Next, we partition the set of edges of G into O(log n)
classes, depending on which of the intervals (pmax/2, pmax], (pmax/4, pmax/2], . . . ,
(pmax/22dlog2 ne, pmax/22dlog2 ne−1], the probability of the edge falls into. Let Ei

denote the i’th class of this partition. The algorithm then picks one of the edge
sets Ei at random and then runs GREEDYk on the instance obtained by restricting
the edges of G to Ei. Note that we can write the value of OPT as the sum of
O(log n) terms, where the i’th term corresponds to the value that OPT extracts
from edges in Ei (call this value OPTi). Further, by Theorem 3, GREEDYk obtains
a value at least OPTi/8. The claimed O(log n) approximation factor follows by
recalling that each of the O(log n) choices of Ei was picked uniformly at random.

I.2 Further Extension

The extension of GREEDYk in this model is straightforward: in each round probe
the maximum weighted matching (with the constraint that the matching uses
at most C edges).

Theorems 2 and 3 also hold in the new model because the only place we
use the property of the greedy algorithm in the analysis is the claim that the
expected number of matched edges in the first round of the greedy algorithm
is at least the expected number of matched edges in any round of the optimal
algorithm. This property still holds as long as both the greedy and the optimal
algorithm probe at most C edges in any round.

The bad example in Appendix F for GREEDYk can be extended to show
that the greedy algorithm in the new model has an approximation factor of



Ω(min(k,C)). To see this, consider the previous bad example with k = n − 1.
Further, p(αi, βi) = ε

C−2 for 1 < i ≤ n. Everything else in the graph remains the
same. Again it can be shown that the optimal gets a value of at least Ω(kε). On
the other hand, the greedy algorithm in any round can match at most 3ε many
edges in expectation. Further, the greedy algorithm will be left with an empty
graph after dn/Ce = d(k + 1)/Ce rounds. Thus, greedy in total can obtain a
revenue of at most 3ε ·min(d(k + 1)/Ce, k), which is O(ε) if C > k and O(kε/C)
otherwise. This gives an approximation factor of Ω(min(k, C)) as claimed.

Of course, the greedy algorithm is still a k-approximation algorithm in the
new model. We will now briefly argue that the proof of Theorem 3 can be
extended to show that the greedy algorithm is also a (2C + 4)-approximation
algorithm. Lemma 3 can be easily extended to show that EOPTk [G] ≤ EOPTk [G

′] +
pmax, where pmax is the maximum probability on any edge in G. This in turn
implies that (26) can be replaced by

EOPTk−1
[Hj \ S] ≤ EOPTk−1

[Hj(i) \ S] + 2pmax|S′i|.

Further, by the property of the greedy algorithm, we have
∑

e∈S

p(e) ≥ pmax.

Finally, using the above two facts along with the fact that |S′i| ≤ |S| ≤ C one
can easily extend the arguments in proof of Theorem 3 to show that (2C +
4)EGREEDYk[G] ≥ EOPT[G].
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Fig. 3. Definition of X, Y1, Y2 in TOPT.


