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How | gotinto LLMs

* Background in TCS: Approximation and Online Algorithms
* Inspired by GPT3/Protein folding papers around 2019/20

* Lead Differentially Private Training of LLMs at MS/MSR

-Our DP trained LMs power many critical applications such
as Outlook, Word, Onenote, etc, and are largest deployed transformer
models in terms of volume in MS (as of 20230©).

* Current Projects in the Algorithms Group: Post-transformers/ long
sequence modelling, improving reasoning/planning



Goals of the workshop

e Start a conversation in our community. Invite beginning graduate
students to explore the workings of LLMs/DNNs, and the evolution of
intelligence/cognition

- spend 20-30% of time thinking/reading

* Timely: Many things are standardized. Model architecture, training
recipes, optimization algorithms, etc., have withstood test of time.
Perfect time to investigate theoretically/algorithmically

* Industry has taken care of problems that can be solved by data and
scale: rest of us can focus on truly new ideas. There are plenty.



Quantization of GPT3/4 via Discrepancy

* Quantization problem: Given 32-bit floats corresponding to a GPT
model, “round” it to 4-bit values keeping the performance.

At MSR, we designed an algorithm inspired by online/streaming
discrepancy minimization problem

* More about Quantization: See GPTQ paper
(https://arxiv.org/abs/2210.17323)

* More about online discrepancy minimization: see our talk on Friday
(https://arxiv.org/abs/2308.01406)

* Open Problem: Design a streaming/online algorithm for finding a basic
feasible solution x*of an LP that has smallest \ell_2 distance to a given
feasible solution y (that is good on GPUSs)



Other talks on LLMs at STOC

* Keynote by Jakub

* Paper on hallucinations by Kalai and Vempala



Brief history of LLM revolution
introduce key ideas/concepts needed to follow remaining topics



Agenda

 Going from supervised learning to unsupervised or self-supervised learning and in-context learning

GPT2 and 3 papers, CLIP/unCLIP papers (Text and Image co-representation), Diffusion Models

* Standardization of the training and model architectures

Attention is all you need paper

* Scaling

Scaling laws for neural language models, Chinchilla papers



Disclaimer

| will not be exhaustive in my citations of the works.
Please see the cited papers to for more comprehensive/chronological
evolution of ideas.

Biased view: How |, as a TCS person, sees the LLM revolution.



All Build on Deep Learning Revolution

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto Unucr\ ity of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca s

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million . .
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif- [ ] D t b tt t l f t t t

ferent classes. On the test data, wc.mh]c\cdlopI.mdlup-Scm)rm(c\nf.‘ﬁT.ﬁ‘% eepne S are e er a ea rnln ea ure represen a Ion
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected ° N d f h d

layers we employed a recently-developed regularization method called “dropout™ —t d f t (SV M )
(h?i[ proved [5 be very rffu:ll}\c, We }?ilan entered a variant of this model :?\nthc O n e e O r a n u n e e a u re S S
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,

compared to 26.2% achieved by the second-best entry.

1 Introduction

* DNNs need lots of data and compute

Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can collect larger datasets, learn more powerful models, and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images {e.g.. NORB [16], Caltech- 101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be \oltcd quite well with d. of thi: e,
especially if they are augmented \ulh label-preserving transformations. For example, the current-
best error rate on the MN[?T digit-recognition task (<0.3%) approaches human performance [4]
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much ].m'cr training sets. And indeed, the \hurlcommOs of \mal] image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23]. which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6]. which consists of
over 15 million labeled high-resolution images in aver 22,000 categories.

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet. so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly correct assumptions
about the nature of images (namely. stationarity of sta s and locality of pixel dependencies)
Thus, compared to standard feedforward neural networks with si zed layers, CNNs have
much fewer connections and paras and so they are easier to train, while their theoretically-best
performance is likely to be only slightly worse.
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Deep Learning Way

Input: 784-dimensional vector x.
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X_2 is a probability distribution over 10 digits

W_1 and W_2 are matrices of appropriate dimensions
Bias vectors are also of right dimensions
f 1 andf_2 are non-linear functions applied element wise

*RelLU (a): max (0, a)
* softmax function:

Formally, the standard (unit) softmax function o: RY — (0, I)K. where K > 1, takes
avectorz = (21 ..... ZK) e R* and computes each component of vector
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Neurons: vertices of the network

Neural Networks Parameters/weights: Edges of the network

Fully connected feed forward networks (some times called MLPs)

utput layer
Input layer

Hidden layers



What is each neuron doing?

Neurons are tiny computational units

4

RelLU (W_iT*x_ 1+w_i2*x_2...+w_in*x_n —Dbias_i)

Activations: the output after applying activation functions

Input is 8:
28*28 pixel values
represented as avector




Deep Learning = Sequence of matmuls!

Input: 784-dimensional vector x.
W_1 and W_2 are matrices of appropriate dimensions

\ 4

W_1*x +bias_1 Bias vectors are also of right dimensions
v f 1 andf_2 are non-linear functions applied element wise
f_1(W_1*x +bias_1)
X 1 * RelLU (a): max (0, a)
v * softmax function:
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X_2 is a probability distribution over 10 digits




What is learning?

Input: 784-dimensional vector x.

\ 4

W_1*x + bias_1

v

f 1(W_1*x +bias_1)

X_1

\ 4

W 2*x 1 +bias 2
softmax function

\ f_2(W_2*x_1 +bias_2)

X 2

A 4

X_2 is a probability distribution over 10 digits

Find good weight matrices W_1, W_2 and bias
vectors



Learn from (labelled & lots) data

1. Find alarge set of labelled data

The MNIST database contains 60,000 training images and 10,000 testing images

2. Associate a loss function

If the output predicted by the algorithm is correct, the loss should be small. Otherwise, it should
be high.

The cross-entropy loss for a single prediction can be defined as:

- Squared loss function 5= -5, wlogte)
- Cross entropy loss function — [ — -log (prob(true label)

s N is the number of classes (in the case of language models, this is the size of the vocabulary).

s y; is the actual binary indicator (0 or 1) if class % is the correct class.

* p; is the predicted probability for class 7.

3. Optimize the loss function via gradient descent type algorithms: SGD, Adam.



Notes on Loss Function

 QOurdataisindependent samples from an unknown distribution

* We treat neural network as a representation of this unknown distribution

 But neural networkis a function of its parameters

* S0, find the parameters that bring our neural network distribution closer to the true
unknown distribution given through samples

Maximizing the likelihood function

Maximizing the log likelihood function

Minimizing the — negative log likelihood function

Cross-entropy

Article Talk

From Wikipedia, the free encyclopedia

In information theory, the cross-entropy between two probability distributions p and g, over the same
underlying set of events, measures the average number of bits needed to identify an event drawn from th
set when the coding scheme used for the set is optimized for an estimated probability distribution g, rathe
than the true distribution p.

Definition |[edit]

The cross-entropy of the distribution g relative to a distribution p over a given set is defined as follows:

H(p,q) = —Ep[loggl.

where Ep [] is the expected value operator with respect to the distribution p.



Notes on Loss Function

 QOurdataisindependent samples from an unknown distribution

Relation to maximum likelihood |edit]
The cross entropy arises in classification problems when introducing a logarithm in the guise of the log-likelihood function.

The section is concerned with the subject of estimation of the probability of different possible discrete outcomes. To this end, denote a parametrized
family of distributions by gy, with 8 subject to the optimization effort. Consider a given finite sequence of N values z; from a training set, obtained from
conditionally independent sampling. The likelihood assigned to any considered parameter € of the model is then given by the product over all
probabilities gy (X = x; ) Repeated occurrences are possible, leading to equal factors in the product. If the count of occurrences of the value equal to
x; (for some index %) is denoted by #;, then the frequency of that value equals #a:i/N. Denote the latter by p(X = wz) as it may be understood as
empirical approximation to the probability distribution underlying the scenario. Further denote by PP := efl(P9) the perplexity, which can be seen to

equal Hmi qa( =x; ) p(X=z) by the calculation rules for the logarithm, and where the product is over the values without double counting. So
e

x) = qu(X H‘IG = ;) #wl — pp~N — ¢ N-Hpg) am th

rathe

or
log £L(0;x) = —N - H(p, g9).

M | n | m|Z| ng th e— negative log llke ll hOOd fu nCtiO n The cross-entropy of the distribution g relative to a distribution p over a given set is defined as follows:
H(p,q) = — Ey[logq.

where Ep [] is the expected value operator with respect to the distribution p.




Training Deep Models via SGD/Adam
@

Randomly permute data

@ LEARN

Take a descent step/
update model weights
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Neural Networks Really work!

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Tlya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronte.ca hintonfcs.utorento.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout™
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can collect larger datasets, learn more powerful models, and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved quite well with datasets of this size,

specially if they are d with label ing transformations. For example, the current-
best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4]
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed. the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

To lean about thousands of objects from millions of images. we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly correct assumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies)
Thus, compared to standard feedforward neural networks with larly-sized layers, CNNs have
much fewer connections and parameters and so they are easier to train. while their theoretically-best
performance is likely to be only slightly worse.
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AlexNet

Article  Talk

From Wikipedia, the free encyclopedia

Search

AlexNet is the name of a convolutional neural network (CNN)

architecture, designed by Alex Krizhevsky in collaboration
with llya Sutskever and Geoffrey Hinton, who was

Krizhevsky's Ph.D. advisor at the University of Toronto.Il2]

AlexNet competed in the ImageNet Large Scale Visual
Recognition Challenge on September 30, 2012 B The
network achieved a top-5 error of 15.3%, more than 10.8
percentage points lower than that of the runner up. The
original paper's primary result was that the depth of the
model was essential for its high performance, which was
computationally expensive, but made feasible due to the
utilization of graphics processing units (GPUs) during
training.?!

Historic context e

AlexNet was not the first fast GPU-implementation of a CNN

to win an image recognition contest. A CNN on GPU by K

Chellapilla et al. (2006) was 4 times faster than an equivalent
implementation on CPU 141 A deep CNN of Dan Ciresan £ et

al. (2011) at IDSIA was already 60 times fasterl®] and

outperformed predecessors in August 201116 Between May
15, 2011, and September 10, 2012, their CNN won no fewer

than four image competitions. I8l They also significantly

“AlexNet Moment”
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math will come out right. The original paper said different numbers, but
Andrej Karpathy, the former head of computer vision at Tesla, said it should
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14 million samples
annotated by hand
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From Wikipedia, the free encyclopedia

{Redirected from ImageMet Large Scale Visual Recognition Challenge)

The ImageNet project is a large visual database designed for use in visual object recognition software research. More than 14 million['12] images have
been hand-annotated by the project to indicate what objects are pictured and in at least one million of the images, bounding boxes are also provided.[3]
ImageNet contains more than 20,000 categories, ' with a typical category, such as "balloon” or "strawberry”, consisting of several hundred images.'* The

database of annotations of third-parly image URLs is freely available directly from ImageNet, though the actual images are not owned by ImageNet [°]
Since 2010, the ImageNet project runs an annual software contest, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where software
programs compete to correctly classify and detect objects and scenes. The challenge uses a "trimmed” list of one thousand non-overlapping classes. ]

Significance for deep learning [edi]

©On 30 September 2012, a convolutional neural network (CNN) called AlexNet™ achieved a top-5 error of 15.3% in the ImageNet 2012 Challenge, more
than 10.6 percentage points lower than that of the runner up. This was made feasible due to the use of graphics processing units (GPUs) during traimng‘[?]
an essential ingredient of the deep learning reveolution. According to The Economist, "Suddenly people staried to pay attention, not just within the Al
community but across the technology industry as a whole. "I

In 2015, AlexNet was outperformed by Microsoft's very deep CNN with over 100 layers, which won the ImageNet 2015 contest.[0]

History of the database [edi]

Al researcher Fei-Fei Li began working on the idea for ImageNet in 2006. At a time when most Al research focused on models and algorithms, Li wanted to
expand and improve the data available to train Al algorithms /") In 2007, Li met with Princeton professor Christiane Fellbaum, one of the creatars of
WordMet, to discuss the project. As a result of this meeting, Li went on to build ImageNet starting from the word database of WordNet and using many of its
features %!

As an assistant professor at Princeton, Li assembled a team of researchers to work on the ImageNet project. They used Amazon Mechanical Turk to help
with the classification of images.!'?

They presented their database for the first time as a poster at the 2009 Conference on Computer Vision and Pattern Recognition (CVPR) in
Floriga.l'2I13I14]

Dataset [edi]

ImageNet crowdsources its annotation process. Image-level annotations indicate the presence or absence of an object class in an image, such as "there
are tigers in this image” or "there are no tigers in this image". Object-level annotations provide a bounding box around the (visible part of the) indicated
object. ImageNet uses a variant of the broad WordNet schema to categorize objects, augmented with 120 categories of dog breeds to showcase fine-
grained classification ®! One downside of WordNet use is the categories may be more "elevated” than would be optimal for ImageNet: "Most people are
more interested in Lady Gaga or the iPod Mini than in this rare kind of diplodocus."[6/3cation nesdsd] |y 9012 |mageNet was the world's largest academic
user of Mechanical Turk. The average worker identified 50 images per minute @

Subsets of the dataset |[edit)

There are various subsets of the ImageNet dataset used in various context. One of the most highly used subset of ImageNet is the "ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2012-2017 image classification and localization dataset”. This is also referred to in the research literature as
ImageNet-1K or ILSVRC2017, reflecting the original ILSVRC challenge that involved 1,000 classes. ImageNet-1K contains 1,281,167 training images,
50,000 validation images and 100,000 test images.!"® The full original dataset is referred to as ImageNet-21K. ImageNet-21k contains 14,197,122 images
divided into 21,841 classes. Some papers round this up and name it ImageNet-22k (18]



Prior to LLM revolution (< 2014)

—_

* Supervised learning
- create labelled dataset
- Imagenet creator Fei Fei Li is celebrated for this

 Train atask-specific DNN Already spectacular success

- identify images, translation, sentiment analysis, so on. —

* Lots of design parameters: Model architecture,
data augmentation tricks, learning algorithms etc




Language Models are Unsupervised Multitask Learners

—_—

Alec Radford ' Jeffrey Wu*' Rewon Child' David Luan' Dario Amodei ' Ilya Sutskever ™!

Abstract

Natural language processing tasks, such as ques-
tion answering, machine translation. reading com-
prehension, and summarization, are typically
approached with supervised learning on task-
specific datasets. We demonstrate that language
models begin to learn these tasks without any ex-
plicit supervision when trained on a new dataset
of millions of webpages called WebText. When
conditioned on a document plus questions, the an-
swers generated by the language model reach 55
F1 on the CoQA dataset - matching or exceeding
the performance of 3 out of 4 baseline systems
without using the 127,000+ training examples.
The capacity of the language model is essential
to the success of zero-shot task transfer and in-
creasing it improves performance in a log-linear
fashion across tasks. Our largest model, GPT-2,
is a 1.5B parameter Transformer that achieves
state of the art results on 7 out of 8 tested lan-
guage modeling datasets in a zero-shot setting
but still underfits WebText. Samples from the
model reflect these improvements and contain co-
herent paragraphs of text. These findings suggest
a promising path towards building language pro-
cessing systems which learn to perform tasks from
their naturally occurring demonstrations.

1. Introduction

Machine learning systems now excel (in expectation) at
tasks they are trained for by using a combination of large
datasets, high-capacity models, and supervised learning
(Krizhevsky et al., 2012) (Sutskever et al., 2014) (Amodei
etal., 2016). Yet these systems are brittle and sensitive to
slight changes in the data distribution (Recht et al., 2018)
and task specification (Kirkpatrick et al., 2017). Current sys-
tems are better characterized as narrow experts rather than

““Equal contribution 'OpenAl, San Francisco, Califor-
nia, United States. Correspondence to:  Alec Radford
<alec@openai.com™.

competent generalists. We would like to move towards more
general systems which can perform many tasks — eventually
without the need to manually create and label a training
dataset for each one.

The dominant approach to creating ML systems is to col-
lect a dataset of training examples demonstrating correct
behavior for a desired task, train a system to imitate these
behaviors, and then test its performance on independent
and identically distributed (IID) held-out examples. This
has served well to make progress on narrow experts. But
the often erratic behavior of captioning models (Lake et al.,
2017), reading comprehension systems (Jia & Liang, 2017),
and image classifiers (Alcorn et al., 2018) on the diversity
and variety of possible inputs highlights some of the short-
comings of this approach.

Our suspicion is that the prevalence of single task training
on single domain datasets is a major contributor to the lack
of generalization observed in current systems. Progress
towards robust systems with current architectures is likely
to require training and measuring performance on a wide
range of domains and tasks. Recently, several benchmarks
have been proposed such as GLUE (Wang et al., 2018) and
decaNLP (McCann et al., 2018) to begin studying this.

Multitask learning (Caruana. 1997) is a promising frame-
work for improving general performance. However, mul-
titask training in NLP is still nascent. Recent work re-
ports modest performance improvements (Yogatama et al.,
2019) and the two most ambitious efforts to date have
trained on atotal of 10 and 17 (dataset, objective)
pairs respectively (McCann et al., 2018) (Bowman et al.,
2018). From a meta-learning perspective, each (dataset,
objective) pair is a single training example sampled
from the distribution of datasets and objectives. Current
ML systems need hundreds to thousands of examples to
induce functions which generalize well. This suggests that
multitask training many need just as many effective training
pairs to realize its promise with current approaches. It will
be very difficult to continue to scale the creation of datasets
and the design of objectives to the degree that may be re-
quired to brute force our way there with current techniques.
This motivates exploring additional setups for performing
multitask learning.

The current best performing systems on language tasks

Bert, GPT2/GPT3 Papers Changed Something Fundamental

Language Models are Few-Shot Learners

v4 [cs.CL] 22 Jul 2020
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Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific fine-tuning datasets of th ds or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions ~ something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-
tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including lation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same
time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some
datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.

*Equal contribution
'Johns Hopkins University, OpenAl

Author contributions listed at end of paper.



GPT2 and 3 papers changed that paradigm (forever)...

Language Models are Unsupervised Multitask Learners

Alec Radford "' Jeffrey Wu "' Rewon Child ' David Luan' Dario Amodei ™ ' Ilya Sutskever ™ '
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Incontext learning, fewshot/zeroshot learning

Example 5: Code Completion

Prompt:

python (9 Copy code

{a, b):

Model Response:

python (P Copy code




Incontext learning, fewshot/zeroshot learning

Example 6: Grammar Correction

Prompt:

vbnet (P Copy code

Correct the grammar the following sentences:

. She don

She doesn

school everyday.

He goes school every day.

. I can plays the guitar.
I can play the guitar.

. They was very happy.

Model Response:

makefile

Correction: They were very happy.




Incontext learning, fewshot/zeroshot learning

Example 2: Translation

Prompt:
vbnet (P Copy code
Translate the following sentences English French:

. The cat is the roof.

Le chat est sur le toit.
. I love eat chocolate.
. She is reading a book.
Elle 1it un livre.

. The weather is nice today.

Model Response:

(P Copy code

I1 fait beau aujourd




GPT2 and 3 papers changed that paradigm (forever)...

Language Models are Unsupervised Multitask Learners
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HellaSwag dataset Winogrande dataset

The Winogrande dataset is a collection of commonsense reasoning challenges designed to evaluate

an Al's understanding of language and context. Each challenge typically involves a sentence with a

ACTIVITYNET A woman is outside with a bucket and a dog. The dog is running
m around trying to avoid a bath. She...

blank, and two possible options for filling in the blank. The task is to choose the option that makes

the most sense given the context Here are some examples of Winogrande dataset challenges:

A rinses the bucket off with soap and blow dry the dog's head.
B. uses a hose to keep it from getting soapy.

; |C. gets the dog wet, then it runs away again. |
2e=el| D, gets into a bath tub with the dog.

Come to a complete halt at a stop sign or red light. At a stop sign,
wiki come to a complete halt for about 2 seconds or until vehicles that
arrived before you clear the intersection. If you're stopped at a red

Howto  |ight, proceed when the light has turned green. ...

wﬁ:tlfg?r?;ht A. Stop for no more lhan two EECDr'Ill:is._tlr until the light turns
of way. yellow. & red light in front of you indicates that you should
stop.
+ B. After you come to a complete stop, turn off your turn signal.
Adversaral | Allow vehicles to move in different directions before maving
| Filtering | onto the sidewalk.

C. Stay out of the oncoming traffic. People coming in from
behind may elect to stay left or right.

D. If the intersection has a white stripe in your lane, stop
before this line. Wait until all traffic has cleared before
crossing the intersection.

1. Example 1:

* Sentence: "The trophy doesn't fit into the suitcase because it is too small.”
+ Options: (A) trophy, (B) suitcase

* Answer: (B) suitcase

2. Example 2:

* Sentence: "Sam tried to paint a picture of the landscape, but he didn't have any __."
* Options: (A) paint, (B) brushes

* Answer: (A) paint

3. Bxample 3:

* Sentence: "Jane gave Joan candy because she was very happy.”
* Options: (A) Jane, (B) Joan

= Answer: (A) Jane

. Example 4:

* Sentence: "The book was on the table and fell off when "
+ Options: (A) the table moved, (B) the book moved

* Answer: (A) the table moved

. Example 5:

* Sentence: "Alex saw a dog chasing a cat while he was walking.”

= Options: (A) dog, (B) Alex

* Answer: (B) Alex




How did GPT3 achieve task-agnostic model training and in-context learning?



Three Breakthrough ldeas

Unsupervised or self-supervised Transformer Architecture Scale
Learning




Three Breakthrough ldeas

Unsupervised or self-supervised Transformer Architecture Scale
Learning




Treat Internet as source of unlabelled data

And create an algorithmic process that is
rich in learning various skills



Pretraining on Internet

Train a transformer model to predict next word on every sentence found on the Internet

For other uses, see Black hole (disar

A black hole is a region of spacetime where gravity is so strong that nothing, including light and other

electromagnetic waves, has enough energy to escape it [¥) The theory of general relativity predicts that a

sufficiently compact mass can deform spacetime o form a black hole.*I¥) The boundary of no escape is
called the event horizon. Although it has a great effect an the fate and circumstances of an object crossing
it, it has no locally detectable features according to general refativity.™™ In many ways, a black hole acts like . .
an ideal black body, as it reflects no light. P71 Moreover, quantum field theory in curved spacetime predicts A b la C k h 0 le IS a re g I O n Of ———
that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature

inversely proportional to its mass_ This temperature is of the order of billionths of a kelvin for siellar black
noles. making it essentially impossible to observe directly

Objects whose gravitational fields are too strang for light to escape were first considered in the 18th century
by John Michell and Pierre-Simon Laplace.'® In 1916, Karl Schwarzschild found the first modemn solution of
general relativity that would characterize a black hole. David Finkelstein, in 1958, first published the
interpretation of "black hole” as a region of space from which nothing can escape. Black hales were long D”ed['i‘nf o i‘“agi r°:a supermassive black & ..
considered a maihematical curiosily. it was not until ine 19505 that theorelical work showed Ihey were a L= el Ere el LS l l t t t h t ld _—_——
generic prediction of general relativity. The discovery of neutron stars by Jocelyn Bell Bumell in 1967 ge n e ra re a IVI y a WO u

sparked interest in gravitationally collapsed compact objects as a possible astrophysical reality. The first black
hole known was Cygnus X-1, identified by several researchers independently in 1974 [110]

Black holes of stellar mass form when massive stars collapse at the end of their life cycle. After a black hole
has formed, it can grow by absorbing mass from its surroundings. Supermassive black holes of millions of solar
masses () may form by abserbing other stars and merging with other black holes. There is consensus that
supermassive black holes exist in the centres of most galaxies

The presence of a black hole can be inferred through its interaction with other matter and with electromagnetic
radiation such as visible light. Any matter that falls onto a black hole can form an external accretion disk heated

by friction, forming quasars, some of the brightest objects in the universe. Stars passing too close to a

Animated simulation of a Schwarzschild &
supermassive black hole can be shredded into streamers that shine very brightly before being "swallowed." "] black hole with a galaxy passing behind

If other stars are orbiting a black hole, their orbits can be used to determine the black hole's mass and location Around the time of alignment, extreme

gravitational lensing of the galaxy is

Such observations can be used to exclude possible altematives such as neutron stars. In this way, astronomers | - ©

have identified numerous stellar black hole candidates in binary sysiems and established that the radio source
known as Sagitlarius A”, at the core of the Milky Way galaxy. contains a supermassive black hole of about
4.3 million sclar masses



What is Input and Output?

Input

A black hole is a region of ‘

(converted into a vector

in high dimension)

model

Qutput
Probabilities

Feed
Forward

Add & Norm
R Multi-Head
Feed Attention
Forward ;) Nx
N Add & Norm
Add & Norm Nasked
Multi-Head Multi-Head
Attention Attention
A ) A )

. J \ —
Positional D A Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

=)

Output

Need to a predict distribution
over all the words in the dictionary

Similar to handwritten recognition task we saw earlier
We usually train them so that loss goes to zero on the training data



Pretraining on Internet: Keys to Success

Train a transformer model to predict next word on every sentence found on the Internet

e—

!

universal DNN model

\ 4

2 unsupervised

Language Models are Unsupervised Multitask Learners

no need to create
1 Labelled datasets.

4

rich representatio
and reasoning

n of languages

Unlimited dataset

3 Remember:
data and co

DNNs needs lots of
mpute!



Why next word prediction has rich structure?

Constructive discrepancy minimization for convex sets

Suppose GPT3 is going over the paper by Thomas

; ; Lemma 6. Let P, () T E" be convex seis and let g : B® — B be a strictly convex function.
and it encounters this , Peck sets and let g - ly convex: functio
Suppose that x* is an optimum solution to min{g(x) | x € PNQ} and x* lies in the interior
of Q). Then =* is also an optimum solution to min{g(x) | x € P}.

Proof. Suppose for the sake of contradiction that there is a y* € P with g(y") < g(z”). then

some convex combination (1 — A)y™ + Ax™ with 0 < A < 1 lies also in @ and has a better
objective function than x*, which is a centradietion— O

l

The model needs to predict that the missing word is “contradiction”



How do we use such a network (Inference)?

A sequence of words ‘ ‘ Predict the next word

Autoregressive

The model consumes

Use the model Iteratively!! previously generated output

| love playing = tennis

Let's say | want the model | love playing tennis =2 Roger
to complete a sentence: ‘ playing g

| love playing. | love playing tennis. Roger = is

| love playing tennis. Roger is 2 my



How do we use such a network (Inference)?

Predict the next word

\C \deas

A sequence of words

a\%o(\ oumes

,\ .ﬁ(om O | love playing = tennis

st the model

| love playing tennis = Roger
Ga(\ ‘O ,qlnplete a sentence: ‘

| love playing. | love playing tennis. Roger = is

| love playing tennis. Roger is 2> my



“Prompt” the model (in-context learning)

Problem: Beth bakes 4, 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does
each person consume?

Solution: Beth bakes 4 2 dozen batches of cookies for a total of 4*2 = <<4*2=8>>8 dozen cookies

There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = <<12*8=96>>96 cookies

She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = <<96/16=6>>6 cookies

Final Answer: 6

Problem: Mrs. Lim milks her cows twice a day. Yesterday morning, she got 68 gallons of milk and in the evening, she got 82 gallons. This morning,
she got 18 gallons fewer than she had yesterday morning. After selling some gallons of milk in the afternoon, Mrs. Lim has only 24 gallons left. How
much was her revenue for the milk if each gallon costs $3.507

Mrs. Lim got 68 gallons - 18 gallons = <<68-18=50>>50 gallons this morning.

So she was able to get a total of 68 gallons + 82 gallons + 50 gallons = <<68+82+50=200>>200 gallons.

She was able to sell 200 gallons - 24 gallons = <<200-24=176>>176 gallons.

Thus, her total revenue for the milk is $3.50/gallon x 176 gallons = $<<3.50*176=616>>616.

Final Answer: 616

Problem: Tina buys 3 12-packs of soda for a party. Including Tina, 6 people are at the party. Half of the people at the party have 3 sodas each, 2
of the people have 4, and 1 person has 5. How many sodas are left over when the party is over?

Solution: Tina buys 3 12-packs of soda, for 3*12= <<3*12=36>>36 sodas

6 people attend the party, so half of them is 6/2= <<6/2=3>>3 people

Each of those people drinks 3 sodas, so they drink 3*3=<<3"3=9>>9 sodas

Two people drink 4 sodas, which means they drink 2*4=<<4*2=8>>8 sodas

With one person drinking 5, that brings the total drank to 5+9+8+3= <<5+9+8+3=25>>25 sodas

As Tina started off with 36 sodas, that means there are 36-25=<<36-25=11>>11 sodas left

Final Answer: 11




Pretraining on Internet

Train a transformer model to predict next wo
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3 Remember: DNNs needs lots of
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Pretraining on Internet

Train a transformer model to predict next word on every sentence found on the Internet
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universal DNN model 4
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rich representation of languages

Language Models are Unsupervised Multitask Learners

Unlimited dataset

(A 3 Remember: DNNs needs lots of
oNC Zr
data and compute!

no need to cre~’ s@ed\{
\S
1 Labelled! \Z‘:ﬂ \Ne(ep‘ﬂ,




Can we do this for images?



Natural Idea: Predict the next pixel.

Almost works as seen from Image GPT paper. Expensive.

https://cdn.openai.com/papers/Gener

@OpenAl Researchv  APIv  ChatGPTv  Safety Companyv

r— ative_Pretraining_from_Pixels_V2.pdf

Image GPT

Generative Pretraining from Pixels

Mark Chen' Alec Radford! Rewon Child' Jeff Wu' Heewoo Jun' David Luan' Tlya Sutskever '

We find that, just as a large transformer model trained on language
can generate coherent text, the same exact model trained on pixel
sequences can generate coherent image completions and samples.
By establishing a correlation between sample quality and image
classification accuracy, we show that our best generative model
also contains features competitive with top convolutional nets in
the unsupervised setting.

Abstract

Inspired by progress in unsupervised representa-
tion learning for natural language, we examine
whether similar models can learn useful repre-
sentations for images. We train a sequence Trans-
former to auto-regressively predict pixels, without
incorporating knowledge of the 2D input struc-
ture. Despite training on low-resolution ImageNet
without labels, we find that a GPT-2 scale model
leams strong image representations as measured
by linear probing, fine-tuning, and low-data clas-
sification. On CIFAR-10. we achieve 96.3% ac-
curacy with a linear probe, outperforming a su-
pervised Wide ResNet, and 99.0% accuracy with
full fine-tuning, matching the top supervised pre-
trained models. We are also competitive with
self-supervised benchmarks on ImageNet when
substituting pixels for a VQVAE encoding, achiev-
ing 69.0% top-1 accuracy on a linear probe of our
features.

1. Introduction

Unsupervised pre-training played a central role in the resur-
gence of deep learning. Starting in the mid 2000, ap-
proaches such as the Deep Belief Network (Hinton et al.,
2006) and Denoising Autoencoder (Vincent et al., 2008)
were commonly used in neural networks for computer vi-
sion (Lee et al., 2009) and speech recognition (Mohamed
et al., 2009). Tt was believed that a model which learned
the data distribution P(X') would also learn beneficial fea-
tures for the subsequent supervised modeling of P(Y|X)
(Lasserre et al., 2006; Erhan et al., 2010). However, advance-
ments such as piecewise linear activation functions (Nair
& Hinton, 2010), improved initializations (Glorot & Ben
gio, 2010), and normalization strategies (loffe & xdy,
2015; Ba et al., 2016) removed the need for pre-training in
order to achieve strong results. Other research cast doubt

"Equal coniribution 'OpenAl San Francisco, CA, USA. Come-
spondence to: Mark Chen <mark@openai com:

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020/ by
the author(s).

on the benefits of deep unsupervised representations and re-
ported strong results using a single layer of learned features
(Coates et al., 2011}, or even random features (Huang et al.,
2014; May et al_, 2017). The approach fell out of favor as
the state of the art increasingly relied on directly encoding
prior structure into the model and utilizing abundant su-
irectly learn representations (Krizhevsky
es & Jaitly, 2014). Retrospective study of
training demonstrated that it could even
hurt performance in modern settings (Paine et al., 2014)

Instead, unsupervised pre-training Aourished in a differ-
ent domain. After initial strong results for word vectors
013), it has pushed the state of the art
forward in Natural Language Processing on most tasks (Dai
& Le, 2015; Peters et al., 2018; Howard & Ruder, 2018;
Radford et al., 2018; Devlin et al., 2018). Interestingly, the
training ohjective of a dominant approach like BERT, the
prediction of corrupted inputs, closely resembles that of the
Denoising Autoencoder, which was originally developed for
images.

As a higher dimensional, noisier, and more redundant modal-
ity than text, images are believed to be difficult for genera-
tive modeling. Here, self-supervised approaches designed to
encourage the modeling of more global structure (Doersch
etal.,, 2015) have shown significant promise. A combination
of new training objectives {Oord et al., 2018), more recent
architectures { Gomez et al., 2017), and increased model ca-
pacity (Kolesnikov et al., 2019) has allowed these methods
to achieve state of the art performance in low data settings
(Hénaff et al., 2019) and sometimes even autperform super-
vised representations in transfer learning settings (He et al.,
2019; Misra & van der Maaten, 2019).

Given that it has been a decade since the original wave of
generative pre-training methods for images and considering
their substantial impact in NLF, this class of methods is due
for a modem re-examination and comparison with the recent
progress of self-supervised methods. We re-evaluate genera-
tive pre-training on images and demonstrate that when using
a flexible architecture (Vaswani et al., 2017), a tractable and
efficient likelihood based training objective (Larochelle &
Murray, 2011; Oord et al., 2016), and significant compute
resources (1024 TPU cores), generative pre-training is com-
petitive with other self-supervised approaches and learns




How would you use this network to do digit
recognition? Finetuning

Image GPT

Softmax to get a

+ Learn alinear layer using + distribution over
few samples the output space

Finetuning: a general concept where you take a pretrained model and train further on the downstream
task of interest. Cheaper than pretraining, and helps to improve performance over incontext learning
sometimes.



Natural Idea: Predict the next pixel.

Almost works as seen from Image GPT paper. Expensive.

https://cdn.openai.com/papers/Gener

@OpenAl Researchv  APIv  ChatGPTv  Safety Companyv

r— ative_Pretraining_from_Pixels_V2.pdf

Image GPT

Generative Pretraining from Pixels

Mark Chen' Alec Radford! Rewon Child' Jeff Wu' Heewoo Jun' David Luan' Tlya Sutskever '

We find that, just as a large transformer model trained on language
can generate coherent text, the same exact model trained on pixel
sequences can generate coherent image completions and samples.
By establishing a correlation between sample quality and image
classification accuracy, we show that our best generative model
also contains features competitive with top convolutional nets in
the unsupervised setting.

Abstract

Inspired by progress in unsupervised representa-
tion learning for natural language, we examine
whether similar models can learn useful repre-
sentations for images. We train a sequence Trans-
former to auto-regressively predict pixels, without
incorporating knowledge of the 2D input struc-
ture. Despite training on low-resolution ImageNet
without labels, we find that a GPT-2 scale model
leams strong image representations as measured
by linear probing, fine-tuning, and low-data clas-
sification. On CIFAR-10. we achieve 96.3% ac-
curacy with a linear probe, outperforming a su-
pervised Wide ResNet, and 99.0% accuracy with
full fine-tuning, matching the top supervised pre-
trained models. We are also competitive with
self-supervised benchmarks on ImageNet when
substituting pixels for a VQVAE encoding, achiev-
ing 69.0% top-1 accuracy on a linear probe of our
features.

1. Introduction

Unsupervised pre-training played a central role in the resur-
gence of deep learning. Starting in the mid 2000, ap-
proaches such as the Deep Belief Network (Hinton et al.,
2006) and Denoising Autoencoder (Vincent et al., 2008)
were commonly used in neural networks for computer vi-
sion (Lee et al., 2009) and speech recognition (Mohamed
et al., 2009). Tt was believed that a model which learned
the data distribution P(X') would also learn beneficial fea-
tures for the subsequent supervised modeling of P(Y|X)
(Lasserre et al., 2006; Erhan et al., 2010). However, advance-
ments such as piecewise linear activation functions (Nair
& Hinton, 2010), improved initializations (Glorot & Ben
gio, 2010), and normalization strategies (loffe & xdy,
2015; Ba et al., 2016) removed the need for pre-training in
order to achieve strong results. Other research cast doubt
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(Coates et al., 2011}, or even random features (Huang et al.,
2014; May et al_, 2017). The approach fell out of favor as
the state of the art increasingly relied on directly encoding
prior structure into the model and utilizing abundant su-
irectly learn representations (Krizhevsky
es & Jaitly, 2014). Retrospective study of
training demonstrated that it could even
hurt performance in modern settings (Paine et al., 2014)

Instead, unsupervised pre-training Aourished in a differ-
ent domain. After initial strong results for word vectors
013), it has pushed the state of the art
forward in Natural Language Processing on most tasks (Dai
& Le, 2015; Peters et al., 2018; Howard & Ruder, 2018;
Radford et al., 2018; Devlin et al., 2018). Interestingly, the
training ohjective of a dominant approach like BERT, the
prediction of corrupted inputs, closely resembles that of the
Denoising Autoencoder, which was originally developed for
images.

As a higher dimensional, noisier, and more redundant modal-
ity than text, images are believed to be difficult for genera-
tive modeling. Here, self-supervised approaches designed to
encourage the modeling of more global structure (Doersch
etal.,, 2015) have shown significant promise. A combination
of new training objectives {Oord et al., 2018), more recent
architectures { Gomez et al., 2017), and increased model ca-
pacity (Kolesnikov et al., 2019) has allowed these methods
to achieve state of the art performance in low data settings
(Hénaff et al., 2019) and sometimes even autperform super-
vised representations in transfer learning settings (He et al.,
2019; Misra & van der Maaten, 2019).

Given that it has been a decade since the original wave of
generative pre-training methods for images and considering
their substantial impact in NLF, this class of methods is due
for a modem re-examination and comparison with the recent
progress of self-supervised methods. We re-evaluate genera-
tive pre-training on images and demonstrate that when using
a flexible architecture (Vaswani et al., 2017), a tractable and
efficient likelihood based training objective (Larochelle &
Murray, 2011; Oord et al., 2016), and significant compute
resources (1024 TPU cores), generative pre-training is com-
petitive with other self-supervised approaches and learns




Diffusion Models (Ho et al)

| Denoising Diffusion Probabilistic Models (DDPM)

Basic Concepts Forward Diffusion Process (Fixed)

Data Noise

Reverse Diffusion Process (Generative)

DDPM consists of two processes:
1. Forward diffusion process gradually adds noise to the input
2. Reverse denoising process learns to generate data by denoising

(slides from Prof. Song Han from MIT)



Denoising Diffusion Probabilistic Models (DDPM

Basic Concepts

—— Stochastic process

Forward Process:
“Destroy” data by gradually adding
small amounts of Gaussian noise

—— Reverse stochastic process

Reverse Process:
“Create” data by gradually denoising a
noisy code from a stationary distribution




| Denoising Diffusion Probabilistic Models (DDPM)
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| Denoising Diffusion Probabilistic Models (DDPM)

Reverse Process Reverse Denoising Process (Generative)

Data Noise

When 3, is small, g(X,_; | X,) is also a Gaussian.
B0 0;2 =0,
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Learnable




What are general principles?

Diffusion process ..
P - No need for supervision

Basic Concepts Forward Diffusion Process (Fixed) - N O nee d fO r l.a be l.S

>

Data

Noise - Rich and unlimited datasets on Internet

Reverse Diffusion Process (Generative) - U se DNN sto le arn !




DINO Process

Idea: give different views of the a single picture
and try to learn to reconstruct the full picture.
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Emerging Properties in Self-Supervised Vision Transformers
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Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model

automatically learns class-specific features leading to

iy

Abstract

In this paper, we question if self-supervised learning pro-
vides new properties to Vision Transformer (ViT) [ V] that
stand out compared to convolutional networks (convnets).
Beyond the fact that adapting self-supervised methods to this
architecture works particularly well, we make the follow-
ing observations: first, self-supervised ViT features contain
explicit information about the semantic segmentation of an
image, which does not emerge as clearly with supervised
ViTs, nor with convnets. Second, these features are also ex-
cellent k-NN classifiers, reaching 78.3% top-1 on ImageNet
with a small ViT. Our study also underlines the importance of
momentum encoder [+ ], multi-crop training [ /0], and the
use of small patches with ViTs. We implement our findings
into a simple self-supervised method, called DINO, which
we interpret as a form of self-distillation with no labels.
We show the synergy between DINO and ViTs by achieving
80.1% top-1 on ImageNet in linear evaluation with ViT-Base.

*Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIK. 38000
Grenoble, France.
Correspondence: mathilde@fb.com
Code: htty jit f

vised object seg| ions.

1. Introduction

Transformers [ 70] have recently emerged as an alternative
to convolutional neural networks (convnets) for visual recog-
nition [ 19, 69, 53], Their adoption has been coupled with
a training strategy inspired by natural language processing
(NLP). that is, pretraining on large quantities of data and
finetuning on the target dataset [ 1 %, 55]. The resulting Vision
Transformers (ViT) [ 1] are competitive with convnets but,
they have not yet delivered clear benefits over them: they
are computationally more demanding, require more training
data, and their features do not exhibit unique properties.

In this paper, we question whether the muted success of
Transformers in vision can be explained by the use of super-
vision in their pretraining. Our motivation is that one of the
main ingredients for the success of Transformers in NLP was
the use of self-supervised pretraining, in the form of close
procedure in BERT [ ! %] or language modeling in GPT [55].
These self-supervised pretraining objectives use the words
in a sentence to create pretext tasks that provide a richer
learning signal than the supervised objective of predicting
a single label per sentence. Similarly, in images, image-
level supervision often reduces the rich visual information
contained in an image to a single concept selected from a
predefined set of a few thousand categories of objects [0].

While the self-supervised pretext tasks used in NLP are



Can we pretrain a model that can recognize objects/describe images in natural
language without explicitly training on it?

And reverse it? That is, given text description generate an image?



C LI P Pa p e r (Learning Transferable Visual Models From Natural Language Supervision, Radford et al )

Search allimages on the Internet and captions of those images.
Learn a model that maps images and the text surrounding it to same space!

igual

A black hole is a region of spacetime where gravily is so strong that nothing. including light and other
electromagnetic waves, has enough energy 1o escape it ¥ The theory of general relativity predicis that a
sufficiently compact mass can deform spacetime to form a black hole. I The boundary of no escape is
called the event horizon. Although it has a great effect on the fate and circumstances of an object crossing
it, it has no locally detectable features according to general refativity 1% In many ways, a black hole acts like
an ideal black body, as it reflects no light "] Moreover, quantum field theory in curved spacetime predicts
that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature
inversely proportional o its mass. This temperature is of the order of billionths of a kelvin for stellar black
holes, making it essentially impossible to observe directly.

Image Embedding

~  Should be close!

Objects whose gravitational fields are too strong for light to escape were first considered in the 18th century
by John Michell and Pierre-Simon Laplace ! In 1916, Karl Schwarzschild found the first modem solution of .
general relativity that would characterize a black hole. David Finkelstein, in 1958, first published the Text E m be d d | n g

interpretation of "black hole" as a region of space from which nothing can escape. Black holes were long Direct radio image of a supermassive black 51

considered a mathematical curiosity; it was not until the 1960s that theoretical work showed they were a L= I EoiE ClLEEE R —_—
generic prediction of general relativity. The discovery of neutron stars by Jocelyn Bell Burnell in 1967

sparked interest in gravitationally collzpsed compact objects as a possible astrophysical reality. The first black
hole known was Cygnus X-1, identified by several researchers independently in 1971 (101

Black holes of stellar mass form when massive stars collapse at the end of their life cycle. After 2 black hole
has formed, it can grow by absorbing mass from its surroundings. Supermassive black holes of millions of solar
masses (M.,) may form by absorbing other stars and merging with other black holes. There is consensus that
supermassive black holes exist in the centres of most galaxies

— Image Embedding

The presence of a black hole can be inferred through its interaction with other matter and with electromagnetic
radiation such as visible light. Any matter that falls onto a black hole can form an external accretion disk heated
by friction, forming quasars, some of the brightest objects in the universe. Stars passing too close to a

e m .
m . Animated simulation of a Schwarzschild &7 T E
supermassive black hole can be shredded into streamers that shine very brightly before being "swallowed »[11] black hole with a galaxy passing Dehlﬂd_/' eX | m be d d I n

IT other stars are orbiting a black hole, their orbits can be used to determine the black hole's mass and location. T BT CHET IE, I ED
ional lensing of the galaxy is
observed

Should be close!

Such observations can be used to exclude possible alternatives such as neutron stars. In this way, astronomers

have identified numerous stellar black hole candidates in binary systems and established that the radio source
known as Sagittarius A*, at the core of the Milky V
4.3 million solar masses

—
y galaxy, contains a supermassive black hole of about

Intuition: Concepts in images and the text should be the same!
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Invariant visual representation by single neurons in the
human brain
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Abstract

It takes a fraction of a second to recognize a person or an object even when seen under

strikingly different conditions. How such a robust, high-level representation is achieved by

the ventral visual pathway respond to complex images such as faces and objects and show
some degree of invariance to metric properties such as the stimulus size, position and
viewing angle24Z82101L12 We have previously shown that neurons in the human medial
temporal lobe (MTL) fire selectively to images of faces, animals, objects or scenes>*, Here
we report on a remarkable subset of MTL neurons that are selectively activated by strikingly
different pictures of given individuals, landmarks or objects and in some cases even by letter
strings with their names. These results suggest an invariant, sparse and explicit code, which
might be important in the transformation of complex visual percepts into long-term and

more abstract memories.
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CLIP Paper

(Learning Transferable Visual Models From Natural Language Supervision )

Learning Transferable Visual Models From Natural Language Supervision 2
(1) Contrastive pre-training (2) Create dataset classifier from label text
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the

target dataset’s classes.



Checks All Pretraining Hits

1) Unsupervised: No need to annotate the images!
2) Unlimited Supply of Examples: crawl the web!
3) Rich enough representation!

4) DNNs/Transformers



CLIP achieves SolA with Zero-Shot!

Learning Transferable Visual Models From Natural Language Supervision

arXiv:2103.00020v1 [cs.CV] 26 Feb 2021

Alec Radford”' Jong Wook Kim“' Chris Hallacy' Aditya Ramesh' Gabriel Goh' Sandhini Agarwal'
Girish Sastry! Amanda Askell! Pamela Mishkin' Jack Clark' Gretchen Krueger' Ilya Sutskever'

Abstract

State-of-the-art computer vision systems are
trained to predict a fixed set of predetermined
object categories. This restricted form of super-
vision limits their generality and usability since
additional labeled data is needed to specify any
other visual concept. Learning directly from raw
text about images is a promising alternative which
leverages a much broader source of supervision.
We demonstrate that the simple pre-training task
of predicting which caption goes with which im-
age is an efficient and scalable way to learn SOTA
image representations from scratch on a dataset
of 400 million (image, text) pairs collected from
the internet. After pre-training, natural language
is used to reference learned visual concepts (or
describe new ones) enabling zero-shot transfer
of the model to downstream tasks. We study
the performance of this approach by benchmark-
ing on over 30 different existing computer vi-
sion datasets, spanning tasks such as OCR, ac-
tion recognition in videos, geo-localization, and
many types of fine-grained object classification.
The model transfers non-trivially to most tasks
and is often competitive with a fully supervised
baseline without the need for any dataset spe-
cific training. For instance, we maich the ac-
curacy of the original ResNet-50 on ImageNet
zero-shot without needing to use any of the 1.28
million training examples it was trained on. We
release our code and pre-trained model weights at
https://github.com/OpenAl/CLIP.

1. Introduction and Motivating Work

Pre-training methods which learn directly from raw text
have revolutionized NLP over the last few years (Dai &
Le, 2015; Peters et al., 2018; Howard & Ruder, 2018; Rad-
ford et al., 2018; Devlin et al., 2018; Raffel et al., 2019).

“Equal contribution lC)penf-\]. San Francisco, CA 94110, USA.
Correspondence to: < {alec, jongwook } @openai.com>.

Task-agnostic objectives such as autoregressive and masked
language modeling have scaled across many orders of mag-
nitude in compute, model capacity, and data, steadily im-
proving capabilities. The development of “text-to-text” as
a standardized input-output interface (McCann et al., 2018;
Radford et al., 2019; Raffel et al., 2019) has enabled task-
agnostic architectures to zero-shot transfer to downstream
datasets removing the need for specialized output heads or
dataset specific customization. Flagship systems like GPT-3
(Brown et al., 2020) are now competitive across many tasks
with bespoke models while requiring little to no dataset
specific training data.

These results suggest that the aggregate supervision acces-
sible to modern pre-training methods within web-scale col-
lections of text surpasses that of high-quality crowd-labeled
NLP datasets. However, in other fields such as computer
vision it is still standard practice to pre-train models on
crowd-labeled datasets such as ImageNet (Deng et al., 2009).
Could scalable pre-training methods which learn directly
from web text result in a similar breakthrough in computer
vision? Prior work is encouraging.

Over 20 years ago Mori et al. (1999} explored improving
content based image retrieval by training a model to pre-
dict the nouns and adjectives in text documents paired with
images. Quattoni et al. (2007) demonstrated it was possi-
ble to learn more data efficient image representations via
manifold learning in the weight space of classifiers trained
to predict words in captions associated with images. Sri-
vastava & Salakhutdinov (2012) explored deep represen-
tation learning by training multimodal Deep Boltzmann
Machines on top of low-level image and text tag features.
Joulin et al. (2016) modernized this line of work and demon-
strated that CNNs trained to predict words in image cap-
tions learn useful image representations. They converted
the title, description, and hashtag metadata of images in the
YFCC100M dataset (Thomee et al., 2016) into a bag-of-
words multi-label classification task and showed that pre-
training AlexNet (Krizhevsky et al., 2012) to predict these
labels learned representations which preformed similarly
to ImageNet-based pre-training on transfer tasks. Li et al.
(2017) then extended this approach to predicting phrase n-
grams in addition to individual words and demonstrated the
ability of their system to zero-shot transfer to other image

Gets nearly 80% accuracy on Imagenet with zero-shot

That is no training on Imagenet!
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Diffusion models, next word prediction, DINO all
have the same principle: unsupervised learning

Take a piece of data

—

Corruptit in a controlled way ‘ Reconstruct it via a transformer

~
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Difference between GPT3 and GPT4?

srompt  Explain the moon landing to a 6 year old in a few sentences.

pletio GPT-3

Explain the theory of gravity to a 6 year old.

Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and sent them back to the earth so we could all see them.



Difference between GPT3 and GPT4?

Training language models to follow instructions
with human feedback

Long Ouyang®  Jeff Wu*  Xu Jiang® Diogo Almeida* Carroll L. Wainwright*
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Jan Leike* Ryan Lowe®
- This phase is called Alighment, RLHF finetuning,
Making language models bigger does not inherently make them better at following e tC .

a user’s intent. For example, large language models can generate outputs that

are untruthful, toxic, or simply not helpful to the user. In other words, these

models are not aligned with their users. In this paper., we show an avenue for

aligning language models with user intent on a wide range of tasks by fine-tuning

with human feedback. Starting with a set of labeler-written prompts and prompts 9 . . .

submitted through the OpenAl APL, we collect a dataset of labeler demonstrations

of the desired model bchr:n'inr. which we use to fine-tune GPT-3 using supervised T h e m O d e l S kn O Wle dge I S fl Xe d d u rl n g th e
learning. We then collect a dataset of rankings of model outputs, which we use to

further fine-tune this supervised model using reinforcement learning from human M M M

feedback. We call the Fr:;.-iu]linl__{ models InstructGPT, In human evaluations on p ret ra I n I ng, b u t t h I S p h a S e te aC h e S h u m a n
our prompt distribution, outputs from the 1.3B parameter InstructGPT model are

preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters.

Moreover, InstructGPT models show improvements in truthfulness and reductions p refe re n C e S .

in toxic output generation while having minimal performance regressions on public

NLP datasets. Even though InstructGPT still makes simple mistakes, our results

show that fine-tuning with human feedback is a promising direction for aligning

language models with human intent.



Open Problems

* Diffusion process isvery successful for images and nextword prediction for language.
Is there a unifying process?

 What other new unsupervised learning tasks we can create?

* LLMs are not good in reasoning, planning, etc. What new unsupervised learning processes
that can unlock these?

 Math: We do next word prediction for math; are there better processes?
(to me, math is a different modality compared to text)

* llya Sutskever “An Observation on Generalization”
- any abstraction is a form of compression; can we formalize it?
https://www.youtube.com/watch?v=AKMuA_TVz3A&list=PLgKuh-lKre12qVTI88k2n2N37tT-BpmHT&index=4



Three Breakthrough ldeas

Unsupervised or self-supervised Transformer Architecture Scale
Learning




Scaling -> improves next word prediction accuracy -> better in-context learning

(one of the time tested principles)

Zero-shot One-shot Few;shot
l J— A~ .

175B Params

Natural Language

60 Prompt

From GPT3 paper ;

40

30

Accuracy (%)

No Prompt

20

10
- 1.3B Params

Number of Examples in Context (K)

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate

improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

sufficient to enable a human to perform a new task to at least a reasonable degree of competence. Aside from pointing
to a conceptual limitation in our current NLP techniques, this adaptability has practical advantages — it allows humans
to seamlessly mix together or switch between many tasks and skills, for example performing addition during a lengthy
dialogue. To be broadly useful, we would someday like our NLP systems to have this same fluidity and generality.



Training neural networks is (very) expensive

So, how should we select how large is the model, how much data | should use, and how long | should train?
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Abstract

We study empirical scaling laws for language model performance on the cross-entropy loss.
The loss scales as a power-law with model size, dataset size, and the amount of compute
used for training, with some trends spanning more than seven orders of magnitude. Other
architectural details such as network width or depth have minimal effects within a wide
range. Simple equations govern the dependence of overfitting on model/dataset size and the
dependence of training speed on model size. These relationships allow us to determine the
optimal allocation of a fixed compute budget. Larger models are significantly more sample-
efficient, such that optimally compute-efficient training involves training very large models
on a relatively modest amount of data and stopping significantly before convergence.

) DeepMind

Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

*Equal contributions

We investigate the optimal model size and number of tokens for training a transformer language model
under a given compute budget. We find that current large language models are significantly under-
trained, a consequence of the recent focus on scaling language models whilst keeping the amount of
training data constant. By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and
the number of training tokens should be scaled equally: for every doubling of model size the number
of training tokens should also be doubled. We test this hypothesis by training a predicted compute-
optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and
4x more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B),
Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks.
This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly
facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of
67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.



Hypothesis (verified time and again by several models)

Pretraining loss for next word prediction is a good indicator of model performance in the wild.



Scaling Laws Problem

In this work, we revisit the question: Given a fixed FLOPs budget,! how should one trade-off model
size and the number of training tokens? To answer this question, we model the final pre-training loss?
L(N, D) as a function of the number of model parameters N, and the number of training tokens, D.
Since the computational budget C is a deterministic function FLOPs(N, D) of the number of seen
training tokens and model parameters, we are interested in minimizing L under the constraint
FLOPs(N, D) =C:

NﬂpE{C}A DDPI{E} = argmin L(N, D). (1)
N.D s.t. FLOPs(N,D)=C

The functions N, (C), and D, (C) describe the optimal allocation of a computational budget C. We



Kaplan et al

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N, D, C' when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)



Chinchilla paper

Efficient frontier. We can approximate the functions N,, and D,,, by minimizing the parametric
loss L under the constraint FLOPs(N, D) = 6ND (Kaplan et al., 2020). The resulting N,,, and D,

balance the two terms in Equation (3) that depend on model size and data. By construction, they
have a power-law form:

C)

aA\#F ;. a
6 6 b 4T

ﬁ_B TB, ﬂndh=a+ﬁ.

We show contours of the fitted function L in Figure 4 (left), and the closed-form efficient computational
frontier in blue. From this approach, we find that a = 0.46 and b = 0.54—as summarized in Table 2.

a b
Nopt (C) =G[E) » Dope(C) =G_1(E) ,  where G:[

Table 2 | Estimated parameter and data scaling with increased training compute. The listed
values are the exponents, a and b, on the relationship N, o« C* and D, o C?. Our analysis suggests
a near equal scaling in parameters and data with increasing compute which is in clear contrast
to previous work on the scaling of large models. The 10" and 90" percentiles are estimated via
bootstrapping data (80% of the dataset is sampled 100 times) and are shown in parenthesis.

Approach Coeff. a where Nyp: oc C*  Coeff. b where Dp o C°
1. Minimum over training curves 0.50 (0.488, 0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454, 0.455) 0.54 (0.542,0.543)

Kaplan et al. (2020) 0.73 0.27




Open Problems

Theoretical understanding of scaling laws and their implications.

A Theory for Emergence of Complex Skills in Language Models

Sanjeev Arora, Anirudh I


https://arxiv.org/search/cs?searchtype=author&query=Arora,+S
https://arxiv.org/search/cs?searchtype=author&query=Goyal,+A

Other forms of scaling laws:

Hyperparameters scaling, initializations, etc,

Tensor Programs V:
Tuning Large Neural Networks via
Zero-Shot Hyperparameter Transfer

*Microsoft Corporation °OpenAl

Abstract

Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively
so for neural networks (NNs) with billions of parameters. We show that, in the
recently discovered Maximal Update Parametrization (;P), many optimal HPs
remain stable even as model size changes. This leads to a new HP tuning paradigm
we call uTransfer: parametrize the target model in pP, tune the HP indirectly on a
smaller model. and zero-shot transfer them to the full-sized model, i.e., without
directly tuning the latter at all. We verify pTransfer on Transformer and ResNet.
For example, 1) by transferring pretraining HPs from a model of 13M parameters,
we outperform published numbers of BERT-large (350M parameters), with a total
tuning cost equivalent to pretraining BERT-large once: 2) by transferring from
40M parameters, we outperform published numbers of the 6.7B GPT-3 model, with
tuning cost only 7% of total pretraining cost. A Pytorch implementation of our
technique can be found at github.com/microsoft/mup and installable via pip

Greg Yang™* Edward J. Hu"*7 Igor Babuschkin® Szymon Sidor° Xiaodong Liu*
David Farhi® Nick Ryder® Jakub Pachocki® Weizhu Chen* Jianfeng Gao*

install mup.

1 Introduction

Hyperparameter (HP) tuning is critical to deep
learning. Poorly chosen HPs result in subpar

performance and training instability. Many pub- ;

lished baselines are hard to compare to one
another due to varying degrees of HP tuning.
These issues are exacerbated when training ex-
tremely large deep learning models, since state-
of-the-art networks with billions of parameters
become prohibitively expensive to tune.

Recently, [57] showed that different neural net-
work parametrizations induce different infinite-
width limits and proposed the Maximal Update
Parametrization (abbreviated piP) (summarized
in Table 3) that enables “maximal” feature learn-
ing in the limit. Intuitively. it ensures that each
layer is updated on the same order during train-
ing regardless of width.> In contrast, while the

Standard Practice O Work

s B s optimum stable —

0 -1 -1 -4 -2 - -2 - -6 -4 -2 -
g, LearmmoRate log LearmingRate

Figure 1: Training loss against learning rate on
Transformers of varying d, o4 trained with Adam.
Conventionally and in contrast with our technique,
different widths do not share the same optimal hy-
perparameter; wider networks do not always per-
form better than narrower ones: in fact they under-
perform the same-width networks in our technique
even after tuning learning rate (see dashed line).
See Sections 3 and 4 for experimental setup.

standard parametrization (SP) ensures activations are of unit order at initialization, it actually causes
them to blow up in wide models during training [57] essentially due to an imbalance of per-layer

"Work done partly during Microsoft Al Residency Program.
“Equal contribution. Order is random. Correspondence to {gregyang, edwardhul@microsoft.com

h

*i.e., the updates’ effect on acti

roughly independent of width in the large width limit.



Physics of LLMs: Allen Zhu and Li.

Information storage capacity of transformers:
2-bits per parameter
(https://arxiv.org/abs/2404.05405)



Three Breakthrough ldeas

Unsupervised or self-supervised Transformer Architecture Scale
Learning




Transformer

Attention is All You Need
https://arxiv.org/abs/1706.03762

Positional
Encoding

Qutput
Probabilities

Linear

”

~ ™~
Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

} 2

it

I

3

—

.r—>| Add & Norm l

Multi-Head
Attention

it

o

—

e »

Qe

Input

Embedding

Inputs

I

Add & Norm

Masked
Multi-Head
Aftention

L

-
I

E_

Qutput
Embedding

T

Outputs
(shifted right)

Pasitional
Encoding

Figure 1: The Transformer - model architecture.



Transformer

Attentionis All You Need

https://arxiv.org/abs/1706.03762
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Decoder only Transformer (All GPTs, LLaMAs, Geminis, all good models)
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What is Input and Output?

Input

A black hole is a region of ‘

(converted into a vector
in high dimension)

model
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Embedding Layers: Convert sequence of words into a matrix, where
each word (or token) is represented as a vector
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* |nput Embedding Layer: Just a linear layer (matrix
multiplication) to learn better representation of
words/tokens.

* The embeddings of tokens should better represent
relationships among tokens or words.

* Ex: queen and king should have closer representation
Similarly, (Queen - king) should nearly same (woman — man)

Input sequence of tokens = input matrix

4

coding
|' Input |
. Embedding |

Input (prompt)

> Input matrix * W_{embedding} matrix

Each token in the input sequence has a new representation in
a smaller dimension



Positional Embedding
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Input sequence of tokens = input matrix

4

Input matrix * W_{embedding} matrix = idx

4

For everytoken, we add a positional encoding of
that token. Intuition is that in any sentence,
position of the words matter, so that information
needs to encoded in the input.



Example of positional encoding

1. Sinusoidal Positional Encodings: Instead of learning separate embeddings for each position in
the sequence, sinusoidal positional encodings use sine and cosine functions with different

frequencies to encode positional information.

2. Formulation: The positional embedding for position ¢ and dimension j is calculated as follows:

st (l{:f[l[ll:lzi';-""lt'uud;.-] ) if J 18 even

PE(i,j) = i -

Where:
» PE(i, j) is the positional embedding for position ¢ and dimension j.

* dmedel 1S the dimensionality of the embeddings.




Embedding Layers = a good representation of words + their positions

Cutput Probability

(next token)

Softmax

+

Linear

A

s

Block 2 ... N

A

| Block 1

1t

Add & Norm  =—
S

Feed ‘
Forward

o —

Add & Norm  -—
|

Masked
Multi-Head
Attention

™
-

Input |
Embedding |

Input (prompt)

Positional
Encoding

Input sequence of words / tokens = input matrix

4

Input matrix * W_{embedding} matrix = x

4

x+ positional encoding matrix (not learnt)

For everytoken, we add a positional encoding of
that token. That, at this point, each token is sum
of two vectors: learnt embedding of the token +
its position in the sequence. This completes the
representation of the input.

4

Xis matrixof size T* C, where T is the number of tokens in
the sequence and C is the dimension of each vector
representing each token.



What is Input and Output?
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Attention Function
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The most important concept or layer in Transformers.
Let us first simplify and understand single attention head.
Also, fora momentignore masked part. We will come to it naturally.



Attention FLI nCtion Xis matrixof size T* C, where T is the number of words in the
sequence and C is the dimension of each vector

representing each word/token.

oo™ Lets fix a single word and see what attention function does to that word.
Here “of” is our word. Just rememberthat every word has a C length vector now
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e Xismatrixofsize T* C,where T is the number of tokens in
the sequence and C is the dimension of each vector
representing each token.

* Everytokenistrying to predict the next token in the
sequence => can only use information from previous
tokens (masked language modelling)
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Scaled Dot-Product Attention

Q, KandV are all the same matrices
representing input sequence of vectors

Scaled Dot-Product Attention Multi-Head Attention

a K W

After the application of first layer of self-
attention, every token representation gets
updated: Itis a convex combination of

v ok a softmax applied to dot product of the all
previous tokens.

Scaled Dot-Product
Attention

.

4

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

321 Scaled Dot-Product Attention Note that in self-attention every token

We call our particular attention "Scaled Dot-Product Attention” (Figure 2). The input consists of

queries and keys of dimension dy, and values of dimension d,. We compute the dot products of the a tt e n d S to p reVi O u S to ke n S ’ n Ot to fo rwa rd

query with all keys, divide each by /d}., and apply a softmax function to obtain the weights on the

values. ones. It makes sense; we are predicting the

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix (). The keys and values are also packed together into matrices K and V. We compute

the matrix of outputs as: n eXt WO rd ! ! ! !

. - QKT

Attention(Q, K, V') = softmax( W (1)
Vi

The two most commonly used attention functions are additive attention [2], and dot-product (multi-

plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor

of —t=. Additive attention computes the compatibility function using a feed-forward network with H H .

vid, 8
a singAle hidden layer. While the two are similar in theoretical complexity, dot-product attention is Th I s Is a ll go Od ° B Ut Wh at a re We
much faster and more space-efficient in practice, since it can be implemented using highly optimized

matrix multiplication code. le a r ni n g?

While for small values of d. the two mechanisms perform similarly, additive attention outperforms

dot product attention without scaling for larger values of . [3]. We suspect that for large values of i H 1
dy., the dot products grow large in magnitude, pushing the s:‘yftmax function into regions where it has Th e re a re n o lea r n I n g p a ra m et e rs I n t hl S
attention computation!!!!

extremely small gradients *. To counteract this effect, we scale the dot products by ﬁ
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Xismatrixof size T * C, where T is the number of tokens in
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ACtual Self'Attention B, T,C = 1,8,32 # batch, time, channels

x = torch.randn(B,T,C)

# let's see a single Head perform self-attention

ouml :S‘trg}?;nb)ility hea d_SiZG = 16
A key = nn.Linear(C, head size, bias=False)
- query = nn.Linear(C, head size, bias=False)
— ‘ value = nn.Linear(C, head size, bias=False)
[ Block2..N
) A . k = key(x) # (B, T, 16)
E“nck;dd&mmm “— q = quer‘y(x) # (BJ T, 16)
|_:E§;_| wei = q @ k.transpose(-2, -1) # (B, T, 16) @
A (B, 16, T) ---> (B, T, T)
Add & Norm -
"—Qmﬁgﬂ tril = torch.tril(torch.ones(T, T))
<::::§_£WTWT ::::> wei = wei.masked fill(tril == @, float('-inf'))
wei = F.softmax(wei, dim=-1)

Positional
Encoding

(e ) v = value(x)
out = wel @ v

Input (prompt)

(Andrej Karpathy)
https://www.youtube.com/watch?v=VMj-3S1tku0&list=PLAghlrjkxbuWI23v9cThsA9GvCAUhRvVKZ



Masked Multihead Attention

Cutput Probability
(next token)

|J Softmax ~|
. S
[ Linear [
X J
| Block 2 ... N |

# '~.
Block 1

Add & Norm  =—
I

‘f Feed ‘
Forward )
Add & Norm  -—

Y S —

‘ Masked ‘

Multi-Head
Aftention

t t ¢

-
Fositional
Encoding

Input
Embedding

Input (prompt)

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dyege-dimensional keys, values and queries,
we found it beneficial to linearly project the queries. keys and values h times with different, learned
linear projections to dy.. d}, and d, dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding d..-dimensional

“To illustrate why the dot products get large, assume that the components of ¢ and k are independent random
variables with mean () and variance 1. Then their dot product, ¢ - k = Z'f;l giki, has mean 0 and variance dy..

output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

MultiHead (@), K, V') = Concat(head,, ..., ]1(:?1(1”]-1-"0
where head; = Attention(QW2, KWX vwY)

Where the projections are parameter matrices W2 € Redmatxdic /K ¢ Rewsaxdi |V g Remosxdu
and H.-() € th,.xdm‘k.‘

In this work we employ i = 8§ parallel attention layers, or heads. For each of these we use
di. = dy = dmoder/h = 64. Due to the reduced dimension of each head, the total computational cost
is similar to that of single-head attention with full dimensionality.



Feed FO r'wa rd Laye I (the same network we saw in digit recognition task)

Output Probability
(next token)

Softmax
A 3.3 Position-wise Feed-Forward Networks

Linear

B :2 v In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully
0C

- g connected feed-forward network, which is applied to each position separately and identically. This
(‘Block 1 consists of two linear transformations with a ReLU activation in between.
Add & Norm  €—

—_—

FEr?n?:rd | > FFN(z) = max(0, zWy + b1)Wa + bs (2)
ry

While the linear transformations are the same across different positions, they use different parameters

Add & Norm  &— from layer to layer. Another way of describing this is as two convolutions with kernel size 1.
Mas'ked The dimensionality of input and output is d,g = 512, and the inner-layer has dimensionality
Multi-Head dsr = 2048.
Attention
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Repeat A Transformer Block Few Times

i) You
how many tranformer blocks GPT4 has?

ChatGPT

A S I n gle t ra n Sfo rm e r B lo C k: As of my last update in January 2022, the exact architecture of GPT-4 hasn't been officially
S e lf_ Att e n tl O n L ay e r disclosed, as it's a hypothetical model. However, | can provide an estimate based on the
. . progression of the GPT series.
Normalization Layer
Feed Forward Layer

GPT (Generative Pre-trained Transformer) models typically consist of multiple layers of

transformer blocks. GPT-3, for example, has 96 layers of transformer blocks.

Assuming that GPT-4 follows a similar architecture but with even more parameters and
complexaty, it could potentially have over 100 layers of transformer blocks. However, the actual
number of transformer blocks in GPT-4 would depend on various factors, including research
advancements, computational constraints, and the specific design choices made by the

developers.

It's essential to keep in mind that without official documentation or release, any information

regarding GPT-4's architecture is speculative.
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What should this linear layer + softmax do?



Final Layer
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What should this linear layer + softmax do?

It should take the vector representing a token, and output a
probability distribution over the set of all possible tokens!
To do that: we learn another linear layer (matrix) and then
apply softmax!

We get a distribution over the all tokens in our dictionary.

This happens for every token in the sequence.

Done.



DNNs = Matrix Multiplications => GPUs...

Every layer of a transformer (or any DNN) for that matter is

- simply matrix-matrix multiplication; it is matrix-matrix not matrix-vector
because we are processing multiple examples at the same time.

- you can also take multiple sentences simultaneously, and try to predict next
token in each of them; then your input will be a tensor, first index representing
the sentence; tensor multiplication is similar to matrix multiplication,but
libraries parallelize them on GPUs on the first dimension.

- only other operation we do is softmax and
some RELU type non-linear operations.

- That’s pretty much it! DNNs are surprisingly simple objects!
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Intuition of transformers

Attention Layers:
Transforming the data to get arich representation
Feed Forward Layers:

Computing some function over the data



IntUitiOn 2: Attention Layers:

V1 V2

V1 V2

V3

V3

V4 V5

V4 V5

V6

V6

V7

V7

"Pairwise interactions”




But note that attention blocks are repeated!

Output Probability
(next token)
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A
Linear
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Which means that in every i+1 attention layer, each
token representations get richer, and can capture
arbitrary subset of interactions!

Repetition of attention blocks allows information "mixing"




Intuition 3: Why multiple heads?
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Allow the model to capture different kinds of similarities

Forsame query, different tokens can become keys
in different ways. So, you want to allow for such
situations.

Multi-head Attention allows each token to capture
different relationships among tokens

“Multi-head attention allows the model to jointly attend to
information from different representation subspaces at
different positions. With a single attention head, averaging
inhibits this.” - from the paper
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Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the

sentence. We give two such examples above, from two different heads from the encoder self-attention

at layer 5 of 6. The heads clearly learned to perform different tasks.



Unsupervised or self-supervised
Learning

Three Breakthrough ldeas

Transformer Architecture

Scale

A

See Andrej Karpathy’s lecture videos
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