
Two Phase Commit Protocol

Murat Demirbas

[2019-08-26 Mon]



2 phase commit

A transaction is performed over resource managers (RMs)

The transaction manager (TM) finalizes the transaction

For the transaction to be committed, each participating
RM must be prepared to commit it

Otherwise, the transaction must be aborted



Definitions



TM modeling



TM modeling

TM checks if it canCommit or canAbort and updates
tmState accordingly.

TM can also fail making tmState "unavailable"

To keep things simple yet interesting, TM fails only after it
makes a decision. These two updates are nonatomic:

tmState is available for RMs to read for a duration
labels at fail actions provide nonatomicity



RM modeling



RM modeling



Invariants

Consistency checks that there are no 2 RMs such that one
says "committed" and other says "aborted"



Model checking

If TM does not fail, the 2-phase commit algorithm is correct

When TM fails, termination can be violated

We add a Backup TM, to take over, and achieve termination



BTM modeling



Strengthening canCommit



BTM modeling

BTM takes over when TM is unavailable and uses the same
logic to make decisions

For simplicity we assume the BTM does not fail



What if RMs could also fail?



What if RMs could also fail?



Strengthening canAbort



Inconsistency problem!



What went on?

RM1 sees commit from TM
TM becomes unavailable
RM2 becomes unavailable
BTM takes over for TM
BTM decides on abort seeing <prepared, unavailable,
prepared> from RMs. (It may also be that RM1 may also
look unavailable due to unreachability)
RM1 acts on commit from TM
RM3 sees abort from BTM
RM3 acts on abort from BTM
Consistency is volated



Inconsistency problem!

If BTM decides, it may decide incorrectly, violating consistency

If BTM waits, it may be waiting forever on a crashed node,
and violating termination (i.e., progress)

Timeouts may be incorrect, due to inopportune timing



FLP impossibility

In an asynchronous system, it is impossible to solve consensus
(both safety and progress) in the presence of crash faults



What about 3PC?



3PC problems

BTM may act as if TM is down

RMs go with whatever TM or BTM says (2 leaders)

This asymmetry of information is the root of all evil in
distributed systems



Lamport & Gray on transaction commit

"Several 3-phase protocols have been proposed, and a few
have been implemented. They have usually attempted to
"fix" the 2-Phase Commit protocol by choosing another TM if
the first TM fails. However, we know of none that provides a
complete algorithm proven to satisfy a clearly stated
correctness condition. For example, the discussion of
non-blocking commit in the classic text of Bernstein,
Hadzilacos, and Goodman fails to explain what a process
should do if it receives messages from two different processes,
both claiming to be the current TM. Guaranteeing that this
situation cannot arise is a problem that is as difficult as
implementing a transaction commit protocol."



Paxos!

Paxos is always safe even in presence of inaccurate failure
detectors, asynchronous execution, faults, and eventually
makes progress when consensus gets in the realm of possibility

Paxos makes progress when the system is outside the realm of
consensus impossibility

You can emulate TM with a Paxos cluster of 3 nodes and
solve the inconsistent TM/BTM problem (Google Spanner
approach)


	2 phase commit

