
Simran Arora

Understanding and building efficient 
machine learning architectures
STOC 2024



We’ve seen language models take the world by a storm!



Even modeling biological (CRISPER) systems!

Nguyen et al., Evo: Long-context modeling from molecular to genome scale, https://www.together.ai/blog/evo 

https://www.together.ai/blog/evo


Our current large models use the Transformer architecture.



Given  inputs, the “sequence mixer” is the part of an 
architecture that mixes along .

u ∈ ℝN×d

N

Vaswani et al., Attention is all you need, 2017.


In Transformers, the sequence mixer is an attention operation.



Attention computation.

Q = Wqx,
K = Wkx,
V = Wvx,

Q ∈ ℝN×d

K ∈ ℝN×d

V ∈ ℝN×d

(N × d) × (d × N)

y = exp(QKT)V{

N

N

 gives an  matrix of scalar 
weights that tells us how to mix the value 

representations 

exp(QKT) N × N

V

Given  input:
x ∈ ℝN×d

O(N2d)



Attention scales quadratically in 
length during training. 

N

N

y = exp(QKT)V

N

d

N

d

V matrix

Y output



Our current large models generate one token at a time.

They are trained to predict the next token given the past 
tokens in the sequence. 

Harry
 Potter
 and
 the
 Chamber
 of




Transformers are slow: compute and GPU memory required 
grows as we generate for longer.

When we generate one at a time, each new token position  
interacts with every prior token in the sequence (positions ).

t
[0..t]



When we generate one at a time, each new token position  
interacts with every prior token in the sequence (positions ).

t
[0..t]



The massive compute needed by Transformers 
prevents us from reaching the full potential of ML…

Music


Speech

Thousands of time steps in a single second of raw audio


3.2 Bn nucleotide pairs in a human genome sequence




Excitingly, many new efficient architecture proposals!

Efficient alternative??Attention??

MLP

LLM 

Layer

Transformers are RNNs [Katharopoulos et al.], S4 [Gu et al.], 
RFA [Pent et al.], CosFormer [Qin et al.], Performer 
[Choromanski et al.], Linformer [Wang et al.], DSS [Gupta], GSS 
[Mehta et al.], S4D [Gu et al.], Liquid S4 [Hasani et al.], H3 [Fu et 
al.], S5 [Smith et al.] BIGS [Wang et al.], Hyena [Poli et al.], 
RWKV [Peng et al.], RetNet [Sun et al.], M2 [Fu et al.], Mamba 
[Gu et al.], Hedgehog [Zhang et al.], Based [Arora et al.,], GLA 
[Yang et al.], GateLoop [Kastch et al.], Hawk/Griffin [De et al.]



Deviating from the Transformer-orthodoxy is risky!



Language modeling requires many varied skills at many 
varied levels of abstraction!

Skill-Mix, Princeton Language + Intelligence, 2023.

Wang et al., Glue Benchmark.

It’s not clear how Transformer alternatives will impact quality. 



Talk outline

Efficient architectures. What are prevailing approaches?



Talk outline

Quality gaps. How do efficient alternatives compare to attention? 

Efficient architectures. What are prevailing approaches?



Talk outline

Quality gaps. How do efficient alternatives compare to attention? 

Efficient architectures. What are prevailing approaches?

Explaining the gap. Using synthetic language modeling problems and 
theory to explain the tradeoffs of prior attention alternatives. 



Talk outline

Quality gaps. How do efficient alternatives compare to attention? 

Efficient architectures. What are prevailing approaches?

Bridging the gap.  Using our insights to build new architectures that 
extend the Pareto frontier of the quality-efficiency tradeoff space.

Explaining the gap. Using synthetic language modeling problems and 
theory to explain the tradeoffs of attention alternatives. 



Goal: Show how theory informed the way we bridged the gap!



Talk outline

Efficient architectures. What are prevailing approaches?



Can we replace attention?

Efficient alternative??Attention??

MLP

LLM 

Layer



We’ll look at two prevailing (closely related) 
classes of efficient architectures

1

State space models (Gu et al., 2021)2

Linear attention (Katharopoulos et al., 2020)

DSS [Gupta], GSS [Mehta et al.], S4D [Gu et al.], Liquid S4 [Hasani 
et al.], H3 [Fu et al.], S5 [Smith et al.] BIGS [Wang et al.], Hyena [Poli 
et al.], RWKV [Peng et al.], RetNet [Sun et al.], M2 [Fu et al.], 
Mamba [Gu et al.], GateLoop [Kastch et al.], …

RFA [Pent et al.], CosFormer [Qin et al.], Performer [Choromanski 
et al.], Linformer [Wang et al.], Hedgehog [Zhang et al.], Based 
[Arora et al.,], GLA [Yang et al.], ReBased [Aksenov et al.], 



1 Linear attention (Katharopoulos et al., 2020)



Linear attention computation.

Q = Wqu,
K = Wku,
V = Wvu,

y = exp(QKT)V

Q ∈ ℝN×d

K ∈ ℝN×d

V ∈ ℝN×d

Q = Wqu,
K = Wku,
V = Wvu,

y = ϕ(Q)ϕ(KT)V

Q ∈ ℝN×d′￼

K ∈ ℝN×d′￼

V ∈ ℝN×d

feature map ϕ( ⋅ ) : ℝN×d′￼ → ℝN×D

Given  input:
u ∈ ℝN×d



Linear attention computation.

Q = Wqu,
K = Wku,
V = Wvu,

y = exp(QKT)V

Q ∈ ℝN×d

K ∈ ℝN×d

V ∈ ℝN×d

Q = Wqu,
K = Wku,
V = Wvu,

y = ϕ(Q)ϕ(KT)V

Q ∈ ℝN×d

K ∈ ℝN×d

V ∈ ℝN×d
{

O(N2d)

{

O(Nd2)
Reorder the multiplies



Linear attention computation.

Q = Wqu,
K = Wku,
V = Wvu,

y = exp(QKT)V

Q ∈ ℝN×d

K ∈ ℝN×d

V ∈ ℝN×d

Q = Wqu,
K = Wku,
V = Wvu,

y = ϕ(Q)ϕ(KT)V

Q ∈ ℝN×d′￼

K ∈ ℝN×d′￼

V ∈ ℝN×d
{

O(N2d)

{

O(NDd)
Scales linearly in N!
Scales quadratically in N!


Reorder the multiplies



Linear attention during inference.

y0 = ϕ(Q0)h0

y0 = exp(Q0 KT
0 )V0

h0 = ϕ(K⊤
0 )V0, h0 ∈ ℝ1×d2

For the first token in the sequence ( ):i = 0



Linear attention during inference.

y1 = exp(Q1 K0:1 T)V0:1
y1 = ϕ(Q1)h1

h1 = h0 + ϕ(K⊤
1 )V1, h1 ∈ ℝ1×d2

For the second token in the sequence ( ):i = 1



Linear attention during inference.

Q = Wqu,
K = Wku,
V = Wvu,

Q ∈ ℝN×d′￼

K ∈ ℝN×d

V ∈ ℝN×d

Runtime and memory 
scales linearly with  t

Runtime and memory remain 
constant as  grows!t

yt = ϕ(Qt)ht

ht =
t

∑
i=0

ϕ(K⊤
t )Vt, ht ∈ ℝ1×d2

At position :i = t

yt = exp(Qt K0:t T)V0:t



tl;dr so far

Architecture Training

Complexity

Parallelizable 
Training

Inference 
Complexity

Attention

Linear attention

State Space Models

O(N2d) O(Nd)

O(Nd2) O(1)



State space models (Gu et al., 2021)2

https://en.wikipedia.org/wiki/State-space_representation 

https://en.wikipedia.org/wiki/State-space_representation


State space model architectures

State space model (SSM), parametrized by learned weights  and :


         for 


A, B C

ht = Aht−1 + Bxt ht ∈ ℝ1×d

yt = Cht

* We’re making some simplifications since SSMs are continuous objects.



State space model architectures

State space model (SSM), parametrized by learned weights  and :


         for 


A, B C

ht = Aht−1 + Bxt ht ∈ ℝ1×d

yt = Cht

* We’re making some simplifications since SSMs are continuous objects.

yt = ϕ(Qt)ht

ht =
t

∑
i=0

ϕ(K⊤
t )Vt,

Contrast:



State space models during inference…
State space model, parametrized by learned weights  and :







Unrolling terms of the recurrence:







…




A, B C

ht = Aht−1 + Bxt
yt = Cht

h0 = Bu0
h1 = ABu0 + Bu1

hk = AkBu0 + Ak−1Bu1 + . . . + Buk

yk = CAkBu0 + CAk−1Bu1 + . . . + CBuk

Runtime and memory remain 
constant as t grows!



State space models (SSM) during training

State space model for  and :







After unrolling the above:




Rewrite this as a convolution with filter :




A, B C ∈ ℝ1×d

ht = Aht−1 + Bxt
yt = Cht

yN = CANBx0 + CAN−1Bx1 + . . . + CBxN
K

y = K * x
K = (CB, CAB, . . . , CAN−2B, CAN−1B)

Toeplitz sequence 
mixing matrix

N

N

ht ∈ ℝ1×d



Convolutions

Sequence mixing matrices

Attention



Convolutions
Convolution operation with filter  and inputs 

, for sequence length :

 





K
u = [u0, . . . , uN] N

y = K * u
K = (CB, CAB, . . . , CAN−2B, CAN−1B)

Using a Fast Fourier transform, we can compute the convolution 
sub-quadratically in  compute!O(N log N)

Toeplitz sequence 
mixing matrix



Gated state space / Gated convolution models
Convolution operation with filter  and inputs 

, for sequence length :

 





K
u = [u0, . . . , uN] N

y = K * u
K = (CB, CAB, . . . , CAN−2B, CAN−1B)

Hadamard product (“gating”): element-wise multiply between 
vector   and input u
v ∈ ℝN×d

y = K ⊙ u

Toeplitz sequence 
mixing matrix



tl;dr

Architecture Training

Complexity

Parallelizable 
Training

Inference 
Complexity

Attention

Linear attention

State Space Models

O(N2d) O(Nd)

O(Nd2) O(1)

O(dN log N) O(1)



Prior work suggests efficient LMs match 
and outperform Transformers everywhere!

On overall 
language 
modeling!



Prior work suggests efficient LMs match 
and outperform Transformers!

When did Galileo move to Florence?

Real-world example Abstraction (“synthetic recall test”)



Prior work suggests efficient LMs match 
and outperform Transformers!

Fu, Dao et al., Hungry Hungry Hippos, 2023. https://arxiv.org/abs/2212.14052 

https://arxiv.org/abs/2212.14052


tl;dr

Architecture Training

Complexity

Parallelizable 
Training

Inference 
Complexity Quality

Attention

Linear attention

State Space Models

O(N2d) O(Nd)

O(Nd2) O(1)

O(dN log N) O(1)



Deviating from the Transformer-orthodoxy is risky!



No free lunch!🤔



Architecture Training

Complexity

Parallelizable 
Training

Inference 
Complexity Quality

Attention

Linear attention

State Space Models

O(N2d) O(Nd)

O(Nd2) O(1)

O(dN log N) O(1)

?
?

How does deviating from the Transformer 
impact quality?



Talk outline

Quality gaps. How do sub-quadratic alternatives compare to attention? 

Efficient architectures. What are prevailing approaches?



We trained language models across popular efficient 
architecture proposals and found quality gaps…

Let’s perform an error analysis of the models’  

next token predictions!💡

Model (360M) Perplexity

Attention 8.39
S4 (SSM) 13.13

H3 (Gated SSM) 10.60
Hyena (Gated SSM) 10.11

RWKV-V5 (Gated SSM) 9.79
Linear attention 9.49



We performed a manual error analysis of next token predictions, 
color coding tokens in the test set: 

Both correct 

Both incorrect

Only Attention correct

Only efficient-LM correct

A single skill, associative recall, was a glaring failure mode for efficient LMs.



Scaling up the error analysis.

6.4% tokens 93.6% tokens

Associative recall 
accounted 80%+ of the gap 

between Transformers and 
the efficient LMs on average, 

despite representing just 
6.4% of tokens!

🤔



The efficient LMs struggled on in context learning tasks that need 
recall (e.g., answering questions from documents)…

Model
Averaged across 3 tasks that 

need recall

(Accuracy metric)

Attention 47.7

H3 (Gated SSM) 5.1

Linear attention 17.2

Mamba 18.1



Even though they were similar to attention on non-recall language tasks.

Model
Averaged across 3 

tasks that need recall

(Accuracy metric)

Non recall tasks 
(Accuracy)

Attention 47.7 44.1

H3 (Gated SSM) 5.1 39.4

Linear attention 17.2 43.2

Mamba 18.1 43.5



Prior efficient LMs were specifically 
designed with AR in mind!

This was

 surprising.🤔

What gives?

https://arxiv.org/abs/2212.14052 

https://arxiv.org/abs/2212.14052


Talk outline

Quality gaps. How do sub-quadratic alternatives compare to attention? 

Efficient architectures. What are prevailing approaches?

Explaining the gap. Using synthetics and theory to explain the tradeoffs 
of prior attention alternatives. 



Let’s start with an intuitive explanation…



What does it take for a model to solve AR?

1

2

Compare: Which pairs of tokens in the sequence match?

Shift: Bring forwards the values (e.g., 3) corresponding to the 
matches (e.g. A) to generate the next token (fill the “?”) 

Ideal sequence mixing matrix



This is easy with attention inner products!

Attention computes an “input-
dependent” mixing matrix:


 A = exp((uWQ)(uWk)T)

Ideal sequence mixing matrix



Convolutions

Convolutions do not 
perform input-dependent 

mixing. The filters are fixed.


But our gated convolution models mix in more restricted ways.

Attention

Attention performs input-
dependent mixing


 A = exp((uWQ)(uWk)T)



Toeplitz sequence mixing matrix

A token can look back m tokens only if all tokens look back m tokens. 
With m = four below:



Gated convolutions and recall

Luckily, the convolutional LMs apply a unique convolution to each dimension of 
the -dimensional input!d

Thus, they can support multiple token-to-token comparisons!

N

d



Gated convolutions and recall

To support all  token interactions, we need to perform all shifts. 𝒪(n2)

Dimensionality would need to grow linearly in sequence length to 
store a fully copy of the input in a single embedding!



We devise an improved formalization of 
the recall problem.💡



Explaining the gap. 

A few convolution shifts (small ) are sufficient for this formalization!d



Recall could be needed at arbitrary positions. 
The key-value mappings occur one-to-few 
times in a sequence.



Does MQAR better capture what’s going 
on in language modeling?
We measured MQAR quality a function of model dimension and sequence length.



Gated-convolutions require scaling the model parameters with sequence length.
Attention requires only a constant model dimension to solve MQAR. 

Yes! The trends on the MQAR synthetic 
correlate with the results we saw earlier.
We measured MQAR quality a function of model dimension and sequence length.



MQAR has already seen wide adoption in designing the next wave of 
efficient models! Try it out: https://github.com/HazyResearch/zoology 

https://github.com/HazyResearch/zoology


We need theory to reason about the 
massive landscape in a systematic way.



The architecture landscape is massive!

H3 Layer BiGS Layer RWKV Layer Hyena Layer

Mamba Layer

Attention??

MLP

LLM 

Layer

S4 [Gu et al.], DSS [Gupta], 
GSS [Mehta et al.], S4D [Gu 
et al.], Liquid S4 [Hasani et 
al.], H3 [Fu et al.], S5 [Smith 
et al.] BIGS [Wang et al.], 
Hyena [Poli et al.], RWKV 
[Peng et al.], RetNet [Sun et 
al.], M2 [Fu et al.], Mamba 
[Gu et al.], Based [Arora et 
al.,], GLA [Yang et al.], 
GateLoop [Kastch et al.], 
Hawk/Griffin [De et al.], 
Transformers are RNNs 
[Katharopoulos et al.]



We can write our efficient models as polynomials 💡

Consider two vectors   u, v ∈ ℝN×d

 u = [u0, u1, . . . , uN−1]
 v = [v0, v1, . . . , vN−1]

Hadamard product computes:

 u ⊙ v = [u0v0, u1v1, . . . , uN−1vN−1]
Each output is a 
degree 2 polynomial.



We can write our efficient models as polynomials 💡

Consider two vectors   u, v ∈ ℝN×d

 u = [u0, u1, . . . , uN−1]
 v = [v0, v1, . . . , vN−1]

Hadamard product computes:

 u ⊙ v = [u0v0, u1v1, . . . , uN−1vN−1]

Convolution computes:
 (u * v)[i] =

i

∑
j=0

ui−jvj
Each output is a 
degree 1 polynomial 
if v is “fixed”.

Each output is a 
degree 2 polynomial.



We unify the architectures using 
arithmetic circuit complexity.💡



Reminders
Arithmetic circuits are directed acyclic graphs, where each node is a linear (+) 
or multiplication (x) operation between two of the input variables.

Arithmetic circuits compute Nd polynomial outputs from the Nd input variables. 

Bürgisser et al., Algebraic Complexity Theory, 1997.



Theorem (Arithmetic circuit equivalency): For every low-depth arithmetic 
circuit of size , depth , that takes  as input, there is an equivalent 
BaseConv operator that uses  parameters and  layers.

s Δ u ∈ ℝN×d

Õ(sΔ) Õ(Δ)💡

BaseConv Layer

Y = (uW + b1) ⊙ (u * h + b2)
Linear map Convolution

BaseConv takes input  and is defined with  learnable 
filters,  linear projection,  bias terms.

u ∈ ℝN×d h ∈ ℝN×d

W ∈ ℝd×d b1, b2 ∈ ℝN×d



We distill the zoo of architectures into a canonical 
representation, BaseConv.

BaseConv Layer

S4 [Gu et al.], DSS [Gupta], GSS 
[Mehta et al.], S4D [Gu et al.], Liquid 
S4 [Hasani et al.], H3 [Fu et al.], S5 
[Smith et al.] BIGS [Wang et al.], 
Hyena [Poli et al.], RWKV [Peng et 
al.], RetNet [Sun et al.], M2 [Fu et al.], 
Based [Arora et al.,], GLA [Yang et 
al.], GateLoop [Kastch et al.], Hawk/
Griffin [De et al.], Transformers are 
RNNs [Katharopoulos et al.], …

Y = (uW + b1) ⊙ (u * h + b2)
Linear map Convolution



Theorem (Arithmetic circuit equivalency): For every low-depth arithmetic 
circuit of size , depth , that takes  as input, there is an equivalent 
BaseConv operator that uses  parameters and  layers.

s Δ u ∈ ℝN×d

Õ(sΔ) Õ(Δ)💡

Invoking parallel binary search, we build a parallel arithmetic circuit for MQAR, which 
has  depth. So  parameter and  layer BaseConv can solve MQAR.O(log N) Õ(Nd) Õ(1)

Akl and Meijer, IEEE Transactions on Parallel and Distributed Systems,1990.



Theorem (BaseConv lower bound): Regardless of how  is encoded, with  
, a BaseConv model (where each parameter takes  

bits) requires  layers to solve MQAR.

x
d ≤ 2(log N)1−ϵ O(log N)

Ω(ϵ log log N)
💡



Theorem (BaseConv lower bound): Regardless of how  is encoded, with  
, a BaseConv model (where each parameter takes  

bits) requires  layers to solve MQAR.

x
d ≤ 2(log N)1−ϵ O(log N)

Ω(ϵ log log N)
💡

We need something else…



Theory shows that input-dependent 
sequence mixing (like attention) is 
important for recall.

💡



Consider the ‘simplest’ input-dependent and 
sub-quadratic mixer: ‘sliding window attention’

Full 

Attention

Increasing Sliding 

Window Attention Size



Consider the ‘simplest’ input-dependent and 
sub-quadratic mixer: ‘sliding window attention’

Full 

Attention

Increasing Sliding 

Window Attention Size

🤔
Can we expand the 
Pareto-frontier of 

this tradeoff space?



Maybe linear attention can help us?💡



Maybe linear attention can help us?💡

“Globally” approximates standard attention 



Maybe linear attention can help us?💡

“Globally” approximates standard attention 

Uses input-dependent mixing like attention



Maybe linear attention can help us?💡

Still sub-quadratic training and O(1) inference

“Globally” approximates standard attention 

Uses input-dependent mixing like attention



Let’s mimic attention with linear attention💡

Q = Wqu,
K = Wku,
V = Wvu,

y = Softmax(QKT)V

Q ∈ ℝN×d

K ∈ ℝN×d

V ∈ ℝN×d

Q = Wqu,
K = Wku,
V = Wvu,

y = ϕ(Q)ϕ(KT)V

Q ∈ ℝN×f

K ∈ ℝN×f

V ∈ ℝN×d

Attention Linear attention

• Feature map 

• Feature dim.  

ϕ( ⋅ )
f



Let’s use  to approximate the attention ϕ( ⋅ ) exp( ⋅ )💡

Taylor approximation for the exponential function:



exp(x) = 1 + x +
x
2!

+ . . .

Keles et al., On The Computational Complexity of Self-Attention, 2022.


Zhang et al., The Hedgehog & the Porcupine: Expressive Linear Attentions with Softmax Mimicry, ICLR 2024.




💡

Taylor approximation for the exponential function:





Let our linear attention feature map  be, for outer product :





exp(x) = 1 + x +
x
2!

+ . . .

ϕ( ⋅ ) ⊗

ϕ(q) = [1,q, q ⊗ q/ 2, . . . ]

ϕ(k) = [1,k, k ⊗ k/ 2, . . . ]
exp(qk) = ϕ(q)ϕ(k) = [1,qk, (q ⊗ q)(k ⊗ k)/2,...]

Let’s use  to approximate the attention ϕ( ⋅ ) exp( ⋅ )

Need infinite terms to exactly represent exp( ⋅ )
Zhang et al., The Hedgehog & the Porcupine: Expressive Linear Attentions with Softmax Mimicry, ICLR 2024.




💡

Let our linear attention feature map  be, for outer product :





ϕ( ⋅ ) ⊗

ϕ(q) = [1,q, q ⊗ q/ 2]

ϕ(k) = [1,k, k ⊗ k/ 2]
exp(qk) ≈ ϕ(q)ϕ(k) = [1,qk, (q ⊗ q)(k ⊗ k)/2]

Let’s use  to approximate the attention ϕ( ⋅ ) exp( ⋅ )

2nd order Taylor polynomial approximation is empirically effective

Zhang et al., The Hedgehog & the Porcupine: Expressive Linear Attentions with Softmax Mimicry, ICLR 2024.




Combine local and global approximations!



Explaining the gap
We measured MQAR quality a function of the amount of the recurrent memory/state

Gated convolutions 
are below the Pareto 

frontier

!"#$%%"&'()'*'"()+,"(-./'")0

1)
)2
#+*

'+3
"(
!"

#*
44(1

##
$%
*#
/

• Sliding window

• Full attention

• H3

• Hyena



BASED expands the Pareto frontier of the tradeoff space!!!

• Based

• Mamba

• H3

• Hyena

• Sliding window

• Full attention



No free lunch!🤔



Lower bound for recurrent state memory and MQAR.

Theorem (Recurrent): Any recurrent model depending causally on the input  
requires -bits in state size to solve AR/MQAR.

u ∈ {0,1}N×d

Ω(N)

Next token prediction.

One pass streaming setting.


Harry
 Potter
 and
 the
 Chamber
 of




Lower bound for recurrent architectures and MQAR.

We reduce MQAR to the index problem and use a known lower bound for the 
index problem.

1. Two parties, Alice and Bob.

2. Alice has a length  string  and Bob has an index . 

3. Alice passes Bob a single message and Bob needs to output the -th entry .

Jayram et al., 2008 proves the  bits communication are required for the 
index problem for a length  string.


Thathachar S Jayram, Ravi Kumar, and Dandapani Sivakumar. The one-way communication 
complexity of hamming distance. Theory of Computing, 2008. 

n x ∈ {0,1}n i ∈ [n]
i xi

Ω(n)
n

Theorem (Recurrent): Any recurrent model depending causally on the input  
requires -bits in state size to solve AR/MQAR.

u ∈ {0,1}N×d

Ω(N)



💡

Let our linear attention feature map  be, for outer product :








Recall 

ϕ( ⋅ ) ⊗

ϕ(q) = [1,q, q ⊗ q/ 2]

ϕ(k) = [1,k, k ⊗ k/ 2]

ϕ( ⋅ ) : ℝN×f → ℝN×(1+f+f2)

exp(qk) ≈ ϕ(q)ϕ(k) ≈ [1,qk, (q ⊗ q)(k ⊗ k)/2]

Let’s use  to approximate the attention ϕ( ⋅ ) exp( ⋅ )

We use relatively large state sizes 
(in a hardware efficient way)



We develop hardware IO-efficient 
algorithms to retain efficiency.

GPU Memory

Hierarchy



Downstream results and efficiency

All LMs are trained on the same 50Bn tokens of the Pile 
at the 1.3Bn parameter scale. 

Model Generation efficiency

Tokens/ms

6 Recall-Intensive Tasks

(Accuracy)

7 General Language Tasks

(Accuracy)

Transformer 0.99 51.4 52.9

Mamba 25.69 36.8 56.6

Based 24.28 42.6 53.8



We’re super excited about BASED! Try it out: https://
github.com/HazyResearch/based 

• Large in-context learning and associative recall 
improvements over prior strong efficient 
architectures (e.g., Mamba)


• Spotlight (top 3.5% of 10K papers) at ICML 2024


• Oral (top 5 papers) at ICML ES-FoMo

https://github.com/HazyResearch/based
https://github.com/HazyResearch/based
https://github.com/HazyResearch/based
https://github.com/HazyResearch/based
https://github.com/HazyResearch/based
https://github.com/HazyResearch/based
https://github.com/HazyResearch/based
https://github.com/HazyResearch/based


Talk outline

Quality gaps. How do sub-quadratic alternatives compare to attention? 

Efficient architectures. What are prevailing approaches?

Explaining the gap. Using synthetics and theory to explain the tradeoffs 
of prior attention alternatives. 

Bridging the gap.  Using our insights to build new architectures that 
extend the Pareto frontier of the quality-efficiency tradeoff space.



How theory informs our design of “good” efficient LMs.

Input-dependent sequence mixing 
(like attention) is important for recall.💡

There are fundamental memory and 
recall-quality tradeoffs.💡



Our work begs the question: Can we rely on O(1) memory 
recurrent LMs for in-context learning at all? 🤔

Lower bound for recurrent state memory and MQAR.

Theorem (Recurrent): Any recurrent model depending causally on the input  
requires -bits in state size to solve AR/MQAR.

u ∈ {0,1}N×d

Ω(N)



💡
This makes recurrent models brittle with 
respect to data ordering.

When did Galileo move to Florence?

When did Galileo move to Florence?

Order 1
 Order 2



Lower bound for recurrent state memory and MQAR.

Theorem (Recurrent): Any recurrent model depending causally on the input  
requires -bits in state size to solve AR/MQAR.

u ∈ {0,1}N×d

Ω(N)

Autoregressive modeling.

One pass streaming setting.


Harry
 Potter
 and
 the
 Chamber
 of




Lower bound for recurrent state memory and MQAR.

Theorem (Recurrent): Any recurrent model depending causally on the input  
requires -bits in state size to solve AR/MQAR.

u ∈ {0,1}N×d

Ω(N)

Autoregressive modeling.

One pass streaming setting.


Harry
 Potter
 and
 the
 Chamber
 of




💡 Let’s abstract this idea!

I give you two sets of elements and you 
need to tell me if they intersect?

D R L Q C… L

Set A Set B

Hemaspaandra, SIGACT News Complexity Theory Column 67.



💡
For autoregressive models, the amount of memory we 
need depends on the size of the first set in the sequence.

Memory needed if Set A comes first

D R L Q C…

Memory needed if Set B comes first

FL

D R L Q C… L

Set A Set B



💡 For non-causal models, the amount of memory we 
need depends on the min(|A|, |B|)!

Memory needed if Set A comes first

D R L Q C…

Memory needed if Set B comes first

FL

D R L Q C… L

Set A Set B



We find non-causal models perform better than causal models on a synthetic 
version of this task when the first set (A) is large



💡 We can make multiple passes over the data to better select the 
information to store in the fixed recurrent state.

Just read twice prompting 

Show the model the input twice

Document Question Document Question ?

Model sees full context when selecting what to store

Just read twice linear attention

Non-causal encoding of the context plus causal decoding

Next token predictionMasked language modeling



Our new architecture JRT-RNN achieves 96% the quality of Transformers, 
while being 19.2x faster by using our hardware-efficient algorithm! 

Model Generation efficiency

Tokens/ms

6 Recall-Intensive Tasks

(Accuracy)

7 General Language Tasks

(Accuracy)

Transformer 0.99 51.4 52.9

Mamba 25.69 36.8 56.6

Based 24.28 42.6 53.8

JRT-RNN 24.28 49.5 54.1



Collaborators

Chris Ré

Atri Rudra
Sabri Eyuboglu

James Zou

Aman Timalsina

Michael Poli
Michael Zhang

Dylan Zinsley

Silas Alberti

Isys Johnson



Paper references:

• Arora*, Eyuboglu* et al., Zoology: Measuring Recall in Input Dependent Models. ICLR 2023.

• Arora*, Eyuboglu*, Zhang* et al., Simple linear attention language models balance the recall-

throughput tradeoff. ICML 2024. (Spotlight)

• Arora et al., Just read twice: Closing the recall gap for recurrent language models. 2024.

Thank you!

Blogpost on the theoretical results: https://hazyresearch.stanford.edu/blog/2024-06-22-ac 

https://hazyresearch.stanford.edu/blog/2024-06-22-ac

