
Walrasian Equilibrium: Hardness, Approximations and

Tractable Instances

Ning Chen∗ Atri Rudra∗

Abstract. We study the complexity issues for Walrasian equilibrium in a special case of
combinatorial auction, called single-minded auction, in which every participant is interested in
only one subset of commodities. Chen et al. [5] showed that it is NP-hard to decide the existence
of a Walrasian equilibrium for a single-minded auction and proposed a notion of approximate
Walrasian equilibrium called relaxed Walrasian equilibrium. We show that every single-minded
auction has a relaxed Walrasian equilibrium that satisfies at least two-thirds of the participants,
proving a conjecture posed in [5]. Motivated by practical considerations, we introduce another
concept of approximate Walrasian equilibrium called weak Walrasian equilibrium. We show
NP-completeness and hardness of approximation results for weak Walrasian equilibria.

In search of positive results, we restrict our attention to the tollbooth problem [19], where
every participant is interested in a single path in some underlying graph. We give a polynomial
time algorithm to determine the existence of a Walrasian equilibrium and compute one (if it
exists), when the graph is a tree. However, the problem is still NP-hard for general graphs.

Keywords. Walrasian equilibrium, Combinatorial auction, Single-minded auction, NP-hard,
Approximation.

1 Introduction

Imagine a scenario where a movie rental store is going out of business and wants to clear out its
current inventory. Further suppose that based on their rental records, the store has an estimate of
which combinations (or bundles) of items would interest a member and how much they would be
willing to pay for those bundles. The store then sets prices for each individual item and allocates
bundles to the members (or buyers) with the following “fairness” criterion— given the prices on
the items no buyer would prefer to be allocated any bundle other than those currently allocated to
her. Further, it is the last day of the sale and it is imperative that no item remain after the sale is
completed. A natural way to satisfy this constraint is to give away any unallocated item for free.
This paper looks at the complexity of computing such allocation and prices.

The concept of “fair” pricing and allocation in the above example is similar to the concept of
market equilibrium which has been studied in economics literature for more than a hundred years
starting with the work of Walras [32]. In this model, buyers arrive with an initial endowment of
some item and are looking to buy and sell items. A market equilibrium is a vector of prices of the

∗Department of Computer Science & Engineering, University of Washington, Seattle, WA, 98105, USA. Email:
{ning,atri}@cs.washington.edu.

items such that the market clears, that is, no item remains in the market. Arrow and Debreu [3]
showed more than half a century ago that when the buyers’ utility functions are concave, a market
equilibrium always exists though the proof was not constructive. A polynomial time algorithm to
compute a market equilibrium for linear utility functions was given recently by Jain [22]. We note
that in this setup the items are divisible while we will consider the case of indivisible items.

Equilibrium concepts [26] are an integral part of classical economic theory. However, only in
the last decade or so these have been studied from the computational complexity perspective. This
perspective is important as it sheds some light on the feasibility of an equilibrium concept. As
Kamal Jain remarks in [22]— “If a Turing machine cannot efficiently compute it, then neither
can a market”. A small sample of the recent work which investigates the efficient computation of
equilibrium concepts appears in the following papers [12, 13, 22, 5, 28, 29, 10, 11, 6, 7].

In this paper, we study the complexity of computing a Walrasian equilibrium [32], one of the
most fundamental economic concepts in market conditions. Walrasian equilibrium formalizes the
concept of “fair” pricing and allocation mentioned in the clearance sale example. In particular, given
an input representing the valuations of bundles for each buyer, a Walrasian equilibrium specifies
an allocation and price vector such that any unallocated item is priced at zero and all buyers are
satisfied with their corresponding allocations under the given price vector. In other words, if any
bundle is allocated to a buyer, the profit/utility1 made by the buyer from her allocated bundle is
no less than the profit she would have made if she were allocated any other bundle under the same
price vector.

In the clearance sale example, we assumed that every buyer is interested in some bundles of
items— this is the setup for combinatorial auctions which have attracted a lot of attention in recent
years due to their wide applicability [31, 9]. In the preceding discussions, we have disregarded one
inherent difficulty in this auction model— the number of possible bundles is exponential and thus,
even specifying the input makes the problem intractable. In this paper, we focus on a more tractable
instance called single-minded auction [24] with the linear pricing scheme2. In this special case, every
buyer is interested in a single bundle. Note that the inputs for these auctions can be specified quite
easily. The reader is referred to [2, 1, 27, 5, 17] for more detailed discussions on single-minded
auctions.

If bundles can be priced arbitrarily, a Walrasian equilibrium always exists for combinatorial
auctions [8, 25]. However, if the pricing scheme is restricted to be linear, a Walrasian equilibrium
may not exist. Several sufficient conditions for the existence of a Walrasian equilibrium with
the linear pricing scheme have been studied. For example, if the valuations of buyers satisfy the
gross substitutes condition [23], the single improvement condition [18], or the no complementarities
condition [18], a Walrasian equilibrium is guaranteed to exist. Bikhchandani et al. [4] and Chen et
al. [5] gave an exact characterization for the existence of a Walrasian equilibrium— the total value
of the optimal allocation of bundles to buyers, obtained from a suitably defined integer program, is
equal to the value of the corresponding relaxed linear program. These conditions are, however, not
easy to verify in polynomial time even for single-minded auctions. In fact, checking the existence
of a Walrasian equilibrium for single-minded auctions is NP-hard [5].

The intractability result raises a couple of natural questions: (1) Instead of trying to satisfy
1The difference between how much the buyer values a bundle and the price she pays for it.
2The price of a bundle is the sum of prices of the items in the bundle.

2

all the buyers, what fraction of the buyers can be satisfied ? (2) Can we identify some structure
in the demands of the buyers for which a Walrasian equilibrium exists and can be computed in
polynomial time? In this paper we study these questions and have the following results:

• Conjecture on relaxed Walrasian equilibrium. Chen et al. [5] proposed an approximation
of Walrasian equilibrium, called relaxed Walrasian equilibrium. This approximate Walrasian
equilibrium is a natural approximation where instead of trying to satisfy all buyers, we try to
satisfy as many buyers as we can. [5] gave a simple single-minded auction for which no more
than 2/3 of the buyers can be satisfied. They also conjectured that this ratio is tight— that
is, for any single-minded auction one can come up with an allocation and price vector such
that at least 2/3 of the buyers are satisfied. In our first result we prove this conjecture. In
fact we show that such an allocation and price vector can be computed in polynomial time.

• Weak Walrasian equilibrium. There is a problem with the notion of relaxed Walrasian
equilibrium— it does not require all the winners to be satisfied. This is infeasible in practice.
For instance in the clearance sale example, the store cannot sell a bundle to a buyer at a
price greater than her valuation. In other words, at a bare minimum all the winners have to
be satisfied. With this motivation, we define a stronger notion of approximation called weak
Walrasian equilibrium where we try to maximize the number of satisfied buyers subject to
the constraint that all winners are satisfied. In our second result we show that computing a
weak Walrasian equilibrium is strongly NP-complete. We achieve this via a reduction from
the Independent Set problem. Independently, Huang et al. [21] showed that computing a
weak Walrasian equilibrium is NP-hard (but not strongly NP-hard) via a reduction from the
hardness of Walrasian equilibrium.

• Tollbooth problem. With the plethora of negative results, we shift our attention to special
cases of single-minded auctions where computing Walrasian equilibria might be tractable.
With this goal in mind, we study the tollbooth problem introduced by Guruswami et al. [19]
where the bundle every buyer is interested in is a path in some underlying graph. We show
that in a general graph, it is still NP-hard to compute a Walrasian equilibrium given that one
exists. We then concentrate on the special case of a tree, and show that we can determine
the existence of a Walrasian equilibrium and compute one (if it exists) in polynomial time.
Essentially, we prove this result by first showing that the optimal allocation can be computed
by a polynomial time dynamic program. In fact, the optimal allocation is equivalent to
computing the set of maximum weighted edge-disjoint paths in a tree. A polynomial time
divide and conquer algorithm for the latter was given by Tarjan [30]. See Section 4.3 for more
details on how this part of our work differs from the existing literature.

The paper is organized as follows. In Section 2, we review the basic properties of Walrasian equi-
librium for single-minded auctions. In Section 3, we study two different type of approximations—
relaxed Walrasian equilibrium and weak Walrasian equilibrium. In Section 4, we study the toll-
booth problem— for the different structure of the underlying graphs, we give different hardness
or tractability results. Section 5 describes our dynamic program based algorithm to compute the
optimal allocation in the tollbooth problem on trees. We conclude with Section 6.

3

2 Preliminaries

In a single-minded auction [24], an auctioneer sells m heterogeneous commodities Ω = {ω1, . . . , ωm},
with unit quantity each, to n potential buyers. Each buyer i desires a fixed subset3 of commodities
of Ω, called demand and denoted by di ⊆ Ω, with valuation (or cost) ci ∈ R+. That is, di is the
only bundle of commodities that i is interested in and ci is the maximum amount that i is willing
to pay for it.

After receiving the submitted tuple (di, ci) from each buyer i (the input), the auctioneer specifies
the tuple (X, p) as the output of the auction:

• Allocation vector X = 〈x1, . . . , xn〉, where xi ∈ {0, 1} indicates if i wins di (xi = 1) or not
(xi = 0). Note that we require

∑
i: ωj∈di

xi ≤ 1 for any ωj ∈ Ω. X∗ = 〈x∗1, . . . , x∗n〉 is said to
be an optimal allocation if for any allocation X, we have

n∑

i=1

ci · x∗i ≥
n∑

i=1

ci · xi.

That is, X∗ maximizes total valuations of the winning buyers.

• Price vector p = 〈p(ω1), . . . , p(ωm)〉 (or simply, 〈p1, . . . , pm〉) such that p(ωj) ≥ 0 for all
ωj ∈ Ω. In this paper, we consider linear pricing scheme, that is, p(Ω′) =

∑
ωj∈Ω′ p(ωj), for

any Ω′ ⊆ Ω.

Given the output tuple (X, p), if buyer i is a winner (i.e., xi = 1), her (quasi-linear) utility is
defined by ui(X, p) = ci − p(di); otherwise (i.e., xi = 0 and i is a loser), her utility ui(X, p) = 0.

We now define the concept of Walrasian equilibrium.

Definition 2.1 (Walrasian equilibrium) ([18]) A Walrasian equilibrium of a single-minded auc-
tion is a tuple (X, p), where X = 〈x1, . . . , xn〉 is an allocation vector and p = 〈p1, . . . , pm〉 is a price
vector, such that

1. (market condition) p(X0) = 0, where X0 = Ω\ (⋃
i: xi=1 di

)
is the set of commodities that are

not allocated to any buyer. Note that this also implies that for any ωj ∈ X0, pj = 0.

2. (utility condition) The utility of each buyer is maximized. That is, for any winner i, ci ≥ p(di),
whereas for any loser i, ci ≤ p(di). (In this case, we say the buyer is satisfied.)

Chen et al. [5] showed the following hardness result for determining the existence of a Walrasian
equilibrium.

Theorem 2.1 ([5]) Determining the existence of a Walrasian equilibrium in a single-minded auc-
tion is NP-complete.

Lehmann et al. [24] showed that in a single-minded auction, even the computation of the optimal
allocation is NP-hard. Indeed, we have the following relation between Walrasian equilibrium and
optimal allocation.

3That is where the name “single-minded” comes from.

4

Theorem 2.2 ([5]) For any single-minded auction, if there exists a Walrasian equilibrium (X, p),
then X must be an optimal allocation.

Due to the above result, we know that computing a Walrasian equilibrium is at least as hard
as computing the optimal allocation. However, if we do know an optimal allocation X∗, we can
compute the price vector according to the following linear program:

∑

j: ωj∈di

pj ≤ ci, ∀ x∗i = 1

∑

j: ωj∈di

pj ≥ ci, ∀ x∗i = 0

pj ≥ 0, ∀ ωj ∈ Ω

pj = 0, ∀ ωj ∈ Ω \

 ⋃

i: x∗i =1

di

Any feasible solution p defines a Walrasian equilibrium (X∗, p).
It is known that the price vector in a Walrasian equilibrium does not depend on its allocation

vector [18]. That is, if (X, p) is a Walrasian equilibrium and Y is another optimal allocation, then
(Y, p) is a Walrasian equilibrium as well4 (for the sake of completeness, we give a proof of this
statement in the appendix). Thus, given an optimal solution X∗, one can check if there exists a
Walrasian equilibrium by checking if the above linear constraints have a feasible solution. Further,
if a Walrasian equilibrium exists, we can compute a Walrasian equilibrium that maximizes the
revenue by considering the following objective function

max
∑

j: ωj∈Ω

pj .

Therefore, we have the following conclusion:

Corollary 2.1 For any single-minded auction, if the optimal allocation can be computed in poly-
nomial time, then we can determine if a Walrasian equilibrium exists or not and compute one (if
it exists) that maximizes the revenue in polynomial time.

3 Approximate Walrasian Equilibrium

Theorem 2.1 says that in general computing a Walrasian equilibrium is hard. In this section, we
consider two notions of approximation of a Walrasian equilibrium. The first one, called relaxed
Walrasian equilibrium, due to Chen et al. [5], tries to maximize the number of buyers that satisfy
the utility condition, given that the market condition is satisfied. We also introduce a stronger
notion of approximation called weak Walrasian equilibrium that in addition to being a relaxed

4At a high level, the reason is that the winners who have non zero utility in a Walrasian equilibrium are precisely
those that are present in all optimal allocations.

5

Walrasian equilibrium has the extra constraint that the utility condition is satisfied for all winners.
We will define these notions formally and record some of their properties in the following two
subsections.

3.1 Relaxed Walrasian Equilibrium

We first recall the notion of relaxed Walrasian equilibrium from [5].

Definition 3.1 (relaxed Walrasian equilibrium) ([5]) A relaxed Walrasian equilibrium of a
single-minded auction is a tuple (X, p) that satisfies the following condition:

• (market condition) p(X0) = 0, where X0 = Ω \ (⋃
i: xi=1 di

)
.

Our goal is to find relaxed Walrasian equilibria that maximize the number of satisfied buyers.
Note that Theorem 2.1 implies that it is NP-hard to compute a relaxed Walrasian equilibrium
such that the maximum number of buyers are satisfied. Let us now look at the following example
from [5].

Example 3.1 Consider the following single-minded auction. Three buyers bid for three commodi-
ties, where d1 = {ω1, ω2}, d2 = {ω2, ω3}, d3 = {ω1, ω3}, and c1 = c2 = c3 = 3. Note that there is at
most one winner for any allocation. Assume without loss of generality that buyer 1 wins d1. Thus,
under the condition of p(ω3) = 0 (since ω3 is an unallocated commodity), at most two inequalities
of p({ω1ω2}) ≤ 3, p({ω2ω3}) ≥ 3, p({ω1ω3}) ≥ 3 can hold simultaneously. Therefore at most two
buyers can be satisfied.

ω1 ω2 ω3 valuation

Buyer 1
√ √

3

Buyer 2
√ √

3

Buyer 3
√ √

3

Chen et al. [5] conjectured that this example actually gives the lower bound on ratio of the
number of satisfied buyers in relaxed Walrasian equilibria. We prove this conjecture in the following
theorem.

Theorem 3.1 Any single-minded auction has a relaxed Walrasian equilibrium for which at least
2n/3 buyers are satisfied, where n is the number of buyers. Furthermore, such a relaxed Walrasian
equilibrium can be computed in polynomial time.

Proof. To prove the theorem, we need to show that for any single-minded auction, there is a tuple
(X, p) such that at least 2n/3 buyers are satisfied. Our proof is constructive. We start with an
initial allocation Y which is chosen greedily. In the next phase, we iteratively build X from Y and
set prices p for the commodities while maintaining the invariant that at least 2/3 of the buyers in
X are satisfied.

We first construct an allocation Y as follows. Initially, let y1 = 1 (that is, the first buyer is a
winner). For each buyer i = 2, . . . , n, if di ∩ dk = ∅ for all 1 ≤ k ≤ i − 1 with yk = 1, let yi = 1;

6

otherwise, let yi = 0. Let W = {i | yi = 1} be the set of winners and L = {i | yi = 0} be the set
of losers in terms of Y . For each winner i ∈ W , define Li = {k ∈ L | di ∩ dk 6= ∅}. For each loser
k ∈ L, define Wk = {i ∈ W | di ∩ dk 6= ∅}.

We next describe an iterative procedure to compute (X, p) from Y . In the process the sets
W and L might change. However, at every stage we will always ensure that the demand of any
buyer in W is disjoint from the demands of all other buyers in W (as well as buyers that have been
declared winners according to X by that stage).

Repeat the following steps till W = L = ∅:
1. If there is an i ∈ W satisfying |Li| ≥ 2, set xi = 1 and xk = 0 for each k ∈ Li. We set the price of

commodities in di sufficiently large to guarantee p(di∩dk) ≥ ck, for any k ∈ Li. That is, no matter
how we set prices for other commodities, buyers in Li are always satisfied (note that buyer i may
not be satisfied). Then let W ← W \ {i} and L ← L \ Li (note that at least 2/3 of the removed
buyers are satisfied), update Li for the remaining winners, and repeat this step until |Li| ≤ 1 for
every remaining winner i.

2. For every buyer i ∈ W such that Li = ∅, set xi = 1 and W ← W \ {i}.
3. Consider any remaining loser k: We know all winners in Wk still remain, and for any ωj ∈ dk,

there is at most one remaining winner in Wk with demand including ωj . There are the following
two possible sub-steps:

(a) Repeat this sub-step as long as there is a loser k such that ck ≤
∑

i∈Wk
ci. Set xk = 0 and

xi = 1 for each i ∈ Wk. Define p(di ∩ dk) = ci for each i ∈ Wk. All unspecified commodities
in dk are priced at zero. Thus all buyers in Wk as well as k are satisfied. Let W ← W \Wk

and L ← L \ {k}.
(b) For any remaining loser k, we have ck >

∑
i∈Wk

ci. Pick one (say k′) arbitrarily and update
the sets W and L by defining W ← W ∪ {k′} \ Wk′ and L ← L ∪ Wk′ \ {k′}. Note that
in particular this implies that all buyers in W have disjoint demands. For each i ∈ W and
k ∈ L, define Li and Wk exactly the same way as above. Go back to step 1.

In the above construction, all unspecified commodities are priced at zero.
We first claim that the allocation produced is a valid one, i.e., no two buyers who share a

commodity are both declared as winners. This follows from the fact that only buyers who are
present in W are declared as winners. Further, in the procedure above it is always made sure that
buyers in W do not have overlapping demands, and the demand of any buyer in W at any stage is
disjoint from the demand of any buyer who has been declared a winner (according to the (partial)
allocation X) in the previous stages.

Furthermore, at least 2n/3 buyers are satisfied at the end of the algorithm (Step 1 is the only
step where some buyers may not get satisfied). According to the algorithm, if a commodity is
not allocated to any buyer, it must be priced at zero. Therefore, (X, p) is a relaxed Walrasian
equilibrium for which at least 2n/3 buyers are satisfied.

Finally, we argue that the algorithm terminates in polynomial time. Divide the sequence of
steps of the algorithm into iterations, where in an iteration the algorithm starts from Step 1 and
ends back at Step 1 (which can happen only if Step 3(b) is executed). To argue the running time,

7

we claim that in any two consecutive iterations, at least one buyer is removed from W ∪ L.5 For
the sake of contradiction, assume that there are two consecutive iterations such that W ∪L remains
the same. Note that if any of the conditions of Steps 1,2 or 3(a) are satisfied, at least one buyer
from W ∪ L is removed. Thus, in both iterations none of the conditions of Steps 1,2 or 3(a) are
satisfied. In other words, in both iterations, Step 3(b) is executed. However, we claim that this
is not possible as in the second iteration, the condition of either Step 1,2 or 3(a) will be satisfied,
which is a contradiction. In the rest of the proof, we argue this last claim. To avoid overloading
notations, let the sets W and L before the start of Step 3(b) in the first and second iteration be
denoted by W (1), L(1) and W (2), L(2), respectively. Further, let k′ ∈ L(1) be the loser that is moved
to W (2) in the first iteration. Consider any i ∈ W

(1)
k′ (that is, i ∈ W (1) and di ∩ dk′ 6= ∅). By the

construction, the demand of i and every buyer in W (1) \W
(1)
k′ are disjoint. Thus, W

(2)
i (recall that

in the second iteration i ∈ L(2)) is exactly the set {k′}. Now, as Step 3(b) was executed in the
first iteration, we have ci ≤

∑
j∈W

(1)

k′
cj < ck′ =

∑
j∈W

(2)
i

cj , which implies that the condition of

Step 3(a) is satisfied for i in the second iteration. Thus, in the second iteration, Step 1,2 or 3(a)
will be executed. ¤

3.2 Weak Walrasian Equilibrium

The notion of relaxed Walrasian equilibrium does not require all the winners to be satisfied. Indeed,
in the proof of Theorem 3.1, to satisfy more buyers, we may require some winner to pay an amount
which is higher than her valuation. However, this is infeasible in practice: the auctioneer cannot
expect a winner to pay such a high price. Motivated by this observation, we introduce a stronger
concept of approximate Walrasian equilibrium, which we call weak Walrasian equilibrium.

Definition 3.2 (weak Walrasian equilibrium) A weak Walrasian equilibrium of a single-
minded auction is a tuple (X, p) that satisfies the following conditions:

• (market condition) p(X0) = 0, where X0 = Ω \ (⋃
i: xi=1 di

)
.

• (winner utility condition) The utility of each winner is maximized. That is, for any winner
i, ci ≥ p(di).

Similar to the relaxed Walrasian equilibrium, our goal is to find weak Walrasian equilibria that
maximize the number of satisfied buyers (including losers). Unfortunately, this extra restriction
makes the problem much harder as the following theorem shows.

Theorem 3.2 Given h ≤ N , determining the existence of weak Walrasian equilibria for which at
least h buyers are satisfied is strongly NP-complete, where N is the number of buyers.

Proof. It is easy to see the problem is in NP. This is because for any tuple (X, p), we can check the
market and winner utility condition efficiently and decide if there are at least h satisfied buyers in
the solution (X, p).

5This will imply that the procedure has at most 2n iterations. Further, it is easy to check that each step in an
iteration can be performed in polynomial time in n and m (where m is the number of commodities).

8

To show the NP-hardness, we give a reduction from the Independent Set problem– given a
connected graph G = (V, E), where V = {v1, v2, . . . , vn} is the set of vertices, we are asked if there
is a subset of vertices V ∗ ⊆ V , |V ∗| ≥ k, such that for any vi, vj ∈ V ∗, (vi, vj) /∈ E.

Let G′ = (V ′, E′) be a complete graph with n vertices, where |V ′| = {v′1, v′2, . . . , v′n}. Define a
new graph

H = (V ∪ V ′, E ∪ E′ ∪ E′′), where E′′ = {(v1, v
′
1), (v2, v

′
2), . . . , (vn, v′n)}.

We say vi and v′i are a pair of counterparts for each i.
We construct an instance of single-minded auction with N = 2n buyers as follows. For each

vertex v ∈ V ∪ V ′, we attach a buyer v with unit valuation and demand dv, where |dv| = 2n, such
that for any different vi, vj , vk ∈ V ∪ V ′, we have the following three constraints:

(a) if (vi, vj) ∈ E ∪ E′ ∪ E′′, then |dvi ∩ dvj | = 1;

(b) if (vi, vj) /∈ E ∪ E′ ∪ E′′, then |dvi ∩ dvj | = 0;

(c) |dvi ∩ dvj ∩ dvk
| = 0.

Specifically, the demands of buyers can be constructed according to the following rule:

1. Order the vertices arbitrarily by v1, . . . , v2n

2. Let dvi = {ωi,1, . . . , ωi,2n} be the set of demand of buyer vi, i = 1, . . . , 2n

3. Let a1 = a2 = · · · = a2n = 1
4. For i = 2 to 2n

5. For j = 1 to i− 1
6. If (vi, vj) ∈ E ∪ E′ ∪ E′′, then
7. ωi,ai = ωj,aj (which means it is the same commodity)
8. ai ← ai + 1
9. aj ← aj + 1

In the above construction, all unspecified commodities are different. It is easy to see it satisfies
the three constraints. To complete the proof, we show that G has an independent set of size at least
k if and only if there exists a weak Walrasian equilibrium (X, p) for which the number of satisfied
buyers is at least h = 2k + 2.

Assume there is an independent set V ∗ of G with cardinality higher than or equal to k, i.e.,
|V ∗| ≥ k. Note that as G is connected, V ∗ ⊂ V . Define the allocation and price vector as follows:

• For any v ∈ V ∗, let xv = 1, i.e., v is a winner. Let p (dv ∩ dv′) = 1 for each v ∈ V ∗, where v′

is the counterpart of v in H.

• Select a vertex v′ ∈ V ′, such that (v′, v′′) /∈ E′′ for any v′′ ∈ V ∗, let xv′ = 1, i.e., v′ is a
winner. Note that as V ∗ ⊂ V , such a vertex always exists. Let p (dv ∩ dv′) = 1, where v is
the counterpart of v′ in H.

• For every other v ∈ V ∪ V ′, let xv = 0, i.e., v is a loser. For any commodity which has no
price yet set their price to be zero.

9

Therefore, the (X, p) constructed above satisfies Definition 3.2— all winners and their counterparts
are satisfied (since their valuation is one), which implies there are at least 2k + 2 satisfied buyers.

For the other direction, assume for the constructed auction, there is a tuple (X, p) such that at
least 2k+2 buyers are satisfied. For these satisfied buyers, we claim there are at least k+1 winners.
This is because each winner, who is satisfied as required, compensates for at most one unit amount
valuation, and each satisfied loser corresponds to at least one unit amount valuation. According to
our construction of demands above, no three buyers share the same commodity. Thus, the number
of winners is not less than that of satisfied losers (recall that by the market clearing condition,
any commodity with a non-zero price is allocated to a winner). Furthermore, there is no common
shared commodities among these k + 1 winners. Finally, at least k of them are corresponding to
vertices in V , which implies these k vertices constitute an independent set. ¤

If we regard Independent Set and weak Walrasian equilibrium as optimization problems, the
construction we showed above is actually a gap-preserving reduction [20]. Therefore we have the
following conclusion:

Corollary 3.1 There is an ε > 0 such that the approximation of weak Walrasian equilibrium within
a factor N ε is NP-hard, where N is the number of buyers.

4 The Tollbooth Problem

As we have seen in the preceding discussions, in general the computation of a (weak) Walrasian
equilibrium in a single-minded auctions is hard. In the search of tractable instances, we consider a
special case of single-minded auctions where the set of commodities and demands can be represented
by a graph. Specifically, we consider the tollbooth problem [19], in which we are given a graph, the
commodities are edges of the graph, and the demand of each buyer is a path in the graph. For the
rest of this section, we will use the phrase tollbooth problem for a single-minded auction where the
input is from a tollbooth problem.

4.1 Tollbooth Problem in General Graphs

For the general graph, as the following theorem shows, the computations of both the optimal
allocation and Walrasian equilibrium (if it exists) are difficult.

Theorem 4.1 If a Walrasian equilibrium exists in the tollbooth problem, it is NP -hard to compute
one.

Proof. Due to Theorem 2.2, we only need to prove the NP-hardness of computing an optimal
allocation. We reduce from Set Packing by 3-sets [15]. That is, given a finite set S = {s1, . . . , sm},
collection T ⊆ 2S of subsets, where |ti| ≤ 3 for each ti ∈ T , and integer k, does T contain at least
k mutually disjoint sets?

We construct a graph for the tollbooth problem as follows: For each sj ∈ S, we include two
vertices aj and bj , and an edge (aj , bj). For each element in T , say ti = (sj1 , sj2 , sj3) ∈ T , we
include two extra vertices wi,1, wi,2 and connect the graph as shown in Figure 1. If ti = (sj1 , sj2),
then just add one new vertex wi,1 and the edges (bj1 , wi,1), (wi,1, bj,2). If ti = (sj1), then just add
one new vertex wj,1 and the edge (bj1 , wi,1).

10

aj3 bj3

aj2 bj2

aj1 bj1

wi,1

wi,2

Figure 1: Gadget construction in the reduction.

We associate a buyer corresponding to every ti with a path at valuation one. If ti = (sj1 , sj2 , sj3),
then the demand path is (aj1 , bj1 , wi,1, bj2 , aj2 , wi,2, aj3 , bj3). For smaller sets, the associated demand
path is the one naturally induced by the corresponding gadget.

Note that by the above construction, for any two distinct buyers i and j, their demand paths
are disjoint if and only if ti ∩ tj = ∅. In other words, T contains at least k mutually disjoint sets if
and only if the value of the optimal allocation in the resulting graph is at least k. Thus the theorem
follows. ¤

4.2 Tollbooth Problem in a Tree

In this subsection, we consider the tollbooth problem in a tree. Note that even for this simple
structure, Walrasian equilibrium may not exist, as shown by Example 3.1. In this special case,
however, we can determine whether a Walrasian equilibrium exists or not and compute one (if it
exists) in polynomial time. Due to Corollary 2.1, we only describe how to compute an optimal
allocation efficiently. To this end, we give a polynomial time dynamic program algorithm (for
clarity, the details are deferred to Section 5). Therefore, we have the following conclusion:

Theorem 4.2 For any tollbooth problem in a tree, there exists polynomial time algorithms to com-
pute an optimal allocation, determine if a Walrasian equilibrium exists or not and compute one (if
it exists).

4.3 Comparison with Related Work

As was noted in the introduction, computing an optimal allocation (for the tollbooth problem in
a tree) is the same as computing the maximum weighted edge-disjoint paths in a tree for which a
polynomial time algorithm already exists [30]. Another dynamic program algorithm for computing
edge-disjoint paths with maximum cardinality in a tree was shown by Garg et al. [16]. However,
their algorithm crucially depends on the fact that all paths have the same valuation while our setup
is the more general weighted case.

The algorithm of Tarjan [30] uses a divide and conquer approach and has a faster running time
than our dynamic program based algorithm. However, we are not aware of any dynamic program
based algorithm for this problem (except for the algorithm of Garg et al. [16] that only works for a
special case as noted above). In particular, it will be interesting to study the generalization of our
dynamic program based algorithm for graphs with constant tree width.

11

5 Dynamic Program based Algorithm

In this section, we present a dynamic program based polynomial time algorithm to compute an
optimal allocation for the tollbooth problem on trees. We begin with the case of binary trees, then
show how to generalize the dynamic program for general trees.

5.1 Basic Idea Behind the Algorithm

Before presenting the details of the algorithm, in this subsection, we will go over the basic ideas
behind the algorithm (for the binary trees case).

First, we arbitrarily designate a vertex in the tree as the root– this defines a natural notion
of children (and parent) for every node in the tree. The first crucial observation is the following:
every edge in the tree has at most one demand from the optimal solution that passes through
it. The essential idea behind the dynamic program is to guess this demand for every edge (one
of the possible guesses will be to not pick any demand). Let us now consider how choosing one
demand (say d) for an edge (u, pr(u)), where pr(u) is the parent of the node u, affects the rest of
the solution. Assume that u has two children v and w (u might have less than two children but
those cases are simpler). Now comes the second crucial observation– the chosen demand d cannot
pass through both v and w (as all the demands are paths in the tree). Now, if d passes through
(say) v then the choice of demand for the edge (u, v) is fixed– it has to be d. Also any demand
that is chosen within the subtree rooted at w has to lie within the subtree (plus the edge (u,w)).
Further, apart from the constraints mentioned above, the choices made in the subtrees rooted at v

and w are independent. Thus, the best choices for the subtrees at v and w can be made using a
dynamic program.

5.2 The Setup

We will consider a tree T = (V, E) rooted at some arbitrary node r ∈ V . For any two nodes
s, t ∈ V , the unique path between them in T would be denoted by P(s, t). We will consider P(s, t)
to be an ordered set of nodes {s = v0, v1, · · · , vk−1, vk = t} for some k such that (vi, vi+1) ∈ E for
0 ≤ i ≤ k−1. Further, for any node v ∈ V , its parent node is denoted by pr(v). That is, u = pr(v)
if and only if (u, v) ∈ E and |P(u, r)| < |P(v, r)|.

A demand is identified with a pair (s, t), s, t ∈ V , with the implicit understanding that the
demand requires all the edges in P(s, t). The set of all demands is denoted by D. Every demand
d ∈ D has a valuation denoted by c(d). We say two demands are disjoint if their corresponding
paths do not have any edge in common. Thus, an allocation of D in T is subset of D such that
any two demands are disjoint. Recall that our objective is to find an allocation with the maximum
valuation.

For any node u ∈ V , we denote the set of demands which need the edge (u, pr(u)) by

D(u) = {(s, t) ∈ D | {u, pr(u)} ⊆ P(s, t)} .

Also define the indicator functions α(·, ·) and β(·, ·) as follows: for any u ∈ V and d = (s, t) ∈ D,

α(u, d) = 1 iff P(s, t) ∩ P(u, r) = {u} ∧ u 6∈ {s, t}
β(u, d) = 1 iff P(s, t) ∩ P(u, r) = {u, pr(u)} ∧ pr(u) ∈ {s, t}

12

Figure 2 gives examples for these two indicator functions.

s t

pr(u)

u

r

s

pr(u) = t

u

r

α(u, d) = 1 β(u, d) = 1

Figure 2: Illustration of α(·, ·) and β(·, ·). (The bold edges form the demand d.)

Further let the subtree rooted at u be denoted by Tu, and define

D(Tu) = {(s, t) ∈ D | P(s, t) ∩ V (Tu) 6= ∅},

where V (Tu) is the set of vertices of Tu. Note that D(u) ⊆ D(Tu).
Finally, for any node u ∈ V and d ∈ D(u), let C(u, d) denote the maximum valuation of any

allocation of D(Tu) in Tu that contains d. Define a special value C(u, 0) as the maximum of the
valuations of any allocation of D(Tu) in Tu that contains no demand that uses any node outside of
V (Tu). Recall that we are interested in C(r, 0).

Before we spell out the algorithm for computing the optimal allocation, here is another definition
which we will use frequently. For any u ∈ V , define

d∗(u) = arg max
d∈D(u) ∧ β(u,d)=1

C(u, d).

We will overload notation and say d∗(u) = 0 if D(u) = ∅ or for all d ∈ D(u), β(u, d) = 0 or
C(u, 0) ≥ maxd∈D(u) ∧ β(u,d)=1 C(u, d).

5.3 The Binary Tree Case

We will first consider the case when degree of T is bounded by 2. This would give all the main
ideas behind the dynamic program based algorithm.

We recall the two key observations about the structure of the problem. First, for the optimal
solution OPT , every edge e = (u, pr(u)) ∈ E appears in at most one demand d ∈ OPT . Note
that if such a demand d exists then d ∈ D(u). Thus, the guesses for d are reflected in the entries
{C(u, d)}d∈D(u) and C(u, 0) — the latter being for the case when OPT does not use any demand in
D(u) or D(u) = ∅. Second, as all the demands are paths in T , for any demand d ∈ D(u) for some
u ∈ V , among the possible children v and w of u (there might be no children or just one child), at
most one of v and w has the demand d in their D(·).

We now formally define the recurrence relations for C(·, ·). For any, u ∈ V , we have the following
cases:

• Case 1: u is a leaf of T .

C(u, 0) = 0

13

For any d ∈ D(u),
C(u, d) = β(u, d) · c(d)

• Case 2: u has one child v.

C(u, 0) = C(v, d∗(v))

For any d ∈ D(u),

C(u, d) =
{

β(u, d) · c(d) + C(v, d), if d ∈ D(v)
β(u, d) · c(d) + C(u, 0), otherwise

• Case 3: u has two children v and w.

C(u, 0) = max
{

C(v, d∗(v)) + C(w, d∗(w)), max
d∈D ∧ α(u,d)=1

(C(v, d) + C(w, d) + c(d))
}

For any d ∈ D(u),

C(u, d) =

β(u, d) · c(d) + C(v, d) + C(w, d∗(w)), if d ∈ D(v)
β(u, d) · c(d) + C(v, d∗(v)) + C(d,w), if d ∈ D(w)
β(u, d) · c(d) + C(u, 0), otherwise

Given the above recurrence relation, the dynamic program algorithm is obvious. The algorithm
maintains the table C(·, ·). It starts filling in the table from the leaves and then works its way up to
the root using the recurrence relations given above. We also need to store the choices of demands
made by the dynamic program in some auxiliary table A(·, ·). For the sake of completeness, the
expressions for A(u, d) and A(u, 0) are presented in Appendix B.1. It is not hard to see that one
can reconstruct the solution from A(·, ·).

Example 5.1 In Figure 3, the demands are d1 = {v4, v2, v1, v3}, d2 = {v1, v3, v6}, d3 = {v2, v5},
d4 = {v8, v4, v2}, d5 = {v3, v7}, d6 = {v7, v9}, respectively. The value of each demand is the number
beside it in the figure. We compute the optimal allocation in terms of the above dynamic program
algorithm from leaves v8, v9, v5, v6 to root v1. The entries in C(·, ·) which are never evaluated are
indicated by −. The final allocation corresponding to C(v1, 0) is the set {d1, d3, d5, d6}.

We mention some technical points before proving the correctness of the dynamic program. First,
one must be careful that the value of a demand is added only once in the computations– this is
achieved by using the indicator functions α(·, ·) and β(·, ·). Second, the values of d∗(·) cannot
be computed as a pre-processing phase but would be computed as the algorithm proceeds. This
separate notation was used to simplify the recursion expressions. Finally note that for any u ∈ V ,
the value C(u, d∗(u)) will correspond to the value of the optimal solution in the subtree Tu∪{pr(u)}.

Lemma 5.1 C(r, 0) gives the value of the optimal allocation and can be computed in time O(mn2),
where m is the number of edges and n is the number of demands.

Proof. The correctness of Case 1 is obvious. We will now prove the correctness of Case 3: the
argument for Case 2 is similar and is omitted.

14

v1

v2 v3

v7v6v5v4

v8 v9

5

2

3

4

1

1

C(·, ·) 0 d1 d2 d3 d4 d5 d6

v1 12 − − − − − −
v2 5 3 − − − − −
v3 2 2 6 − − − −
v4 0 0 − − 2 − −
v5 0 − − 3 − − −
v6 0 − 0 − − − −
v7 1 − − − − 2 −
v8 0 − − − 0 − −
v9 0 − − − − − 1

Figure 3: The evaluation of the table C(·, ·) on the input graph on the left.

Let us first consider C(u, 0). Note that this quantity should compute the optimal allocation in
Tu. There are two cases now. In the first case, there is some demand d such that d ∈ D(v)∩D(w).
Thus, one feasible allocation in Tu is to use d and then use the optimal allocations in Tv and Tw

which use d (the valuation of which are given by C(v, d) and C(w, d) respectively). The second
term in the expression for C(u, 0) picks the best among such choices. In the second case, the
optimal solution can combine the optimal allocations in Tv ∪{u} and Tw ∪{u} (which are given by
C(v, d∗(v)) and C(w, d∗(w)) respectively). Note that the optimal solution has to choose one among
the choices mentioned above, which we have argued above is the one computed by the expression
for C(u, 0).

Now let us consider C(u, d) for some d ∈ D(u). First consider the case when d ∈ D(v). Again
after a moment’s thought, it is clear that the optimal solution would combine the optimal solution in
Tv using d (which is computed by C(v, d)) and the optimal solution in Tw∪{u} (which is computed
by C(w, d∗(w))). The argument is similar for the case when d ∈ D(w). In the final case, d is of the
form {u, p(u), · · · }, in which case the optimal solution would choose d and the optimal solution in
Tu (which is given by C(u, 0)). Thus, we have argued the correctness of Case 3.

We finally do a crude bound on the running time of the algorithm. Let m = |E| and n = |D|.
The algorithm has to compute at most mn entries, and for each entry we have need O(n) time.
Thus, in all the algorithm requires time O(mn2). ¤

5.4 The General Tree Case

We now consider the case when the tree T can have degree greater than two. Most of the details
are the same as the binary case so we will just focus on the recurrence relations for C(u, 0) and
C(u, d) for u ∈ V and d ∈ D(u). First note that Case 1 and Case 2 remain the same. So let us
focus on the case when the degree of u is at least two.

Let u have t ≥ 2 children given by the set Z = {v1, v2, · · · , vt}. We will now construct a
weighted graph GZ on the set of vertices Z ∪Z ′ where Z ′ is a set of t new nodes: Each vi ∈ Z has
a corresponding copy v′i ∈ Z ′. We now define the edges and their weights. For any 1 ≤ i ≤ t, put
in an edge (vi, v

′
i) whose weight is C(vi, d

∗(vi)). Finally for any i, j ∈ {1, · · · , t}, include the edge

15

(vi, vj) if there exists a demand d ∈ D such that d ∈ D(vi) ∩ D(vj) with the weight

max
α(u,d)=1 ∧ d∈D(vi)∩D(vj)

(C(vi, d) + C(vj , d) + c(d)).

Now consider the maximum weighted matching M(GZ) of GZ , and let its weight be denoted
by w(M(GZ)). Define

C(u, 0) = w(M(GZ)).

We now consider C(u, d) for any d ∈ D(u). If d ∈ D(vi), for 1 ≤ i ≤ t, then define

C(u, d) = β(u, d) · c(d) + C(d, vi) + w(M(GZ−{vi})).

If d 6∈ ∪t
i=1D(vi), then define

C(u, d) = β(u, d) · c(d) + C(u, 0).

The expressions for A(·, ·) are given in Appendix B.2. Now we are ready to prove the following
result.

Theorem 5.1 For any tollbooth problem in a tree, there exists a polynomial time algorithm to
compute an optimal allocation, determine if a Walrasian equilibrium exists or not and compute one
(if it exists).

Proof. We will show that the dynamic program discussed above computes the optimal allocation
in polynomial time. The other claims follow from Corollary 2.1.

We need to prove that C(u, 0) returns the value of the optimal allocation. Before we ar-
gue the correctness, note that for t = 2, the only possible maximal matchings in G{v1,v2} are
{(v1, v

′
1), (v2, v

′
2)} and {(v1, v2)}. The weights of the two matchings are C(v, d∗(v)) + C(w, d∗(w))

and
max

d∈D ∧ α(u,d)=1
(C(v, d) + C(w, d) + c(d)),

respectively, and the expression for C(u, 0) in the binary case is indeed w(M(G{v1,v2}).
For the general case note that for any allocation in Tu, at most one demand can be common

between two different nodes vi and vj . And if such a demand exists, vi and vj cannot share a
demand with any other node. If vi does not share a demand with any other node, then some
allocation in Tvi ∪ {u} is a subset of the allocation. After a moment’s reflection this implies that
the allocation corresponds to a matching in GZ (the edges (vi, vj) correspond to vi and vj sharing
a demand in some allocation while the edges (vi, v

′
i) correspond to the case when vi does not share

a demand with any other node in Z). Further, the optimal allocation OPT chooses the maximum
weighted matching in GZ .

The argument for correctness for C(u, d) is essentially the same as the one given for C(u, 0)
and is omitted. For the special case of t = 2 if d ∈ D(v1) then note that G{v2} has its maximum
(and only) matching as {(v2, v

′
2)} and the expression for C(u, d) in the previous section is indeed a

special case of the expression given above.
We will now analyze the running time of the dynamic program for the general tree case. For

each entry in C(·, ·), we might have to create the graph GZ which takes O(m2n) where m = |E|
and n = |D|, and computing the maximum matching takes O(m3 log m) [14]. Recall that there are
at most mn entries to be filled, thus the algorithm overall takes O(m3n(n + m log m)). ¤

16

6 Conclusions

In the notions of approximate Walrasian equilibrium that we studied in this paper, we are concerned
with relaxing the utility condition of Walrasian equilibrium (Definition 2.1). That is, we guarantee
the prices of the approximate Walrasian equilibria clear the market (Definition 3.1, 3.2). Relaxing
the market condition is called envy-free pricing and is well studied, e.g., in [19]. Unlike the general
Walrasian equilibrium, an envy-free pricing always exists, and thus, a natural non-trivial goal is
to compute an envy-free pricing that maximizes the revenue [19]. Similarly, trying to compute
a revenue-maximizing Walrasian equilibrium is an important goal. However, even checking if a
Walrasian equilibrium exists or not is NP-hard [5], which makes the task of finding a revenue-
maximizing Walrasian equilibrium an even more ambitious task. Note that Corollary 2.1 shows
that it is as hard as computing an optimal allocation.

Our polynomial time algorithm for determining the existence of a Walrasian equilibrium and
computing one (if it exists) in a tree generalizes the result for the line case, where a Walrasian
equilibrium always exists [4, 5] and can be computed efficiently.

Our work leaves some open questions. In the approximation notion of relaxed Walrasian equi-
librium, we showed that any single-minded auction has a relaxed Walrasian equilibrium so that at
least 2/3 of the buyers are satisfied. An interesting question is how to approximate the maximum
number of satisfied buyers within a ratio better than 2/3 (note that the tight example of ratio 2/3
does not imply that 2/3 is the best possible approximation ratio). In addition, we showed that for
the tollbooth problem on a general graph, it is NP-hard to compute the optimal allocation, which
implies that given that a Walrasian equilibrium exists, computing one is also hard. A natural
question is to resolve the complexity of determining the existence of a Walrasian equilibrium (not
compute one if it exists) in a general graph.

Acknowledgments

We thank Neva Cherniavsky, Xiaotie Deng, Venkatesan Guruswami and Anna Karlin for helpful
discussions and suggestions. We thank an anonymous reference for pointing out an error in an earlier
version of the proof of Theorem 3.1. We thank Yossi Azar for pointing out the references [30, 16]
and Xiaotie Deng for pointing out the reference [21]. We also thank the anonymous reviewers for
helpful suggestions that have helped improve the presentation of the paper.

References

[1] A. Archer, C. H. Papadimitriou, K. Talwar, E. Tardos, An Approximate Truthful Mechanism
For Combinatorial Auctions with Single Parameter Agents, Proceedings of the Symposium on
Discrete Algorithms (SODA), 205-214, 2003.

[2] A. Archer, E. Tardos, Truthful Mechanisms for One-Parameter Agents, Proceedings of the
Symposium on Foundations of Computer Science (FOCS), 482-491, 2001.

[3] K. K. Arrow, G. Debreu, Existence of An Equilibrium for a Competitive Economy, Economet-
rica, V.22, 265-290, 1954.

17

[4] S. Bikhchandani, J. W. Mamer, Competitive Equilibrium in an Economy with Indivisibilities,
Journal of Economic Theory, V.74, 385-413, 1997.

[5] N. Chen, X. Deng, X. Sun, On Complexity of Single-Minded Auction, Journal of Computer
and System Sciences, V.69(4), 675-687, 2004.

[6] X. Chen, X. Deng, 3-NASH is PPAD-Complete, ECCC Technical Report No. TR05-134.

[7] X. Chen, X. Deng, Settling the Complexity of 2-Player Nash-Equilibrium, To appear in the
Proceedings of the Symposium on Foundations of Computer Science (FOCS), 2006.

[8] W. Conen, T. Sandholm, Coherent Pricing of Efficient Allocations in Combinatorial
Economies, National Conference on Artificial Intelligence (AAAI), Workshop on Game Theo-
retic and Decision Theoretic Agents (GTDT), 2002.

[9] P. Cramton, Y. Shoham, R. Steinberg (editors), Combinatorial Auctions, MIT Press, 2005.

[10] C. Daskalakis, P. W. Goldberg, C. H. Papadimitriou, The Complexity of Computing a Nash
Equilibrium, Proceedings of the Symposium on the Theory of Computation (STOC), 71-78,
2006.

[11] C. Daskalakis, C. H. Papadimitriou, Three-Player Games Are Hard, ECCC Technical Report
No. TR05-139.

[12] X. Deng, C. H. Papadimitriou, S. Safra, On the Complexity of Equilibria, Proceedings of
the Symposium on the Theory of Computing (STOC), 67-71, 2002. Full version appeared in
Journal of Computer and System Sciences, V.67(2), 311-324, 2003.

[13] N. Devanur, C. H. Papadimitriou, A. Saberi, V. V. Vazirani, Market Equilibrium via a Primal-
Dual-Type Algorithm, Proceedings of the Symposium on Foundations of Computer Science
(FOCS), 389-395, 2002.

[14] Z. Galil, S. Micali, H. Gabow, An O(EV log V) Algorithm for Finding a Maximal Weighted
Matching in General Graphs, SIAM Journal on Computing, V.15, 120-130, 1986.

[15] M. R. Garey, D. S. Johnson, Computers and Intractability: a Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

[16] N. Garg, V. V. Vazirani, M. Yannakakis, Primal-Dual Approximation Algorithms for Integral
Flow and Multicut in Trees, Algorithmica, V.18, 3-20, 1997.

[17] A. V. Goldberg, J. D. Hartline, Collusion-Resistant Mechanisms for Single-Parameter Agents,
Proceedings of the Symposium on Discrete Algorithms (SODA), 620-629, 2005.

[18] F. Gul, E. Stacchetti, Walrasian Equilibrium with Gross Substitutes, Journal of Economic
Theory, V.87, 95-124, 1999.

[19] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, F. McSherry, On
Profit-Maximizing Envy-Free Pricing, Proceedings of the Symposium on Discrete Algorithms
(SODA), 1164-1173, 2005.

18

[20] D. S. Hochbaum (editor), Approximation Algorithms for NP-Hard Problems, PWS Publishing
Company, 1997.

[21] S. L. Huang, M. Li, B. Zhang, Approximation of Walrasian Equilibrium in Single-Minded
Auctions, Theoretical Computer Science, V.337(1-3), 390-398, 2005.

[22] K. Jain, A Polynomial Time Algorithm for Computing the Arrow-Debreu Market Equilib-
rium for Linear Utilities, Proceedings of the Symposium on Foundations of Computer Science
(FOCS), 286-294, 2004.

[23] A. S. Kelso, V. P. Crawford, Job Matching, Coalition Formation, and Gross Substitutes, Econo-
metrica, V.50, 1483-1504, 1982.

[24] D. Lehmann, L. I. O’Callaghan, Y. Shoham, Truth Revelation in Approximately Efficient
Combinatorial Auctions, ACM Conference on E-Commerce 1999, 96-102. Full version appeared
in JACM , V.49(5), 577-602, 2002.

[25] H. B. Leonard, Elicitation of Honest Preferences for the Assignment of Individual to Positions,
Journal of Political Economy, V.91(3), 461-479, 1983.

[26] A. Mas-Collel, W. Whinston, J. Green, Microeconomic Theory, Oxford University Press, 1995.

[27] A. Mu’alem, N. Nisan, Truthful Approximation Mechanisms for Restricted Combinatorial Auc-
tions, Proceedings of the National Conference on Artificial Intelligence (AAAI), 379-384, 2002.

[28] C. H. Papadimitriou, T. Roughgarden, Computing Equilibria in Multi-Player Games, Proceed-
ings of the Symposium on Discrete Algorithms (SODA), 82-91, 2005.

[29] C. H. Papadimitriou, Computing Correlated Equilibria in Multi-Player Games, Proceedings of
the Symposium on the Theory of Computing (STOC), 49-56, 2005.

[30] R. E. Tarjan, Decomposition by clique separators, Discrete Mathematics, V.55, 221-231, 1985.

[31] S. de Vries, R. Vohra, Combinatorial Auctions: A Survey, INFORMS Journal on Computing,
V.15(3), 284-309, 2003.

[32] L. Walras, Elements d’economie politique pure; ou, Theorie de la richesse sociale, (Elements
of Pure Economics, or the Theory of Social Wealth), Lausanne, Paris, 1874. (Translated by
William Jaffé, Irwin, 1954).

A Missing Details in Section 2

Theorem A.1 ([18]) If (X, p) is a Walrasian equilibrium and Y is another optimal allocation,
then (Y, p) is also a Walrasian equilibrium.

19

Proof. As (X, p) is a Walrasian equilibrium, p(X0) = 0 (where X0 = Ω\(⋃i: xi=1 di

)
) and ui(X, p) ≥

ui(Y, p) for any buyer i. Since Y is an optimal allocation, we have

n∑

i=1

ci · yi − p(Ω) ≥
n∑

i=1

ci · xi − p(Ω)

=
∑

i : xi=1

(ci − p(di)) +
∑

i : xi=0

(0− p(X0))

=
n∑

i=1

ui(X, p)

≥
n∑

i=1

ui(Y, p)

=
∑

i : yi=1

(ci − p(di)) +
∑

i : yi=0

0

=
n∑

i=1

ci · yi − p(Ω) + p(Y0)

where Y0 = Ω \
(⋃

i: yi=1 di

)
. This implies that p(Y0) = 0 and both inequalities are actually

equalities. Thus, ui(Y, p) = ui(X, p). In particular, this implies that (Y, p) defines a Walrasian
equilibrium. ¤

B Expressions for A(·, ·)
B.1 The Binary Tree Case

For any, u ∈ V , we have the following cases:

• Case 1: u is a leaf of T .

A(u, 0) = ∅
For any d ∈ D(u),

A(u, d) = ∅

• Case 2: u has one child v.

A(u, 0) = (v, d∗(v))

For any d ∈ D(u),

A(u, d) =
{ {(v, d)}, if d ∈ D(v)

A(u, 0), otherwise

• Case 3: u has two children v and w.

Let
d∗(v, w) = arg max

d∈D ∧ α(u,d)=1
(C(v, d) + C(w, d) + c(d)).

20

Then

A(u, 0) =

{(v, d∗(v)), (w, d∗(w))}, if C(v, d∗(v)) + C(w, d∗(w)) ≥

C(v, d∗(v, w)) + C(w, d∗(v, w)) + c(d∗(v, w))
{(v, d∗(v, w)), (w, d∗(v, w))}, otherwise

For any d ∈ D(u),

A(u, d) =

{(v, d), (w, d∗(w))}, if d ∈ D(v)
{(v, d∗(v)), (w, d)}, if d ∈ D(w)
A(u, 0), otherwise

B.2 The General Tree Case

We record the choices in A(u, 0) as follows: If (vi, v
′
i) ∈M(GZ), add (vi, d

∗(vi)) to A(u, 0); otherwise
if (vi, vj) ∈M(GZ), then add (vi, d

∗(vi, vj)) and (vj , d
∗(vi, vj)) to A(u, 0), where

d∗(vi, vj) = arg max
α(u,d)=1 ∧ d∈D(vi)∩D(vj)

(C(vi, d) + C(vj , d) + c(d)).

If d ∈ D(vi), for 1 ≤ i ≤ t, then add (vi, d) to A(u, d) and entries corresponding to M(GZ−{vi})
to A(u, d) as one did for the case of A(u, 0). If d 6∈ ∪t

i=1D(vi), A(u, d) = A(u, 0).

21

