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We consider here the problem of revenue maximiza-
tion in online auctions, that is, auctions in which bids
are received and dealt with one-by-one. In this note,
we demonstrate that results from online learning can
be usefully applied in this context, and we derive a new
auction which substantially improves upon the perfor-
mance of previous auctions for this problem.

We are primarily concerned with auctions for a sin-
gle good available in unlimited supply, often described
as a digital good, though our techniques may also be
useful for the case of limited supply. The problem of
designing online auctions for digital goods was first de-
scribed by Bar- Yossef et al. [3], one of a number of re-
cent papers interested in analyzing revenue-maximizing
auctions without making statistical assumptions about
the bidders who participate in the auction [5, 6, 4, 2].

1 The Model

In the model of Bar-Yossef et al. [3], n bidders arrive
in a sequence. Each bidder i is interested in one copy
of the good, and values this copy at vi. The valuations
are normalized to the range [1, h], so that h is the ratio
between the highest and lowest valuations. Bidder i
places bid bi, and the auction must then determine
whether to sell the good to bidder i, and if so, at what
price pi ≤ bi. This is equivalent to determining a sales
price si, such that if si ≤ bi, bidder i wins the good and
pays si; otherwise, bidder i does not win the good and
pays nothing.

The utility of a bidder is then given by vi − pi if
bidder i wins; 0 if bidder i does not win. As in Bar-
Yossef et al. [3], we are interested in auctions which
are incentive-compatible, that is, auctions in which each
bidder’s utility is maximized by bidding truthfully and
setting bi = vi. As shown in that paper, this condition
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is equivalent to the condition that each si depends only
on the first i − 1 bids, and not on the ith bid. Hence,
the auction mechanism is essentially trying to guess the
ith valuation, based on the first i − 1 valuations.

As in previous papers [3, 5, 6], we will use compet-
itive analysis to analyze the performance of any given
auction. Hence, we are interested in the worst-case ratio
(over all sequences of valuations) between the revenue
of the “optimal offline” auction and the revenue of the
online auction. Following previous papers [3, 5], we take
the optimal offline auction to be the one which optimally
sets a single fixed price for every bidder. The revenue
of such an auction is given by F(v) = maxi∈[n] {vini},
where ni = |{j ∈ [n] | vj ≥ vi}|. An online auction A
with revenue RA(v) is said to be c-competitive if for
any sequence v, RA(v) ≥ F(v)/c. We take RA to be
the expected revenue if A is randomized.

2 Online Learning

The key insight connecting the online auction problem
to online learning is that setting a single fixed price
can be thought of as following the advice of a single
“expert” who predicts that fixed price for every bidder.
Performing well relative to the optimal fixed price is
then equivalent to performing well relative to the best
of these experts.

We use the variant of Littlestone and Warmuth’s
weighted majority (WM) algorithm [7] given in Auer
et al. [1]. In our context, let X = {x1, . . . , x`} be a
set of candidate fixed prices, corresponding to a set of
experts. Let rk(v) be the revenue obtained by setting
the fixed price xk for the valuation sequence v. Given a
parameter α ∈ (0, 1], define weights

wk(i) = (1 + α)rk(v1,...,vi)/h

Clearly, the weights can be easily maintained using a
multiplicative update. Then, for bidder i, the auction
chooses si ∈ X with probability:

Pr[si = xk ] =
wk(i − 1)

∑`
j=1 wj(i − 1)

From Auer et al., we now have:



Theorem 2.1. [1, Theorem 3.2] For any sequence of
valuations v,

RWM(v) ≥ (1 − α

2
)FX(v) − h ln `

α
,

where FX(v) = maxk rk(v) is the optimal fixed price
revenue when restricted to fixed prices in X.

For completeness, we provide the proof here.

Proof. Let gk(i) = rk(v1, . . . , vi) − rk(v1, . . . , vi−1) de-
note the revenue gained by the kth expert from bidder
i. Let W (i) =

∑
k wk(i) be the sum of the weights after

bidder i.
Then, the expected revenue of the auction from

bidder i + 1 is given by:

gWM(i + 1) =

∑`
k=1 wk(i)gk(i + 1)

W (i)

We can then relate the change in W (i) to the expected
revenue of the auction as follows:

W (i + 1) =
∑̀

k=1

wk(i)(1 + α)gk(i+1)/h

≤
∑̀

k=1

wk(i)(1 + α(gk(i + 1)/h))

= W (i) + α
∑̀

k=1

wk(i)(gk(i + 1)/h)

= W (i)(1 + α(gWM(i + 1)/h))

where for the inequality, we used the fact that for
x ∈ [0, 1], (1 + α)x ≤ 1 + αx.

Since W (0) = `, we have

W (n) ≤ ` ·
n∏

i=1

(1 + α(gWM(i)/h))

On the other hand, the sum of the final weights is
at least the value of the maximum final weight. Hence,

W (n) ≥ (1 + α)FX/h

Taking logs, we have

FX

h
ln(1 + α) ≤ ln ` +

n∑

i=1

ln(1 + α(gWM(i)/h))

Since for x ∈ [0, 1], x − x2

2 ≤ ln(1 + x) ≤ x,

FX

h
(α − α2

2
) ≤ ln ` +

α

h
RWM

Rearranging this inequality yields the theorem.

Now let X contain all powers of (1 + β) between 1
and h. Taking α = β = ε

3 yields the following theorem:

Theorem 2.2. Restricting to valuation sequences with
F(v) ≥ 18h

ε2 (ln ln h + ln( 4
ε )), auction WM is (1 + ε)-

competitive relative to the optimal fixed price revenue.

The proof follows from the theorem of Auer et
al. above by analyzing the choice of parameters, and
by noting that F(v) ≤ (1 + β)FX(v), since rounding
down to a power of (1 + β) loses at most a factor of
(1 + β) in the revenue.

For any moderately large auction, the performance
guarantee of the weighted majority auction mecha-
nism is dramatically better than that of previous
auction mechanisms. As a comparison, Bar-Yossef
et al. show that their weighted buckets auction is
O(exp(

√
log log h))-competitive [3]. However, in that

case, the competitive ratio is achieved for valuation se-
quences with F(v) ≥ 4h. The following theorem shows
that WM fails on such small valuation sequences, and
indeed, the theorem provides a fairly tight lower bound
on the sequences for which WM succeeds.

Theorem 2.3. For any function f(h) = o(h log log h),
even when restricting to valuation sequences with
F(v) ≥ f(h), WM is ω(1)-competitive.

For the proof, first note that if the competitive
ratio is at most some constant c, then for every value
x ∈ [1, h], there must be some xi ∈ X such that
xi ≤ x ≤ cxi. Otherwise, a sequence of bids of value x
would lead to a competitive ratio more than c. Hence,
` ≥ logc h = Ω(log h).

Now consider a bid sequence consisting entirely of
bids of value x1 = 1. If there are n bids, clearly F = n.
For k 6= 1, for all i, wk(i) = 1, while w1(i) = (1 + α)i/h.
Hence, the expected revenue from the ith bidder is no
more than 1

` (1 + α)i/h. Summing over the n bidders,

we get a total revenue of at most n
` (1 + α)n/h. If the

competitive ratio is at most c, then we need (1+α)n/h ≥
`
c , which implies n ≥ Ω(h log `) = Ω(h log log h), from
which the theorem follows.

The above argument implicitly assumes all xi are
distinct (or, equivalently, that WM begins with all
experts having the same weight). We can generalize
the lower bound to hold even when experts begin with
different weights as follows. As before, suppose the
competitive ratio is at most c. Then, for any value
x ∈ [1, h], let qx be the fraction of initial weight on
experts xi ∈ [ x

2c , x]. Consider a sequence of n bids at the
value x for which qx is smallest. In this case, F = nx.
The online algorithm makes at most nx

2c from experts

below this window, and at most nxqx(1 + α)nx/h from



experts inside this window. Since qx ≤ 1/ log2c h and
c-competitiveness implies an online revenue of at least
nx
c , the result follows.

A bid sequence consisting entirely of bids of one
value may seem somewhat anomalous; in particular, h
does not represent the true ratio between the highest
and lowest valuations, and most of the weights remain
at their initial value. However, the example does not
depend on these properties. To see this, one can prefix
to the sequence above a set of bids, including a bid at h,
such that the revenue obtained from the prefix by using
any fixed price xi ∈ X falls in the range [h, 2h]. Since
in the prefix F = O(h), for any auction, the bids in the
prefix can be ordered in such a way that the auction
achieves revenue at most O(h) from these bids.

3 Extensions and Conclusions

Note that given any two auction mechanisms, we can
achieve performance which is within a factor of two
of the best of the two auctions by simply assigning
probability 1/2 to each. By combining the weighted
majority and weighted buckets auctions, we can achieve
a constant competitive ratio for valuation sequences
with large F , while maintaining the O(exp(

√
log log h))

competitive ratio for sequences with smaller F .
Also note that our techniques can be applied to the

limited supply case, so long as the sequence of bids
can be truncated as soon as we run out of items to
sell. While this is not a standard notion in competitive
analysis, it does suggest that the weighted majority
auction could perform well when the supply is not too
small and the bids are generated in some unknown, but
non-adversarial, manner. Using the standard notion of
competitive ratio, Lavi and Nisan give a lower bound of
Ω(log h) for the limited supply case [6].

In this note, we have demonstrated the power of on-
line learning techniques in the context of online auction
problems by giving a (1 + ε)-competitive online auction
for digital goods. This auction requires valuation se-
quences with slightly larger, but still quite reasonable,
optimal fixed price revenues. We have demonstrated
that such a condition is necessary for our weighted
majority-based auction. It is still open whether this
condition is necessary for any constant-competitive auc-
tion.
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