
Three Key Ideas in the LLM
Revolution

Janardhan Kulkarni,
The Algorithms Group,

MSR, Redmond.

Remembering Luca

How I got into LLMs

• Background in TCS: Approximation and Online Algorithms

• Inspired by GPT3/Protein folding papers around 2019/20

• Lead Differentially Private Training of LLMs at MS/MSR
 -Our DP trained LMs power many critical applications such
as Outlook, Word, Onenote, etc, and are largest deployed transformer
models in terms of volume in MS (as of 2023☺).

• Current Projects in the Algorithms Group: Post-transformers/ long
sequence modelling, improving reasoning/planning

Goals of the workshop

• Start a conversation in our community. Invite beginning graduate
students to explore the workings of LLMs/DNNs, and the evolution of
intelligence/cognition

 - spend 20-30% of time thinking/reading

• Timely: Many things are standardized. Model architecture, training
recipes, optimization algorithms, etc., have withstood test of time.
Perfect time to investigate theoretically/algorithmically

• Industry has taken care of problems that can be solved by data and
scale: rest of us can focus on truly new ideas. There are plenty.

Quantization of GPT3/4 via Discrepancy

• Quantization problem: Given 32-bit floats corresponding to a GPT
model , “round” it to 4-bit values keeping the performance.

• At MSR, we designed an algorithm inspired by online/streaming
discrepancy minimization problem

• More about Quantization: See GPTQ paper
(https://arxiv.org/abs/2210.17323)

• More about online discrepancy minimization: see our talk on Friday
(https://arxiv.org/abs/2308.01406)
• Open Problem: Design a streaming/online algorithm for finding a basic

feasible solution x*of an LP that has smallest \ell_2 distance to a given
feasible solution y (that is good on GPUs)

Other talks on LLMs at STOC

• Keynote by Jakub

• Paper on hallucinations by Kalai and Vempala

Brief history of LLM revolution
 introduce key ideas/concepts needed to follow remaining topics

Agenda

• Going from supervised learning to unsupervised or self-supervised learning and in-context learning

GPT2 and 3 papers, CLIP/unCLIP papers (Text and Image co-representation), Diffusion Models

• Standardization of the training and model architectures

Attention is all you need paper

• Scaling

Scaling laws for neural language models, Chinchilla papers

Disclaimer

I will not be exhaustive in my citations of the works.
Please see the cited papers to for more comprehensive/chronological
evolution of ideas.

Biased view: How I, as a TCS person, sees the LLM revolution.

All Build on Deep Learning Revolution

• Deepnets are better at learning feature representation

• No need for hand-tuned features (SVMs)

• DNNs need lots of data and compute

Basics of Deep
Learning
• Handwritten recognition:
hello world of DL

• Dataset: MNIST

• Goal: Recognise which
number is in the picture?

Input: 28 * 28 matrix or a vector representing a number;
each value represents greyscale value of the pixel.

Output: predict which of the following 10 digits it represents

Deep Learning Way
Input: 784-dimensional vector x.

f _1 (W_1 * x + bias_1)

W_1 * x + bias_1

W_2 * x_1 + bias_2

f _2 (W_2 * x_1 + bias_2)

x_1

x_2

x_2 is a probability distribution over 10 digits

W_1 and W_2 are matrices of appropriate dimensions

Bias vectors are also of right dimensions

f_1 and f_2 are non-linear functions applied element wise

 * ReLU (a): max (0, a)
 * softmax function:

Deep Learning Way
Input: 784-dimensional vector x.

f _1 (W_1 * x + bias_1)

W_1 * x + bias_1

W_2 * x_1 + bias_2

f _2 (W_2 * x_1 + bias_2)

x_1

x_2

x_2 is a probability distribution over 10 digits

W_1 and W_2 are matrices of appropriate dimensions

Bias vectors are also of right dimensions

f_1 and f_2 are non-linear functions applied element wise

 * ReLU (a): max (0, a)
 * softmax function:

softmax function

28*28 pixel values
represented as a vector

784 neurons

Input

1

2

3

7

8

9

Neurons: vertices of the network
Parameters/weights: Edges of the network

Neural Networks

Input layer
Output layer

Hidden layers

W_1 W_2 W_3

Fully connected feed forward networks (some times called MLPs)

What is each neuron doing?

Input is 8:
28*28 pixel values
represented as a vector

w_i1

w_i2

w_i784

(w_i1 * x_1 + w_i2 * x_2 …+ w_in * x_n – bias_i)ReLU

Activations: the output after applying activation functions

Neurons are tiny computational units

Deep Learning = Sequence of matmuls!

Input: 784-dimensional vector x.

f _1 (W_1 * x + bias_1)

W_1 * x + bias_1

W_2 * x_1 + bias_2

f _2 (W_2 * x_1 + bias_2)

x_1

x_2

x_2 is a probability distribution over 10 digits

W_1 and W_2 are matrices of appropriate dimensions

Bias vectors are also of right dimensions

f_1 and f_2 are non-linear functions applied element wise

 * ReLU (a): max (0, a)
 * softmax function:

softmax function

What is learning?

Input: 784-dimensional vector x.

f _1 (W_1 * x + bias_1)

W_1 * x + bias_1

W_2 * x_1 + bias_2

f _2 (W_2 * x_1 + bias_2)

x_1

x_2

x_2 is a probability distribution over 10 digits

softmax function

Find good weight matrices W_1, W_2 and bias
vectors

Learn from (labelled & lots) data

1. Find a large set of labelled data

The MNIST database contains 60,000 training images and 10,000 testing images

2. Associate a loss function

If the output predicted by the algorithm is correct, the loss should be small. Otherwise, it should
be high.

 - Squared loss function
 - Cross entropy loss function

3. Optimize the loss function via gradient descent type algorithms: SGD, Adam.

-log (prob(true label)

Notes on Loss Function

Maximizing the likelihood function

=

Maximizing the log likelihood function

=

Minimizing the – negative log likelihood function

• Our data is independent samples from an unknown distribution
• We treat neural network as a representation of this unknown distribution
• But neural network is a function of its parameters
• So, find the parameters that bring our neural network distribution closer to the true
 unknown distribution given through samples

Cross Entropy Loss=

Notes on Loss Function

Maximizing the likelihood function

=

Maximizing the log likelihood function

=

Minimizing the – negative log likelihood function

• Our data is independent samples from an unknown distribution
• We treat neural network as a representation of this unknown distribution
• But neural network is a function of its parameters
• So, find the parameters that bring our neural network distribution closer to the true
 unknown distribution given through samples

Cross Entropy Loss=

Training Deep Models via SGD/Adam
Randomly permute data

(mini)batches

Compute
gradients

Calculate the
Average of
gradients

Take a descent step/
update model weights

1

2
3 4

5 LEARN

(use backpropagation algorithm to update)

Neural Networks Really work! “AlexNet Moment”

14 million samples
annotated by hand

Prior to LLM revolution (< 2014)

• Supervised learning
 - create labelled dataset
 - Imagenet creator Fei Fei Li is celebrated for this

• Train a task-specific DNN
 - identify images, translation, sentiment analysis, so on.

• Lots of design parameters: Model architecture,
 data augmentation tricks, learning algorithms etc

Already spectacular success

Bert, GPT2/GPT3 Papers Changed Something Fundamental

➢ No more task specific training.

➢ We train a single model that will be used to solve
any language task.

➢ Accomplished via “in-context learning”

 -- Give some examples of tasks you want to solve,
 and then ask your question to the model.

GPT2 and 3 papers changed that paradigm (forever)…

Incontext learning, fewshot/zeroshot learning

Incontext learning, fewshot/zeroshot learning

Incontext learning, fewshot/zeroshot learning

GPT2 and 3 papers changed that paradigm (forever)…

Common sense reasoning

Question answering

Reading compression

Summarization tasks

Simple math and arithmetic

Essay writing

Translation

HellaSwag dataset Winogrande dataset

How did GPT3 achieve task-agnostic model training and in-context learning?

Three Breakthrough Ideas

Unsupervised or self-supervised
Learning

Transformer Architecture Scale

Three Breakthrough Ideas

Unsupervised or self-supervised
Learning

Transformer Architecture Scale

Treat Internet as source of unlabelled data

And create an algorithmic process that is
rich in learning various skills

Pretraining on Internet

Train a transformer model to predict next word on every sentence found on the Internet

A black hole is a region of ------

general relativity that would ----

What is Input and Output?

A black hole is a region of

Input

Need to a predict distribution
over all the words in the dictionary

(converted into a vector
in high dimension)

Similar to handwritten recognition task we saw earlier
We usually train them so that loss goes to zero on the training data

model

Output

Pretraining on Internet: Keys to Success

Train a transformer model to predict next word on every sentence found on the Internet

universal DNN model

unsupervised

no need to create
Labelled datasets.

Unlimited dataset
Remember: DNNs needs lots of
data and compute!

1

2

3

4 rich representation of languages
and reasoning

Why next word prediction has rich structure?

Suppose GPT3 is going over the paper by Thomas

and it encounters this

The model needs to predict that the missing word is “contradiction”

How do we use such a network (Inference)?

Predict the next wordA sequence of words

I love playing → tennis

I love playing tennis → Roger

I love playing tennis. Roger → is

I love playing tennis. Roger is → my

Autoregressive
=
The model consumes
previously generated output

Let’s say I want the model
to complete a sentence:
I love playing.

Use the model Iteratively!!

How do we use such a network (Inference)?

Predict the next wordA sequence of words

I love playing → tennis

I love playing tennis → Roger

I love playing tennis. Roger → is

I love playing tennis. Roger is → my

Autoregressive
=
The model consumes
previously generated output

Let’s say I want the model
to complete a sentence:
I love playing.

Use the model Iteratively!!

“Prompt” the model (in-context learning)

Pretraining on Internet

Train a transformer model to predict next word on every sentence found on the Internet

universal DNN model

unsupervised

no need to create
Labelled datasets.

Unlimited dataset
Remember: DNNs needs lots of
data and compute!

1

2

3

4 rich representation of languages

Pretraining on Internet

Train a transformer model to predict next word on every sentence found on the Internet

universal DNN model

unsupervised

no need to create
Labelled datasets.

Unlimited dataset
Remember: DNNs needs lots of
data and compute!

1

2

3

4 rich representation of languages

Can we do this for images?

https://cdn.openai.com/papers/Gener
ative_Pretraining_from_Pixels_V2.pdf

Natural Idea: Predict the next pixel.

Almost works as seen from Image GPT paper. Expensive.

How would you use this network to do digit
recognition? Finetuning

Learn a linear layer using
few samples

Softmax to get a
distribution over
the output space

Finetuning: a general concept where you take a pretrained model and train further on the downstream
task of interest. Cheaper than pretraining, and helps to improve performance over incontext learning
sometimes.

https://cdn.openai.com/papers/Gener
ative_Pretraining_from_Pixels_V2.pdf

Natural Idea: Predict the next pixel.

Almost works as seen from Image GPT paper. Expensive.

Diffusion Models (Ho et al)

(slides from Prof. Song Han from MIT)

- No need for supervision

- No need for labels

- Rich and unlimited datasets on Internet

- Use DNNs to learn!

What are general principles?

Diffusion process

DINO Process

Idea: give different views of the a single picture
and try to learn to reconstruct the full picture.

Can we pretrain a model that can recognize objects/describe images in natural
language without explicitly training on it?

And reverse it? That is, given text description generate an image?

CLIP Paper (Learning Transferable Visual Models From Natural Language Supervision, Radford et al)

Search all images on the Internet and captions of those images.
Learn a model that maps images and the text surrounding it to same space!

Image Embedding

Text Embedding

Image Embedding

Text Embedding

Should be close!

Should be close!

Intuition: Concepts in images and the text should be the same!

“Halle Berry" neuron

CLIP Paper (Learning Transferable Visual Models From Natural Language Supervision)

Search all images on the Internet and captions of those images.
Learn a model that maps images and the text surrounding it to same space!

Image Embedding

Text Embedding

Image Embedding

Text Embedding

Should be close!

Should be close!

Intuition: Concepts in images and the text should be the same!

CLIP Paper
(Learning Transferable Visual Models From Natural Language Supervision)

Checks All Pretraining Hits

1) Unsupervised: No need to annotate the images!

2) Unlimited Supply of Examples: crawl the web!

3) Rich enough representation!

4) DNNs/Transformers

CLIP achieves SoTA with Zero-Shot!

• Gets nearly 80% accuracy on Imagenet with zero-shot!!!

• That is no training on Imagenet!

Similar concepts in
different modalities
are represented by
similar vectors

a shiba inu wearing a
beret and black
turtleneck

CLIP paper

Unclip (DALL-E) paper

Diffusion models, next word prediction, DINO all
have the same principle: unsupervised learning

Take a piece of data Corrupt it in a controlled way Reconstruct it via a transformer

Difference between GPT3 and GPT4?

Difference between GPT3 and GPT4?

GPT4 does another round of training specifically
teaching how to follow instructions
or interact with the users.

This phase is called Alignment, RLHF finetuning,
etc.

The model’s knowledge is fixed during the
pretraining, but this phase teaches human
preferences.

Open Problems

• Diffusion process is very successful for images and nextword prediction for language.
 Is there a unifying process?

• What other new unsupervised learning tasks we can create?

• LLMs are not good in reasoning, planning, etc. What new unsupervised learning processes
 that can unlock these?

• Math: We do next word prediction for math; are there better processes?
 (to me, math is a different modality compared to text)

• Ilya Sutskever “An Observation on Generalization”
 - any abstraction is a form of compression; can we formalize it?
https://www.youtube.com/watch?v=AKMuA_TVz3A&list=PLgKuh-lKre12qVTl88k2n2N37tT-BpmHT&index=4

Three Breakthrough Ideas

Unsupervised or self-supervised
Learning

Transformer Architecture Scale

Scaling -> improves next word prediction accuracy -> better in-context learning

From GPT3 paper

(one of the time tested principles)

Training neural networks is (very) expensive

So, how should we select how large is the model, how much data I should use, and how long I should train?

Hypothesis (verified time and again by several models)

Pretraining loss for next word prediction is a good indicator of model performance in the wild.

Scaling Laws Problem

Kaplan et al

Chinchilla paper

Open Problems

Theoretical understanding of scaling laws and their implications.

A Theory for Emergence of Complex Skills in Language Models

Sanjeev Arora, Anirudh Goyal

https://arxiv.org/search/cs?searchtype=author&query=Arora,+S
https://arxiv.org/search/cs?searchtype=author&query=Goyal,+A

Other forms of scaling laws:

Hyperparameters scaling, initializations, etc,

Information storage capacity of transformers:
 2-bits per parameter
 (https://arxiv.org/abs/2404.05405)

 Physics of LLMs: Allen Zhu and Li.

Three Breakthrough Ideas

Unsupervised or self-supervised
Learning

Transformer Architecture Scale

Transformer

 Attention is All You Need
 https://arxiv.org/abs/1706.03762

Transformer

 Attention is All You Need
 https://arxiv.org/abs/1706.03762

Decoder only Transformer (All GPTs, LLaMAs, Geminis, all good models)

What is Input and Output?

A black hole is a region of

Input

Need to a predict distribution
over all the words in the dictionary

(converted into a vector
in high dimension)

model

Output

spacetime

Embedding Layers: Convert sequence of words into a matrix, where
each word (or token) is represented as a vector

Input sequence of tokens = input matrix

• Input Embedding Layer: Just a linear layer (matrix
multiplication) to learn better representation of
words/tokens.

• The embeddings of tokens should better represent
relationships among tokens or words.

• Ex: queen and king should have closer representation
Similarly, (queen – king) should nearly same (woman – man)

Input matrix * W_{embedding} matrix

Each token in the input sequence has a new representation in
a smaller dimension

Positional Embedding

Input sequence of tokens = input matrix

Input matrix * W_{embedding} matrix = idx

For every token, we add a positional encoding of
that token. Intuition is that in any sentence,
position of the words matter, so that information
needs to encoded in the input.

Example of positional encoding

Embedding Layers = a good representation of words + their positions

Input sequence of words / tokens = input matrix

Input matrix * W_{embedding} matrix = x

For every token, we add a positional encoding of
that token. That, at this point, each token is sum
of two vectors: learnt embedding of the token +
its position in the sequence. This completes the
representation of the input.

x+ positional encoding matrix (not learnt)

X is matrix of size T * C, where T is the number of tokens in
the sequence and C is the dimension of each vector
representing each token.

What is Input and Output?

A black hole is a region of

Input

Need to a predict distribution
over all the words in the dictionary

model

Output

spacetime
A
Black
Hole
is
a
Region
of

T x C matrix

Attention Function

The most important concept or layer in Transformers.
Let us first simplify and understand single attention head.
Also, for a moment ignore masked part. We will come to it naturally.

Attention Function X is matrix of size T * C, where T is the number of words in the
sequence and C is the dimension of each vector
representing each word/token.

A black hole is a region of spacetime

Lets fix a single word and see what attention function does to that word.
Here “of” is our word. Just remember that every word has a C length vector now

Our running example sentence:

• To predict the word spacetime successfully, we should aggregate
all the information until that point that may maximize our chance.

• What are reasonable ways of information aggregation?

Attention Function

A black hole is a region of spacetime

A black hole is a region of

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

Attention Function

A black hole is a region of spacetime

A black hole is a region of

p1 p2 p3 p4 p5 p6 p7

V1 V2 V3 V4 V5 V6 V7

Updated V7 = \sum_{i} p_i * V_i

V1 V2 V3 V4 V5 V6 V7

1. Compute dot
product with all
tokens before it

2. Convert these
values to a
probability
distribution using
softmax function

3. Update the
representation of
the word using
convex
combination of
other tokens

Causal language modeling or autoregressive language modeling =
 A word can only look at previous tokens

A black hole is a region of

A black hole is a region

Attention Function • X is matrix of size T * C, where T is the number of tokens in
the sequence and C is the dimension of each vector
representing each token.

• Every token is trying to predict the next token in the
sequence => can only use information from previous
tokens (masked language modelling)

A black hole is a region of Spacetime.

A black hole is a region of

V1 V2 V3 V4 V5 V6 V7

Updated Vj = \sum^j-1_{i} p_i * V_i

V1 V2 V3 V4 V5 V6 V7

SELF ATTENTION

O(n^2) time!

Scaled Dot-Product Attention
Q, K and V are all the same matrices
representing input sequence of vectors

After the application of first layer of self-
attention, every token representation gets
updated: It is a convex combination of
softmax applied to dot product of the all
previous tokens.

Note that in self-attention every token
attends to previous tokens, not to forward
ones. It makes sense; we are predicting the
next word!!!!

This is all good: But what are we
learning?
There are no learning parameters in this
attention computation!!!!

Actual Self-Attention
X is matrix of size T * C, where T is the number of tokens in
the sequence and C is the dimension of each vector
representing each token.

Key = x * W_key
Query = x * W_query
Value = x * W_value

1. First, we do a linear transformation of x (multiply
by matrices)

2. Then, we compute the self-attention:

Attention (Query, Key, Value) = softmax (Query * Key^trans/ \sqrt d_k) *
Value

Actual Self-Attention
X is matrix of size T * C, where T is the number of tokens in
the sequence and C is the dimension of each vector
representing each token.

Key = x * W_key
Query = x * W_query
Value = x * W_value

1. First, we do a linear transformation of x (multiply
by matrices)

2. Then, we compute the self-attention:

Attention (Query, Key, Value) = softmax (Query * Key^trans/ \sqrt d_k) *
Value

These are learnable
parameters of attention
function

Attention Function

A black hole is a region of spacetime

A black hole is a region of

1. Compute dot
product with all
tokens before it

2. Convert these
values to a
probability
distribution using
softmax function

3. Update the
representation of
the word using
convex
combination of
other tokens

p1 p2 p3 p4 p5 p6 p7

V1 V2 V3 V4 V5 V6 V7

Updated V7 = \sum_{i} p_i * V_i

V1 V2 V3 V4 V5 V6 V7 W_query

W_value

W_key

Actual Self-Attention B,T,C = 1,8,32 # batch, time, channels
x = torch.randn(B,T,C)

let's see a single Head perform self-attention
head_size = 16
key = nn.Linear(C, head_size, bias=False)
query = nn.Linear(C, head_size, bias=False)
value = nn.Linear(C, head_size, bias=False)
k = key(x) # (B, T, 16)
q = query(x) # (B, T, 16)
wei = q @ k.transpose(-2, -1) # (B, T, 16) @
(B, 16, T) ---> (B, T, T)

tril = torch.tril(torch.ones(T, T))
wei = wei.masked_fill(tril == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)

v = value(x)
out = wei @ v

(Andrej Karpathy)
https://www.youtube.com/watch?v=VMj-3S1tku0&list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ

Masked Multihead Attention

Feed Forward Layer (the same network we saw in digit recognition task)

Repeat A Transformer Block Few Times

A single transformer Block:
 Self-Attention Layer
 Normalization Layer
 Feed Forward Layer

Final Layer

What should this linear layer + softmax do?

Final Layer

What should this linear layer + softmax do?

It should take the vector representing a token, and output a
probability distribution over the set of all possible tokens!

To do that: we learn another linear layer (matrix) and then
apply softmax!

We get a distribution over the all tokens in our dictionary.

This happens for every token in the sequence.

Done.

DNNs = Matrix Multiplications => GPUs…

Every layer of a transformer (or any DNN) for that matter is

 - simply matrix-matrix multiplication; it is matrix-matrix not matrix-vector
 because we are processing multiple examples at the same time.
 - you can also take multiple sentences simultaneously, and try to predict next
 token in each of them; then your input will be a tensor, first index representing
 the sentence; tensor multiplication is similar to matrix multiplication,but
 libraries parallelize them on GPUs on the first dimension.
 - only other operation we do is softmax and
 some RELU type non-linear operations.
 - That’s pretty much it! DNNs are surprisingly simple objects!

DNNs = Matrix Multiplications => GPUs…

Every layer of a transformer (or any DNN) for that matter is

 - simply matrix-matrix multiplication; it is matrix-matrix not matrix-vector
 because we are processing multiple examples at the same time.
 - you can also take multiple sentences simultaneously, and try to predict next
 token in each of them; then your input will be a tensor, first index representing
 the sentence; tensor multiplication is similar to matrix multiplication,but
 libraries parallelize them on GPUs on the first dimension.
 - only other operation we do is softmax and
 some RELU type non-linear operations.
 - That’s pretty much it! DNNs are surprisingly simple objects!

Intuition of transformers

Attention Layers:

 Transforming the data to get a rich representation

Feed Forward Layers:

 Computing some function over the data

Intuition 2: Attention Layers:

"Pairwise interactions"

V1 V2 V3 V4 V5 V6 V7

V1 V2 V3 V4 V5 V6 V7

But note that attention blocks are repeated!

Which means that in every i+1 attention layer, each
token representations get richer, and can capture
arbitrary subset of interactions!

Repetition of attention blocks allows information "mixing"

Intuition 3: Why multiple heads?

For same query, different tokens can become keys
in different ways. So, you want to allow for such
situations.

Multi-head Attention allows each token to capture
different relationships among tokens

“Multi-head attention allows the model to jointly attend to
information from different representation subspaces at
different positions. With a single attention head, averaging
inhibits this.” - from the paper

Allow the model to capture different kinds of similarities

From the paper

Three Breakthrough Ideas

Unsupervised or self-supervised
Learning

Transformer Architecture Scale

See Andrej Karpathy’s lecture videos

	Slide 1: Three Key Ideas in the LLM Revolution
	Slide 2
	Slide 3: How I got into LLMs
	Slide 4: Goals of the workshop
	Slide 5: Quantization of GPT3/4 via Discrepancy
	Slide 6: Other talks on LLMs at STOC
	Slide 7
	Slide 8: Agenda
	Slide 9: Disclaimer
	Slide 10: All Build on Deep Learning Revolution
	Slide 11: Basics of Deep Learning
	Slide 12: Deep Learning Way
	Slide 13: Deep Learning Way
	Slide 14
	Slide 15: What is each neuron doing?
	Slide 16: Deep Learning = Sequence of matmuls!
	Slide 17: What is learning?
	Slide 18: Learn from (labelled & lots) data
	Slide 19: Notes on Loss Function
	Slide 20: Notes on Loss Function
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Prior to LLM revolution (< 2014)
	Slide 25: Bert, GPT2/GPT3 Papers Changed Something Fundamental
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Treat Internet as source of unlabelled data
	Slide 36: Pretraining on Internet
	Slide 37: What is Input and Output?
	Slide 38: Pretraining on Internet: Keys to Success
	Slide 39: Why next word prediction has rich structure?
	Slide 40: How do we use such a network (Inference)?
	Slide 41: How do we use such a network (Inference)?
	Slide 42: “Prompt” the model (in-context learning)
	Slide 43: Pretraining on Internet
	Slide 44: Pretraining on Internet
	Slide 45: Can we do this for images?
	Slide 46
	Slide 47: How would you use this network to do digit recognition? Finetuning
	Slide 48
	Slide 49: Diffusion Models (Ho et al)
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: DINO Process
	Slide 55
	Slide 56: CLIP Paper (Learning Transferable Visual Models From Natural Language Supervision, Radford et al)
	Slide 57: “Halle Berry" neuron
	Slide 58: CLIP Paper (Learning Transferable Visual Models From Natural Language Supervision)
	Slide 59: CLIP Paper (Learning Transferable Visual Models From Natural Language Supervision)
	Slide 60: Checks All Pretraining Hits
	Slide 61: CLIP achieves SoTA with Zero-Shot!
	Slide 62: Similar concepts in different modalities are represented by similar vectors
	Slide 63: Diffusion models, next word prediction, DINO all have the same principle: unsupervised learning
	Slide 64: Difference between GPT3 and GPT4?
	Slide 65: Difference between GPT3 and GPT4?
	Slide 66: Open Problems
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77: Information storage capacity of transformers: 2-bits per parameter (https://arxiv.org/abs/2404.05405)
	Slide 78
	Slide 79: Transformer
	Slide 80: Transformer
	Slide 81: Decoder only Transformer (All GPTs, LLaMAs, Geminis, all good models)
	Slide 82: What is Input and Output?
	Slide 83: Embedding Layers: Convert sequence of words into a matrix, where each word (or token) is represented as a vector
	Slide 84: Positional Embedding
	Slide 85: Example of positional encoding
	Slide 86: Embedding Layers = a good representation of words + their positions
	Slide 87: What is Input and Output?
	Slide 88: Attention Function
	Slide 89: Attention Function
	Slide 90: Attention Function
	Slide 91: Attention Function
	Slide 93: Causal language modeling or autoregressive language modeling = A word can only look at previous tokens
	Slide 94: Attention Function
	Slide 95: Scaled Dot-Product Attention
	Slide 96: Actual Self-Attention
	Slide 97: Actual Self-Attention
	Slide 98: Attention Function
	Slide 99: Actual Self-Attention
	Slide 100: Masked Multihead Attention
	Slide 101: Feed Forward Layer
	Slide 102: Repeat A Transformer Block Few Times
	Slide 103: Final Layer
	Slide 104: Final Layer
	Slide 105: DNNs = Matrix Multiplications => GPUs…
	Slide 106: DNNs = Matrix Multiplications => GPUs…
	Slide 107: Intuition of transformers
	Slide 108: Intuition 2: Attention Layers:
	Slide 109: But note that attention blocks are repeated!
	Slide 110: Intuition 3: Why multiple heads?
	Slide 111: From the paper
	Slide 112

