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Abstract

We study mechanisms that can be modelled as coalitional games with transferable utilities,
and apply ideas from mechanism design and game theory to problems arising in a network
design setting. We establish an equivalence between the game-theoretic notion of agents being
substitutes and the notion of frugality of a mechanism. We characterize the core of the network
design game and relate it to outcomes in a sealed bid auction with VCG payments. We show
that in a game, agents are substitutes if and only if the core of the forms a complete lattice. We
look at two representative games – Minimum Spanning Tree and Shortest Path – in this light.

1 Introduction

The Internet brings together a large, diverse collection of autonomous entities to interact, collab-
orate and compete. Game theory has emerged as an important tool to understand the complex
interplay of the interests of these autonomous agents, and thus model and analyze the architec-
ture and the functioning of the Internet [26, 18, 27, 29, 12]. Ideas from game theory have been
used to design protocols [18, 20, 11, 29] and to gain insights into basic computer science problems
[23, 1, 3, 21]. Some of the application areas that have received extensive interest include prob-
lems relating to routing protocols for networks [27], such as congestion control [29, 12], bandwidth
pricing [20], multicasting [11], and design of auction mechanisms for various settings [5, 17, 23].

When the interaction of autonomous agents and conflicting interests is modelled as a game,
the possible outcomes depend on the preferences of the agents as well as the structure of the
game. The field of mechanism design concerns itself with the design of games that realize certain
“socially desirable” objectives or outcomes that are desirable from the designer’s perspective. A
good deal of recent work addresses the design of mechanisms for the underlying graph problems
in communication networks [23, 1, 24, 5]. Such work offers insight into the so-called “price of
anarchy” — the cost of a solution arrived at through the distributed and decentralized decision-
making of selfish agents, rather than through the global optimization and centralized decision-
making associated with the conventional RAM model of computation. The distributed approach
arguably makes for a more realistic modeling of the Internet.

In addition to maximizing the overall utility or surplus, the designer of a mechanism must often
consider whether distribution of this surplus among participating agents is fair and competitive,
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particularly in settings where such utility is transferable among agents. Otherwise, a subset of
the agents may have an incentive to deviate towards a different outcome. Coalitional game theory
considers games where the players are involved in splitting some aggregate payoff among themselves,
and may group themselves into coalitions to maximize their share of the payoff. An important
solution concept is the core of a coalitional game. A proposed splitting of the total payoff is said
to be in the core of the game if every possible set of players receives a total payoff no smaller than
the payoff they can achieve by forming a coalition (for a good exposition, see [25]).

One of the problem that have been well-studied in the coalitional framework is the Assignment
Problem. Shapley and Shubik [28] have characterized the core of the assignment problem and
have shown that it forms a complete lattice. Demange and Gale [9] have given an ascending price
auction mechanism for the problem that converges to an outcome in the core. Leonard [21] has
proposed an incentive compatible sealed bid auction mechanism for the assignment problem that
leads to an outcome in the core. Both these mechanisms lead to an outcome that is favorable
to the buyers. Mishra and Garg [22] have considered a descending price auction mechanism that
leads to an outcome in the core that is favorable to sellers. Crawford and Knoer [8] have proposed
mechanisms with similar properties.

While several game-theoretic analyses of graph problems have been offered ([23, 1]), most of
these problems have not been adequately characterized as coalitional games. Gul and Stacchetti
[15] explore the core of a generic class of problems that satisfy a certain gross substitutes property.
However, basic problems such as Minimum Spanning Tree and Shortest Path lie outside this class.
Bikhchandani et al. [5] have modelled a class of such problems that satisfy the agents are substitutes
condition and studied the sealed bid VCG auction [31, 6, 14] mechanism for such problems. They
propose a descending price auction mechanism for the spanning tree problem that converges to
VCG payments. Bikhchandani and Ostroy [4] relate the VCG payments with the structure of the
core. Archer and Tardos [1] introduce the notion of frugality in the context of the Shortest Path
problem.

In this paper, we study the coalitional game formulations of graph or network problems, and
characterize the cores of those games. We correlate the concepts of frugality, studied in mechanism
design, with the concept of agents being substitutes, studied in game theory. We show that the core
of a game is a lattice if and only if agents are substitutes.

2 Preliminaries

While we consider minimization games on graphs, our results extend to maximization games in a
straightforward fashion. We consider a graph G = (V, E), each of whose edges is controlled by an
autonomous agent. The auctioneer (also termed the buyer) is endowed with a sum U of money.
The auctioneer wishes to purchase a collection S of edges from the respective agents such that S
induces a subgraph with some desirable property P (we refer to S as a solution). For instance, in
the Minimum Spanning Tree (or MST) game, the auctioneer wishes to acquire a collection of edges
that constitute a spanning tree of G. Each edge ei, and thus the corresponding agent i, has an
associated cost Ci, such that the agent incurs cost Ci if ei is (bought and) used by the auctioneer.
The value of Ci is known only to i. Each agent receives a payment Pi from the auctioneer, such
that

∑
i Pi ≤ U . Clearly Pi must be no less than Ci if ei ∈ S; WLOG, we assume that Pi = 0

otherwise. All parties aim to maximize their payoff – the payoff of the auctioneer is U−∑
i Pi, while

that of any other agent i is Pi − Ci. Thus, the auctioneer’s objective is to construct a solution at
the lowest possible cost. We assume the sum U is no less than the cost of the second best solution.
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First, we set out some definitions and formalism. After [25], we define

Definition 1 A Coalitional game < N, V > with transferable payoff consists of a finite set N , the
set of players, and a function V that associates with every nonempty subset (coalition) S of N , a
real number V (S) (the worth of S).

For each coalition S, V (S) is the total payoff that is available for division among the members
of S. For any vector (xi)i∈N of real numbers (profile), let x(S) =

∑
i∈S xi. (xi)i∈S is an S-feasible

payoff vector if x(S) = V (S). An N -feasible payoff vector is a feasible payoff profile.

Definition 2 The core of coalitional game < N, v > is the set of feasible payoff profiles (xi)i∈N

for which V (S) ≤ x(S) for every coalition S.

As noted above, in our model, there is one auctioneer and multiple agents; and each agent owns
a resource and the auctioneer needs a collection of resources for forming a solution S. The set N of
all players consists of the auctioneer and the agents. We denote the auctioneer as agent 0. We note
that the worth of a subset of S may be zero (if that subset does not by itself constitute a solution).
In other words, the function V may exhibit complementarity. We assume that for any S1 ⊆ S2,
V (S2) ≥ V (S1); that is, V possesses the “zero cost of disposal” property. We specify V (S) for all
S ⊆ N in the following manner. V (S) = 0 if 0 6∈ S, or if (S − {0}) does not contain a feasible
solution. Otherwise, V (S) = U −C(S), where C(S) is the cost of the best solution contained in S.
Let the cost of an optimal solution be C; that is, V (N) = U − C.

Let {O1, · · · , Om} be the set of all optimal solutions. 1 Define O = ∩m
l=1Ol, the set of agents

that are contained in every optimal solution. Thus, if optimum solution is unique, O denotes the
set of agents in the optimal solution. Note that in any payoff vector which is in the core, any agents
that receive non-zero payoff are in O. To see this consider an agent a such that a ∈ Oi and a 6∈ Oj .
Now, V (N − {a}) ≥ V ({0} ∪ Oj) = V (N). The inequality comes from the “zero cost of disposal”
property of V . Note that this implies that the Vickrey payoff of a is zero.

The “agents are substitutes” property (or the substitutes property, for short) is a commonly
employed characterization. After [5], we define.

Definition 3 We say that agents are substitutes if V (N)−V (N−K) ≥ ∑
i∈K(V (N)−V (N−{i}))

for all K ⊂ N such that 0 6∈ K.

3 Cost of VCG Payment

The VCG mechanism [31, 6, 14] is a celebrated incentive-compatible (truth-revealing) strategy
which is widely used. The costliness of the VCG solution, though, varies with the problem in hand.
Archer and Tardos [1] showed that the VCG payment in the Shortest Path game can be very high
as compared to the cost of second best solution. On the other hand (as we shall show in Section
5), the VCG payment in games like MST coincide with the cost of the second best solution.

Characterizing the frugality of the VCG payment is important to determine whether a VCG
based strategy is practical or not. If the VCG payment is very high and exceeds the auctioneer’s
budget, then there may not be an agreement between the auctioneer and the agents. In such sce-
narios, the auctioneer may want to consider other mechanisms. Hence, it is important to determine
if the VCG solution is frugal with respect to the second-best solution.

1Note that ∀i ∈ Ol, Ol − {i} is not a solution.
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The concept of frugality was introduced (albeit without a formal definition) in [1]. They show
that in certain classes of graphs, the VCG payoff for the Shortest path game is k times the difference
of the costs of second best and the optimal solution, where k is the number of edges in the shortest
path. We formalize the notion of frugality and relate it to well-studied concepts in game theory.

Definition 4 We define the frugality ratio of a payoff vector π as F(π) = maxO⊆O
∑

i∈O
πi

V (N)−V (N−O) .
We say that π is frugal if F(π) ≤ 1.

Consider πV , the VCG payoff for an optimal solution O.

πV
i =

{
V (N)− V (N − {i}) if i ∈ O,

0 otherwise.

We note that ∀i ∈ O ⊆ O, by “zero cost of disposal” property of V , πV (i) ≤ V (N)−V (N −O).
This along with Definition 4 implies the following proposition-

Proposition 1 F(πV ) ≤ |O|.

The frugality of VCG payoffs is examined in [1], where it is shown that VCG payoffs aren’t
always frugal, and in fact, the VCG payoff for the Shortest path game has a frugality ratio of k,
where k is the the number of edges in the shortest path. Below, we relate the frugality of VCG
payoffs to the substitutes property.

Theorem 1 πV is frugal if and only if agents are substitutes.

Proof : It follows from Definitions 3 and 4 and the definition of πV that the substitutes property is
a sufficient condition for the frugality of the VCG payoff. To see that it is necessary, assume that
πV is frugal, that is, ∀A ⊆ O, V (N)− V (N − A) ≥ ∑

i∈A(V (N)− V (N − {i})). Consider any set
K ⊆ N . Let A = K ∩ O. Now,

V (N)− V (N −K) ≥ V (N)− V (N −A), due to “zero cost of disposal”
≥ ∑

i∈A(V (N)− V (N − {i})) since πV is frugal
=

∑
i∈K(V (N)− V (N − {i})) since V (N) = V (N − {i})) for i 6∈ O.

Thus, in order to verify if πV is frugal, it is sufficient to check if agents satisfy the substitutes
condition. However, in certain situations, the auctioneer may be willing to pay more than the cost
of the second best solution. Still, she may not be willing to make arbitrarily high payoffs due to
budget constraints. For such situations, we introduce a generalization of the substitutes concept
and then relate it to the frugality ratio of πV .

Definition 5 Agents are c-substitutes if for all K ⊂ N such that 0 6∈ K, c(V (N)− V (N −K)) ≥∑
i∈K V (N)−V (N −{i}) and ∀c′ < c, ∃K ′ ⊂ N such that c′(V (N)−V (N −K ′)) <

∑
i∈K′ V (N)−

V (N − {i})

Arguments similar to proof of Theorem 1 gives:

Theorem 2 F(πV) ≤ c if and only if agents are c-substitutes.
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3.1 Examples and Related Work

Bikhchandani et al. [5] show that MST satisfies the buyers are substitutes condition which along
with Theorem 1 implies that the MST game is frugal. As mentioned earlier, [1] shows that the
shortest path game has frugality ratio of k, where k is the number of edges in the shortest path.
We show in Appendix A that Minimum cut has frugality ratio of k, where k is the number of edges
in the cut set.

Using a similar argument on the dual of G,2 we can argue that the Minimum Vertex cut has
frugality ratio of k, where k is the number of vertices in the cut set.

Independently, Talwar in [30] has an alternate formulation of frugality. However the results
hold for canonical cost functions whereas our results are valid for all possible cost functions. [30]

defines frugality ratio, φ(πV ) as
∑

i∈O πV (i)+C(O)

C(O) and marginal frugality, φ′(πV ) as
∑

i∈O πV (i)

V (N)−V (N−O) .
Further, [30] shows that φ′(πV ) ≥ φ(πV ) and φ(πV ) ≤ 1 if and only if the agents satisfy the frugoids
condition. Note that by Definition 4, we have F(πV ) ≥ φ′(πV ) and thus, Theorem 1 is a superset
of the main result of that work. It is however an interesting question if infact the two results are
the same.

The above discussion along with results in [30] give an alternate proof that Minimum cut has
frugality ratio of k, where k is the size of the cut set. In the next section, we explore the relationship
between the concept of substitutes and the structure of the core.

4 Structure of the Core

The structure of the core has been extensively studied in literature. Bikhchandani and Ostroy [4]
show that if buyers are substitutes, then the core is a lattice with respect to the buyers. They also
show the equivalence of “buyers are substitutes”, πV being in the core, and πV being the maximum
of all payoffs in the core. Shapley and Shubik [28] have characterized the core of the assignment
problem and have shown that it forms a complete lattice. Gul and Stacchetti [15] explore the core
of a generic class of problems that satisfy gross substitutes [19]. Gul et al. [15] show that if the
valuations of the agents satisfy gross substitutes, then the core is a lattice. However, most network
connectivity problems, such as Minimum Spanning Tree and Shortest Path, lie outside this class
(see Section 5 for details). In the following, we show that in our model, the substitutes property is
equivalent to the core being a lattice.

Let CORE denote the core of the game, and π ∈ CORE. Then ∀S ⊆ N , xπ(S) =
∑

i∈S πi. As
noted earlier, if j 6∈ O then πj = 0. Also we define π0 = U − C −∑

j∈N−{0} πj ; recall that C is the
cost of an optimal solution.

Let π1, π2 ∈ CORE, and let π be defined as follows – ∀i ∈ (N − {0}), πi = max(π1
i , π

2
i ); and

π0 = U − C −∑
j∈N−{0} πj . It can be shown that π0 is always non-negative. The following result

is due to Bikhchandani and Ostroy [4]:

Lemma 1 If V (N)−V (N−O) ≥ ∑
i∈O(V (N)−V (N−{i})) and π1, π2 ∈ CORE, then π ∈ CORE.

Roughly speaking, if agents are substitutes then the “maximum” of two core payoffs is also in the
core. Let us similarly consider a “minimum” of π1 and π2. If π1, π2 ∈ CORE, then ∀i ∈ (N −{0}),
πi = min(π1

i , π
2
i ); and π0 = U − C −∑

j∈N−{0} πj .

2Note that here we are talking about a model where the agents sit on the nodes of the graph

5



Next, we see that the “minimum” of two core payoffs is (unconditionally) in the core. The
absence of any condition (in contrast with the dependence on the substitutes property in Lemma
1) is a consequence of the fact that we are considering minimization games.

Lemma 2 If π1, π2 ∈ CORE then π ∈ CORE.

Proof : It follows from the definition of π0 that xπ(N) = V (N). Next, we show that ∀S ⊂ N ,
xπ(S) ≥ V (S). Let O ∩ S = A.

xπ(S) = π0 +
∑

i∈A πi +
∑

i∈(S−A) πi

= U − C −∑
i∈O πi +

∑
i∈A πi since agents not in O get 0 payoff

= U −∑
i∈(O−A) πi − C

≥ U −∑
i∈(O−A) π1

i − C as min(πi, πj) ≤ πi)
= xπ1(S)
≥ V (S) since π1 is in the core.

Lemma 1 and Lemma 2 together imply

Lemma 3 If π1, π2 ∈ CORE and agents are substitutes, then π, π ∈ CORE.

Lemma 4 If π1, π2 ∈ CORE ⇒ π, π ∈ CORE, then agents are substitutes.

Proof : ∀i ∈ N−{0}, let ξi be a payoff vector such that ξi
i = V (N)−V (N−{i}), ξi

j = 0 ∀j 6∈ {0, i},
and ξi

0 = U − C − ξi
i . It is easy to see that ξi ∈ CORE. Let ξN−{0} be the “maximum” of all such

vectors ξi – that is, ∀i 6= 0, ξ
N−{0}
i = V (N)− V (N − {i}), and ξ

N−{0}
0 = U − C −∑

i 6=0 ξ
N−{0}
i .

Now, we are given that π1, π2 ∈ CORE ⇒ π,∈ CORE. By repeated application of this ar-
gument, it follows that ξN−{0} ∈ CORE, since each ξi ∈ CORE. Consider any S ⊆ N such that
0 ∈ S. Let A = S ∩ O. It follows from the definition of the core that

∑
j∈S ξ

N−{0}
j ≥ V (S). In

other words,

ξ
N−{0}
0 +

∑
j∈S−{0} ξ

N−{0}
j ≥ V (S), that is,

U − C −∑
j∈N−{0} ξ

N−{0}
j

∑
j∈S−{0} ξ

N−{0}
j ≥ V (S).

Since V (N) = U − C, we have
V (N)−∑

j∈N−S ξ
N−{0}
j ≥ V (S) , or,

V (N)− V (S) ≥ ∑
j∈N−S ξ

N−{0}
j =

∑
j∈N−S(V (N)− V (N − {j})).

Since this is true for any S, it follows that agents are substitutes.
We say π1 ¹ π2 if ∀i ∈ N − {0}, π1

i ≤ π2
i .

Lemma 5 (CORE,¹) is a lattice if and only if π1, π2 ∈ CORE ⇒ π, π ∈ CORE.

Proof : We show that if π, π ∈ CORE for any π1, π2 ∈ CORE, then (CORE,¹) is a lattice. The
proof is the other direction is obvious and is omitted.

By definition of ¹, (CORE,¹) is a partial order. Let π1, π2 ∈ CORE, then it follows from
the definition of π that there cannot exist π∗ ∈ CORE such that π ¹ π∗, π∗ ¹ π1 and π∗ ¹ π2.
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Assume that ∃π′ ∈ CORE such that π′ and π are incomparable and π′ ¹ π1, π′ ¹ π2. As π′ and
π are incomparable, ∃i, j such that πi < π′i and πj > π′j , i.e., min(π1

i , π
2
i ) < π′i. Now min(π1

i , π
2
i ) is

either π1
i or π2

i , thus contradicting the assumption π′ ¹ π1 or π′ ¹ π2 respectively. Thus, π is the
unique infimum of π1 and π2.

Similarly one can show that π is the unique supremum of π1 and π2. It follows that (CORE,¹)
is a lattice.
Lemmas 3, 4 and 5 imply

Theorem 3 A core is a lattice if and only if the agents are substitutes.

We define Pmin as the minimum element of the lattice and Pmax as the maximum. As shown
in [4], Pmax is the VCG payoff.

5 Network design problems and the structure of the core

In general, connectivity problems do not satisfy the gross substitutes property [15] and hence, the
results of Gul and Stacchetti [15] about the structure of the core and its relationship with the gross
substitutes property do not apply to them. The essential reason is the complementarity inherent in
connectivity problems. For instance, in a connected network, if the removal of an edge disconnects
the network, then in many network design problems the remaining network has no utility. It is not
hard to see that this, coupled with the fact that the auctioneer has a budget constraint, leads to
the violation of the gross substitutes property.

We illustrate the above in case of the MST problem. Consider a spanning tree T such that
Cost(T ) ≤ U . We increase the price of all edges not in T to U + 1. Hence, all edges in T are
desirable to the auctioneer. Now if we increase the price of any edge, e ∈ T , to U + 1 the edges
in T − {e} are no longer desirable. This violates the gross substitutes property, which implies that
raising the price of an edge should not cause a different edge to drop out of the set with optimal
value. One can argue similarly in the case of other graph problem, such as Shortest Path.

The MST game has received a lot of attention. However, in most cases the problem is modelled
such that the agents own the nodes of the graph. It is an easy algorithmic task to determine a
core allocation – a simple greedy approach works [2]. Faigle et al [10] prove that core membership
testing is co-NP-Complete. Another model of the game where the agents own the edges has also
received a lot of attention in the recent past. Bikhchandani et al. [5] give a descending-price auction
mechanism for this problem – this is the same as the VCG mechanism proposed in [23].

Bikhchandani et al. [5] show that MST satisfies the buyers are substitutes condition. The
equivalence of frugality and substitutes (Section 3) imply that the MST game is frugal. We would
like to point out that in a somewhat different valuation model, the results of [4] imply that the
core of the game is a lattice with respect to the sellers when sellers are substitutes. Applied to the
MST game, their valuation model requires the buyer’s valuations to be additive with respect to the
edges, while in our model that is clearly not the case. However, the relevant proof in [4] does not
seem to depend on this limitation of the valuations. Our own proofs have a similar structure.

Bikhchandani et al. [5] also show that gross substitutes property implies the “agents are sub-
stitutes” property. The discussion above in the context of the MST game shows that the converse
may not be true.

Nisan and Ronen [23] applied the VCG mechanism to the Shortest Path game where the agents
own edges. Archer et al. [1] proved that the VCG payment is not “frugal”. Bikhchandani et al.
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[5] show that the Shortest Path game does not satisfy the substitutes property. It follows from the
discussion in the previous section that both the results are equivalent and any one of them coupled
with our results imply the other.

Sections 4 and 3 characterize the games and their outcomes in which a VCG mechanism leads
to a frugal payment. The equivalence of the three concepts – the substitutes property, the lattice
structure of the core, and frugality – contributes insights in designing frugal mechanisms, and
provides an alternative interpretation as well as perhaps a general framework for the results in [1].

5.1 Algorithmic Issues

In this section we look at how efficiently can the three conditions: frugality, agents being substitutes
and core being a lattice be evaluated in light of the results in Section 4 and 3.

There does not seem to be an easy way to check if the substitutes condition hold. [4] shows
that the VCG payoff being in the core and the agents being substitutes are equivalent conditions,
which coupled with results in Section 4 reduces the problem of checking if the core is a lattice to
checking if the Vickrey payoff is in the core or not. Another seemingly attractive possibility is to
check for frugality. Note that the frugality ratio can be computed by determining the VCG payoffs.
In general this is an optimization problem. However, as shown in [4], when agents are substitutes,
the computation of the VCG payoffs can be done by solving a single linear program and its dual.

6 Conclusion and Future research

In this paper we correlate some concepts explored in mechanism design to those studied in game
theory. We formalize the notion of frugality [1] and extend it to define frugality ratio. We establish
the equivalence of frugality and a slightly different version of agents are substitutes [5] condition.
We study the properties of the core, which defines the set of stable outcomes in coalition games with
transferable utilities. We show that if the core forms a lattice, then the agents satisfy the substitutes
condition. Hence, we establish the equivalence of the core being a lattice and agents satisfying the
substitutes condition. We study the implications of our result using two representative graph
problems- MST and shortest path. We observe that since MST satisfies the agents are substitutes
condition, the VCG payment is frugal. Also, we observe that the two results: (1) shortest path
does not satisfy agents are substitutes and (2) VCG payment for shortest path is not frugal are
equivalent in light of our results.

An interesting open problem is whether frugality ratio and marignal frugality defined in [30]
are equal, which in turn would imply that the frugoids condition in [30] and substitutes condition
are equivalent.
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A Frugality of Minimum cut

In this section we show that the Minimum cut has a frugality ratio of k, where k is the number of
edges in the cut set.

Let n = 3k, k > 3. Consider the graphs G1, G2, G3, each being a Kk and all the edges having
weight c1. We construct a graph G on n vertices from G1, G2 and G3 in the following manner.
Nodes in G1 and G2 are connected by a matching where each edge in the matching is of weight c3

(let this matching be denoted by M1). Further, nodes in G2 and G3 are connected by a matching
where these new edges (denoted by M2) have weight c2. Finally, we have the constraint that
c1 > c2 > c3 ≥ 1. Figure A shows the graph G for k = 4, c3 = 1, c2 = 2 and c1 = 3. Now, the
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Figure 1: Construction of “bad case” for Minimum cut
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optimal solution, O is M1, while the second best solution is = M2.3It can be seen that ∀i ∈ O,
πV (i) = c2k = C(M2). Thus, the frugality ratio is ≥ k. Proposition 1 implies that the Minimum
cut has a frugality ratio of k.

3Note that all the vertices of G1, G2, G3 have to be in one of the partitions induced by the min-cut as otherwise
the weight of the cut would be ≥ c1(k − 1).
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