Coalitional Games on Graphs: Core Structure, Susbtitutes and Frugality

Rahul Garg¹, Vijay Kumar², Atri Rudra³ Akshat Verma¹

1: IBM India Research Lab, 2 Amazon.com 3: UT Austin,

The Model

- Every edge in graph G owned by a (selfish) agent.
- Auctioneer wants a structure.
 - ♦ Shortest Path.
 - ♦ Minimum Spanning Tree.
- Auctioneer has budget U.
- Each agent i has (private) cost C_i .
- Each agent *i* gets payment P_i \diamond Max payoff: $P_i - C_i$.
- Minimization Games.

VCG Payoffs

•
$$\pi_i^V = \operatorname{cost}(\operatorname{Opt}(G - \{i\})) - \operatorname{cost}(\operatorname{Opt}(G)).$$

 $\land \pi^V$ is the VCG payoff vector.

For edge *i* the label is $C_i[\pi_i^V]$.

Frugality

• Introduced by Archer and Tardos.

•
$$\sum_{i=1}^{3} \pi_i^V = 9(d-c).$$

- In general, VCG payoff can be k-times the difference in the second shorest and shortest path costs.
 - \diamond Shortest path has k edges.
- No bad example for MST.

Agents are Substitutes

•
$$\sum_{i \in K} \pi_i^V \leq \operatorname{cost}(\operatorname{Opt}(G - K)) - \operatorname{cost}(\operatorname{Opt}(G)).$$

 \diamond Holds for any subset of agents K.

• Not true for Shortest Path.

$$\diamond \ \sum_{i=1}^{3} \pi^{V} i = 9(d-c).$$

$$\diamond \text{ RHS} = 3(d-c).$$

• True for MST.

♦ Bikhchandani et. al.

The Core

• Set of "Stable" payoffs to agents.

- First payoff not stable.
 - ♦ Red+Blue edges in second case form a new coalition.
 - ♦ Auctioneer gets a "better" deal in the second case.

Equivalent notions:

- Frugality.
- Agents are Substitutes (AS).
- Core being a lattice (wrt agents).

More on the Results

- AS \Leftrightarrow Frugality.
 - ♦ A Formal definition for Frugality.
 - Proof follows from the definition.
 - \diamond Talwar has an alternate formulation.
- AS \Leftrightarrow Core is a lattice.
 - ♦ AS and $\pi^1, \pi^2 \in CORE$ $\Rightarrow \max(\pi^1, \pi^2), \min(\pi^1, \pi^2) \in CORE.$
 - Bikhchandani and Ostroy.
 - $\begin{array}{l} \diamond \ (\pi^1, \pi^2 \in CORE \Rightarrow \max(\pi^1, \pi^2), \min(\pi^1, \pi^2) \in CORE) \Rightarrow \\ \textbf{AS.} \end{array}$
 - $\begin{array}{l} \diamondsuit \quad (CORE, \preceq) \text{ is a lattice} \Leftrightarrow (\pi^1, \pi^2 \in CORE \\ \Rightarrow \max(\pi^1, \pi^2), \min(\pi^1, \pi^2) \in CORE). \end{array}$

Current and Future Work

- UTCS Tech Report TR-02-60
 - http://www.cs.utexas.edu/users/atri/papers/core.ps
- Design of auctions where core is a lattice.
 - \diamond Truthfulness.
 - ♦ Other useful properties.