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How I got into LLMs

• Background in TCS: Approximation  and Online Algorithms

• Inspired by GPT3/Protein folding papers around 2019/20

• Lead Differentially Private Training of LLMs at MS/MSR
  -Our DP trained LMs power many critical applications such 
as Outlook, Word, Onenote, etc, and are largest deployed transformer 
models in terms of volume in MS (as of 2023☺).

• Current Projects in the Algorithms Group: Post-transformers/ long 
sequence modelling, improving reasoning/planning



Goals of the workshop

• Start a conversation in our community. Invite beginning graduate 
students to explore the workings of LLMs/DNNs, and the evolution of 
intelligence/cognition

        - spend 20-30% of time thinking/reading

• Timely: Many things are standardized. Model architecture, training 
recipes, optimization algorithms, etc., have withstood test of time. 
Perfect time to investigate theoretically/algorithmically

• Industry has taken care of problems that can be solved by data and 
scale: rest of us can focus on truly new ideas. There are plenty.



Quantization of GPT3/4 via Discrepancy

• Quantization problem:  Given  32-bit floats corresponding to a GPT 
model , “round” it to 4-bit values keeping the performance.

• At MSR, we designed an algorithm inspired by online/streaming 
discrepancy minimization problem

• More about Quantization: See GPTQ paper 
(https://arxiv.org/abs/2210.17323)

• More about online discrepancy minimization: see our talk on Friday
(https://arxiv.org/abs/2308.01406)
• Open Problem:  Design a streaming/online algorithm for finding a basic 

feasible solution x*of an LP that has smallest \ell_2 distance to a given 
feasible solution y (that is good on GPUs)



Other talks on LLMs at STOC

• Keynote by Jakub 

• Paper on hallucinations by Kalai and Vempala



Brief history of LLM revolution
                  introduce key ideas/concepts needed to follow remaining topics



Agenda

• Going from supervised learning to unsupervised or self-supervised learning and in-context learning

GPT2 and 3 papers,   CLIP/unCLIP papers (Text and Image co-representation),  Diffusion Models

• Standardization of the training and model architectures

Attention is all you need paper

• Scaling

Scaling laws for neural language models, Chinchilla papers



Disclaimer

I will not be exhaustive in my citations of the works. 
Please see the cited papers to for more comprehensive/chronological
evolution of ideas.

Biased view: How I, as a TCS person, sees the LLM revolution.



All Build on Deep Learning Revolution

• Deepnets are better at learning feature representation

• No need for hand-tuned features (SVMs)

• DNNs need lots of data and compute



Basics of Deep 
Learning
• Handwritten recognition: 
hello world of DL

• Dataset: MNIST

• Goal: Recognise which 
number is in the picture?

Input:  28 * 28 matrix or a vector representing a number; 
each value represents greyscale value of the pixel.

Output: predict which of the following 10 digits it represents



Deep Learning Way
Input: 784-dimensional vector x. 

f _1 (W_1 * x  + bias_1)

W_1 * x  + bias_1

W_2 * x_1  + bias_2

f _2 (W_2 * x_1  + bias_2)

x_1

x_2

x_2 is a probability distribution over 10 digits

W_1 and W_2 are matrices of appropriate dimensions

Bias vectors are also of right dimensions

f_1 and f_2 are non-linear functions applied element wise

                       * ReLU (a):   max  (0, a)
    * softmax function:
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28*28 pixel values
represented as a vector

784 neurons

Input

1

2

3

7

8

9

Neurons:  vertices of the network
Parameters/weights: Edges of the network
 

Neural Networks

Input layer
Output layer

Hidden layers

W_1 W_2 W_3

Fully connected feed forward networks (some times called MLPs)



What is each neuron doing?

Input is 8:
28*28 pixel values
represented as a vector

w_i1

w_i2

w_i784

(w_i1 * x_1 + w_i2 * x_2 …+ w_in * x_n  – bias_i)ReLU

Activations: the output after applying activation functions

Neurons are tiny computational units



Deep Learning = Sequence of matmuls!
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f _1 (W_1 * x  + bias_1)

W_1 * x  + bias_1

W_2 * x_1  + bias_2

f _2 (W_2 * x_1  + bias_2)

x_1

x_2

x_2 is a probability distribution over 10 digits

W_1 and W_2 are matrices of appropriate dimensions

Bias vectors are also of right dimensions
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softmax function 



What is learning?

Input: 784-dimensional vector x. 

f _1 (W_1 * x  + bias_1)

W_1 * x  + bias_1

W_2 * x_1  + bias_2

f _2 (W_2 * x_1  + bias_2)

x_1

x_2

x_2 is a probability distribution over 10 digits

softmax function 

Find good weight matrices W_1, W_2 and bias
vectors



Learn from (labelled & lots) data

1. Find  a large set of labelled data

The MNIST database contains 60,000 training images and 10,000 testing images

2.  Associate a loss function

If the output predicted by the algorithm is correct, the loss should be small. Otherwise, it should
be high.

 - Squared loss function
 - Cross entropy loss function

3. Optimize the loss function via gradient descent type algorithms: SGD, Adam.

-log (prob(true label)



Notes on Loss Function

Maximizing the likelihood function

=

Maximizing the log likelihood function

= 

Minimizing the – negative log likelihood function

• Our data is independent samples from an unknown distribution
• We treat neural network as a representation of this unknown distribution
• But neural network is a function of its parameters
• So, find the parameters that bring our neural network distribution closer to the true
      unknown distribution given through samples

Cross Entropy Loss=
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Training Deep Models via SGD/Adam
Randomly permute  data

(mini)batches

Compute     
gradients

Calculate the
Average of 
gradients

Take a descent step/
update model weights

1

2
3 4

5 LEARN

(use backpropagation algorithm to update)



Neural Networks Really work! “AlexNet Moment”



14 million samples
annotated by hand



Prior to LLM revolution (< 2014)

• Supervised learning
            - create labelled dataset
            - Imagenet creator Fei Fei Li is celebrated for this  

• Train a task-specific DNN 
 - identify images, translation, sentiment analysis, so on. 

• Lots of design parameters: Model architecture,
       data augmentation tricks, learning algorithms etc

Already spectacular success



Bert, GPT2/GPT3  Papers Changed Something Fundamental



➢ No more task specific training.

➢ We train a single model that will be used to solve 
any language task.

➢ Accomplished via “in-context learning”

        -- Give some examples of tasks you want to solve,
             and then ask your question to the model.

                        
             

GPT2 and 3 papers changed that paradigm (forever)…



Incontext learning,  fewshot/zeroshot learning



Incontext learning,  fewshot/zeroshot learning



Incontext learning,  fewshot/zeroshot learning



GPT2 and 3 papers changed that paradigm (forever)…

Common sense reasoning 

Question answering 

Reading compression

Summarization tasks

Simple math and arithmetic

Essay writing

Translation



HellaSwag dataset Winogrande dataset



How did GPT3 achieve task-agnostic model training and in-context learning?



Three Breakthrough Ideas

Unsupervised or self-supervised 
Learning

Transformer Architecture Scale



Three Breakthrough Ideas
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Learning

Transformer Architecture Scale



Treat Internet as source of unlabelled data

And create  an algorithmic process that is 
rich in learning various skills 



Pretraining on Internet 

Train a transformer model to predict next word on every sentence found on the Internet

A black hole is a region of  ------

general relativity that would ----



What is Input and Output?

A black hole is a region of

Input

Need to a predict distribution
over all the words in the dictionary

(converted into a vector
in high dimension)

Similar to handwritten recognition task we saw earlier
We usually train them so that loss goes to zero on the training data

model

Output



Pretraining on Internet: Keys to Success 

Train a transformer model to predict next word on every sentence found on the Internet

universal DNN model 

unsupervised

no need to create
Labelled datasets.

Unlimited dataset
Remember: DNNs needs lots of 
data and compute!

1

2

3

4 rich representation of languages
and reasoning



Why next word prediction has rich structure?

Suppose GPT3 is going over the paper by Thomas

and it encounters this

The model needs to predict that the missing word is  “contradiction”



How do we use such a network (Inference)?

Predict the next wordA sequence of words

I love playing → tennis
 
I love playing tennis → Roger

I love playing tennis. Roger → is

I love playing tennis. Roger  is → my

Autoregressive
=
The model consumes
previously generated output

Let’s say I want the model
to complete a sentence:
I love playing.

Use the model Iteratively!!
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“Prompt” the model (in-context learning)
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Can we do this for images?



https://cdn.openai.com/papers/Gener
ative_Pretraining_from_Pixels_V2.pdf

Natural Idea: Predict the next pixel.

Almost works as seen from Image GPT paper.  Expensive.



How would you use this network to do digit 
recognition? Finetuning

Learn a linear layer using
few samples

Softmax to get a 
distribution over
the output space

Finetuning: a general concept where you take a pretrained model and train further on the downstream
task of interest. Cheaper than pretraining, and helps to improve performance over incontext learning
sometimes.



https://cdn.openai.com/papers/Gener
ative_Pretraining_from_Pixels_V2.pdf

Natural Idea: Predict the next pixel.

Almost works as seen from Image GPT paper.  Expensive.



Diffusion Models (Ho et al)

(slides from Prof. Song Han from MIT)









- No need for supervision 

- No need for labels

- Rich and unlimited datasets on Internet

- Use DNNs to learn!

What are general principles?

Diffusion process



DINO Process

Idea: give different views of the a single picture
and try to learn to reconstruct the full picture.



Can we pretrain a model that can recognize objects/describe images in natural
language without explicitly training on it?

And reverse it? That is, given text description generate an image?



CLIP Paper (Learning Transferable Visual Models From Natural Language Supervision, Radford et al )

Search all images on the Internet and captions of those images.
Learn a model that maps images and the text surrounding it to same space!

Image Embedding

Text  Embedding

Image Embedding

Text  Embedding

Should be close!

Should be close!

Intuition: Concepts in images and the text should be the same!



“Halle Berry" neuron
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CLIP Paper 
(Learning Transferable Visual Models From Natural Language Supervision )



Checks All Pretraining Hits

1) Unsupervised: No need to annotate the images!

2) Unlimited Supply of Examples: crawl the web!

3) Rich enough representation!

4) DNNs/Transformers



CLIP achieves SoTA with Zero-Shot! 

• Gets nearly 80% accuracy on Imagenet with zero-shot!!!

• That is no training on Imagenet!



Similar concepts in 
different modalities 
are  represented by 
similar vectors

a shiba inu wearing a 
beret and black 
turtleneck

CLIP paper

Unclip (DALL-E) paper



Diffusion models, next word prediction, DINO all 
have the same principle: unsupervised learning

Take a piece of data Corrupt it in a controlled way Reconstruct it via a transformer



Difference between GPT3 and GPT4?



Difference between GPT3 and GPT4?

GPT4 does another round of training specifically 
teaching how to follow instructions
or interact with the users.

This phase is called Alignment, RLHF finetuning, 
etc.

The model’s knowledge is fixed during the 
pretraining, but this phase teaches human 
preferences.



Open Problems

• Diffusion process is very successful for images and nextword prediction for language.
      Is there a unifying process?

• What other new unsupervised learning tasks we can create?

• LLMs are not good in reasoning, planning, etc.  What new unsupervised learning processes
      that can unlock these?

• Math:  We do next word prediction for math; are there better processes?
      (to me, math is a different modality compared to text)

• Ilya Sutskever   “An Observation on Generalization”
 - any abstraction is a form of compression; can we formalize it?
https://www.youtube.com/watch?v=AKMuA_TVz3A&list=PLgKuh-lKre12qVTl88k2n2N37tT-BpmHT&index=4



Three Breakthrough Ideas

Unsupervised or self-supervised 
Learning

Transformer Architecture Scale



Scaling -> improves next word prediction accuracy -> better in-context learning

From GPT3 paper

(one of the time tested principles)



Training neural networks is (very) expensive

So, how should we select how large is the model, how much data I should use, and how long I should train?





Hypothesis (verified time and again by several models)

Pretraining loss for next word prediction is a good indicator of model performance in the wild.



Scaling Laws Problem



Kaplan et al



Chinchilla paper



Open Problems

Theoretical understanding of scaling laws and their implications.

A Theory for Emergence of Complex Skills in Language Models

Sanjeev Arora, Anirudh Goyal

https://arxiv.org/search/cs?searchtype=author&query=Arora,+S
https://arxiv.org/search/cs?searchtype=author&query=Goyal,+A


Other forms of scaling laws:

Hyperparameters scaling, initializations, etc,



Information storage capacity of transformers:
    2-bits per parameter
              (https://arxiv.org/abs/2404.05405)

  Physics of LLMs:  Allen Zhu and Li.



Three Breakthrough Ideas

Unsupervised or self-supervised 
Learning

Transformer Architecture Scale



Transformer

 Attention is All You Need
 https://arxiv.org/abs/1706.03762



Transformer

 Attention is All You Need
 https://arxiv.org/abs/1706.03762



Decoder only Transformer (All GPTs, LLaMAs, Geminis, all good models)



What is Input and Output?

A black hole is a region of

Input

Need to a predict distribution
over all the words in the dictionary

(converted into a vector
in high dimension)

model

Output

spacetime



Embedding Layers:  Convert sequence of words into a matrix, where 
each word (or token) is represented as a vector

Input sequence of tokens = input matrix

• Input Embedding Layer: Just a linear layer (matrix 
multiplication) to learn better representation of 
words/tokens.

• The embeddings of tokens should better represent 
relationships among tokens or words.

• Ex: queen and king should have closer representation
Similarly, (queen – king) should nearly same (woman – man)

Input matrix * W_{embedding} matrix

Each token in the input sequence has a new representation in 
a smaller dimension



Positional Embedding

Input sequence of tokens = input matrix

Input matrix * W_{embedding} matrix = idx

For every token, we add a positional encoding of 
that token. Intuition is that in any sentence, 
position of the words matter, so that information 
needs to encoded in the input.



Example of positional encoding



Embedding Layers  = a good representation of words +  their positions

Input sequence of words / tokens = input matrix

Input matrix * W_{embedding} matrix = x

For every token, we add a positional encoding of 
that token. That, at this point, each token is sum 
of two vectors: learnt embedding of the token + 
its position in the sequence.  This completes the 
representation of the input.

x+ positional encoding matrix (not learnt)

X is matrix of size T * C, where T is the number of tokens in 
the sequence and C is the dimension of each vector 
representing each token.



What is Input and Output?

A black hole is a region of

Input

Need to a predict distribution
over all the words in the dictionary

model

Output

spacetime
A
Black
Hole
is
a 
Region
of

T  x  C matrix



Attention Function

The most important concept or layer in Transformers.
Let us first simplify and understand single attention head.
Also, for a moment ignore masked part. We will come to it naturally.



Attention Function X is matrix of size T * C, where T is the number of words in the 
sequence and C is the dimension of each vector 
representing each word/token.

A    black     hole     is    a     region   of      spacetime

Lets fix a single word and see what attention function does to that word.
Here “of” is our word. Just remember that every word has a C length vector now

Our running example sentence:

•  To predict the word spacetime successfully, we should aggregate
all the information until that point that may maximize our chance.

• What are reasonable ways of information aggregation?



Attention Function

A    black     hole     is    a     region   of      spacetime

A    black     hole     is    a     region   of      

V1   V2         V3      V4   V5     V6     V7

V1   V2         V3      V4   V5     V6     V7



Attention Function

A    black     hole     is    a     region   of spacetime

A    black     hole     is    a     region   of      

p1    p2   p3   p4   p5   p6    p7

V1   V2         V3      V4   V5     V6     V7

Updated V7 = \sum_{i} p_i * V_i

V1   V2         V3      V4   V5     V6     V7

1. Compute dot 
product with all 
tokens before it

2. Convert these 
values to a 
probability 
distribution using 
softmax function

3. Update the 
representation of 
the word using 
convex 
combination of 
other tokens



Causal language modeling or  autoregressive language modeling  = 
   A word can only look at previous tokens

A    black     hole     is    a             region   of      

A    black     hole     is    a            region        



Attention Function • X is matrix of size T * C, where T is the number of tokens in 
the sequence and C is the dimension of each vector 
representing each token.

• Every token is trying to predict the next token in the 
sequence => can only use information from previous 
tokens (masked language modelling)

A    black     hole     is    a     region   of    Spacetime.     

A    black     hole     is    a     region   of      

V1   V2         V3      V4   V5     V6     V7

Updated Vj = \sum^j-1_{i} p_i * V_i

V1   V2         V3      V4   V5     V6     V7

SELF ATTENTION

O(n^2) time!



Scaled Dot-Product Attention
Q, K and V are all the same matrices 
representing input sequence of vectors

After the application of first layer of self-
attention, every token representation gets 
updated: It is a convex combination of 
softmax applied to dot product of the all 
previous tokens.

Note that in self-attention every token 
attends to previous tokens, not to forward 
ones. It makes sense; we are predicting the 
next word!!!!

This is all good: But what are we 
learning?
There are no learning parameters in this 
attention computation!!!!



Actual Self-Attention
X is matrix of size T * C, where T is the number of tokens in 
the sequence and C is the dimension of each vector 
representing each token.

Key = x * W_key    
Query = x * W_query
Value = x * W_value

1. First, we do a linear transformation of x (multiply 
by matrices)

2. Then, we compute the self-attention:

Attention (Query, Key, Value) =  softmax (Query * Key^trans/ \sqrt d_k) * 
Value



Actual Self-Attention
X is matrix of size T * C, where T is the number of tokens in 
the sequence and C is the dimension of each vector 
representing each token.

Key = x * W_key    
Query = x * W_query
Value = x * W_value

1. First, we do a linear transformation of x (multiply 
by matrices)

2. Then, we compute the self-attention:

Attention (Query, Key, Value) =  softmax (Query * Key^trans/ \sqrt d_k) * 
Value

These are learnable
parameters of attention
function



Attention Function

A    black     hole     is    a     region   of   spacetime

A    black     hole     is    a     region   of      

1. Compute dot 
product with all 
tokens before it

2. Convert these 
values to a 
probability 
distribution using 
softmax function

3. Update the 
representation of 
the word using 
convex 
combination of 
other tokens

p1    p2   p3   p4   p5   p6    p7

V1   V2         V3      V4   V5     V6     V7

Updated V7 = \sum_{i} p_i  * V_i

V1   V2         V3      V4   V5     V6     V7 W_query

W_value

W_key



Actual Self-Attention B,T,C = 1,8,32 # batch, time, channels
x = torch.randn(B,T,C)

# let's see a single Head perform self-attention
head_size = 16
key = nn.Linear(C, head_size, bias=False)
query = nn.Linear(C, head_size, bias=False)
value = nn.Linear(C, head_size, bias=False)
k = key(x)  # (B, T, 16)
q = query(x) # (B, T, 16)
wei = q @ k.transpose(-2, -1) # (B, T, 16) @ 
(B, 16, T) ---> (B, T, T)

tril = torch.tril(torch.ones(T, T))
wei = wei.masked_fill(tril == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)

v = value(x)
out = wei @ v

(Andrej Karpathy)
https://www.youtube.com/watch?v=VMj-3S1tku0&list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ



Masked Multihead Attention



Feed Forward Layer (the same network we saw in digit recognition task)



Repeat A Transformer Block Few Times

A single transformer Block:
                Self-Attention Layer
                Normalization Layer
                Feed Forward Layer



Final Layer

What should this linear layer  + softmax do?



Final Layer

What should this linear layer  + softmax do?

It should take the vector representing a token, and output a 
probability distribution over the set of all possible tokens!

To do that: we learn another linear layer (matrix) and then 
apply softmax!

We get a distribution over the all tokens in our dictionary.

This happens for  every token in the sequence.

Done.



DNNs = Matrix Multiplications => GPUs…

Every layer of a transformer (or any DNN) for that matter is 

 - simply matrix-matrix multiplication;  it is matrix-matrix not matrix-vector
                       because we are processing multiple examples at the same time.
                    - you can also take multiple sentences simultaneously, and try to predict next 
                       token in each of them; then your input will be a tensor, first index representing
                       the sentence; tensor multiplication is similar to matrix multiplication,but
                       libraries parallelize them on GPUs on the first dimension.
                    - only other operation we do is softmax and 
                       some RELU type non-linear operations.
                    - That’s pretty much it! DNNs are surprisingly simple objects!
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Intuition  of transformers

Attention Layers:

              Transforming the data to get a rich representation

Feed Forward Layers:

              Computing some function over the data



Intuition 2: Attention Layers:

"Pairwise interactions"

V1   V2         V3      V4   V5     V6     V7

V1   V2         V3      V4   V5     V6     V7



But note that attention blocks are repeated!

Which means that in every i+1  attention layer,  each 
token representations get richer, and can capture 
arbitrary subset of interactions!

Repetition of attention blocks allows information "mixing"



Intuition 3: Why multiple heads?

For same query, different tokens can become keys 
in different ways. So, you want to allow for such 
situations.

Multi-head Attention allows each token to capture 
different relationships among tokens

“Multi-head attention allows the model to jointly attend to 
information from different representation subspaces at 
different positions. With a single attention head, averaging 
inhibits this.”  - from the paper

Allow the model to capture different kinds of similarities



From the paper



Three Breakthrough Ideas

Unsupervised or self-supervised 
Learning

Transformer Architecture Scale

See Andrej Karpathy’s lecture videos
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