
Reasoning about Programs

Murat Demirbas

[2019-08-28 Wed]

Outline

1 Computation model

2 Specification

3 Reasoning about a single action

4 Safety

5 Progress

Trust me on this detour

http://www.youtube.com/watch?v=3PycZtfns_U
http://www.youtube.com/watch?v=eWMtUDJQfYs

http://www.youtube.com/watch?v=3PycZtfns_U
http://www.youtube.com/watch?v=eWMtUDJQfYs

Computation model

Programs

Programs consist of two things:
1 A set of typed variables.
2 A finite set of assignments (also called “actions”).

By convention, all programs implicitly contain skip, which
leaves the state unchanged

Programs may also contain some initial conditions, under
section initially. The initially section is a predicate (on the
program variables).
A predicate is function whose range is boolean.

Program Trivial

Program Trivial
var x, y : int
assign
x := 4
[] y:=f.7

Guarded actions

The execution of an assignment can be conditional on a
predicate (called the "guard") being true. For example:

x > 0 −→ x := 4

The guard is a predicate on the state space of the program. If
the guard is true in some state, the action is said to be
"enabled" in that state.

Program execution

A program can begin in any state satisfying the initially
predicate
An action is nondeterministically selected & executed
atomically

Once this action has completed, an action is again
non-deterministically selected and executed. This process is
repeated infinitely.

If the selected action is guarded and the guard is false, the
action is simply a skip

Distributed execution concerns

Atomic execution of an action is a simplifying assumption. In
reality, we have to ensure that.

E.g., we can use locking on the program variables, and try
to acquire the lock on those variables in the guard, before
executing the body of the action.

If we write our program in the read-write model (a node j can
read from its neighbors but write only to its own variables), it
is easy to transform this to message-passing model with some
care (proper synchronization)

Termination

The nondeterministic selection of actions continues without
end. There is no “last” action picked and executed.

We declare termination when the arrival of the program
execution to a fixed point (FP). A fixed point is a state in
which the execution of any action leaves the state unchanged.

assign
x := y
[] y:=f.7

FP is y = f .7 ∧ x = y

FP for guarded actions

assign
x ≥ 0 −→ x := 4
[] y := f .7

FP is ???

FP for guarded actions

assign
x ≥ 0 −→ x := 4
[] y := f .7

FP is y = f .7 ∧ (x < 0 ∨ x = 4)

To calculate FP, we require each action to have no effect. So,
for a guarded action of the form g −→ x := E , we have
FP= ¬g ∨ (x = E).

Visualizing a program

Program Example1
var
b : boolean,
n : {0, 1, 2, 3}
initially n = 1
assign
b −→ n := n +4 1
[]n = 0 −→ b := false

Draw the state diagram

Visualizing a program

Weak Fairness

Under weak fairness, every action is guaranteed to be selected
infinitely often.

This means that between any two selections of some particular
action (A), there are a finite (but unbounded) number of
selections of other (i.e., not A) actions.

In Program Example1 above, if the execution starts at 〈t, 1〉,
can we say that the program reaches to FP under weak
fairness?

Strong Fairness

Strong fairness requires that
each action be selected infinitely often (like weak
fairness), and
if an action is enabled infinitely often, it is selected
infinitely often when enabled.

Under strong fairness Example1 reaches FP.

If we prove some property, P under weak fairness, then P is
also a property of the program under strong fairness. Converse
is not true. We will assume weak fairness model, unless
otherwise noted.

Reasoning about programs

Specification

Reasoning about a program involves showing that the program
meets its specification. A specification is a high-level
description of program behavior. E.g. Invariant

We will use program properties to specify our programs
A program property is a predicate on an execution

We say that a program property R holds for a program P
exactly when R holds for every possible execution of P

Safety & Progress properties

There are two fundamental categories of program properties
that we will use to describe program behavior:

safety properties
progress properties

Before considering these properties on computations
(consisting of an infinite sequence of actions), we first examine
how to reason about the behavior of a single action, executed
once.

Hoare triples

A Hoare triple is an expression of the form
{P}S{Q}

where S is a program action and P and Q are predicates. The
predicate P is often called the "precondition" and Q the
"postcondition".

Informally, this triple says that if S begins execution in a state
satisfying predicate P , it is guaranteed to terminate in a state
satisfying Q.

Assignment axiom

Saying that a triple {P} x := y + 1 {even.x} holds is the
same as saying:
[P ⇒ even.(y + 1)]

To prove {P} x := E {Q}, we must show [P ⇒ Qx
E].

(Qx
E is used to indicate writing expression Q with all

occurrences of x replaced by E).

Example

Does this triple hold?
{x ≥ −2} x:=x-y+3 {x + y ≥ 0}

Guarded actions

To prove the triple {P} g −→ x := E {Q}, we need to
show:

[(P ∧ g ⇒ Qx
E) ∧ (P ∧ ¬g ⇒ Q)]

Example

{P} x > y −→ x , y := y , x {x > 3}
What is P?

Safety properties

Safety properties

A safety property is a property that can be violated by a finite
computation

Invariant property is a safety property
Two processes are not in critical section concurrently is a
safety property
The program will terminate eventually is NOT a safety
property

Next

A next property (i.e., a predicate on programs) is written:
P next Q
where P and Q are predicates on states in the program

P next Q means that if a program is in a state satisfying P ,
its very next state (i.e., after choosing and executing exactly
one action) must satisfy Q

Since any action could be chosen as the next one to be
executed, we must show that for every action, if it begins in P ,
must terminate in Q

Next (proof rule)

To prove
(P next Q).G
we must show
(∀a : a ∈ G : {P}a{Q})

Since skip is always part of any program, we have P ⇒ Q

Next theorems that hold for any program G

false next Q
P next true
(P1 next Q1) ∧ (P2 next Q2) ⇒ (P1 ∧ P2) next
(Q1 ∧ Q2)
(P1 next Q1) ∧ (P2 next Q2) ⇒ (P1 ∨ P2) next
(Q1 ∨ Q2)
(P next Q) ∧ [Q ⇒ Q ′] ⇒ (P next Q ′)

(P next Q) ∧ [P ′ ⇒ P] ⇒ (P ′ next Q)

Stable

stable.P means that once P becomes true, it remains true.
stable.P ≡ P next P

stable.true
stable.false
stable.P ∧ stable.Q ⇒ stable.(P ∧ Q)
stable.P ∧ stable.Q ⇒ stable.(P ∨ Q)
??? stable.P ∧ [P ⇒ P ′] ⇒ stable.P ′

??? stable.P ∧ [P ′ ⇒ P] ⇒ stable.P ′

Invariant

invariant.P ≡ initially.P ∧ stable.P

Invariant property is very important for reasoning about safety
of your program.

Progress properties

Unlike safety, a progress (liveness) property can not be
violated by a finite execution.

Progress is a predicate on possible computation suffixes.

All program properties of interest can be expressed as a
conjunction of safety and progress.

Transient

transient.P .G ≡
(∃a : a ∈ G : {P}a{¬P})

transient.P ∧ [P ′ ⇒ P] ⇒ transient.P ′

transient.P ∧ [P ⇒ P ′] ⇒ transient.P ′ ???

Transient (example)

even.x −→ x := x + 1
transient.(x = 2) ?

n ≤ 2 −→ n := n + 1
transient.(n = 0 ∨ n = 1) ???

Ensures

P ensures Q means that if P holds, it will continue to hold so
long as Q does not hold, and eventually Q does hold.

P ensures Q ≡ ((P ∧¬Q) next (P ∨Q))∧ transient.(P ∧¬Q)

Ensures (example)

even.x −→ x := x + 1
(x = 2 ∨ x = 6) ensures (x = 3 ∨ x = 7) ?

n ≤ 2 −→ n := n + 1
n = 1 ensures n = 3 ???

Leadsto

P Q means that if P is true at some point, Q will be true
(at that same or a later point) in the computation.

P ensures Q ⇒ P Q
(P Q) ∧ (Q R) ⇒ P R

Leadsto

What is the relation between:
transient.P
P ¬P

Leadsto

P true

false P

P P

(P Q) ∧ [Q ⇒ Q ′] ⇒ P Q ′

(P Q) ∧ [P ′ ⇒ P] ⇒ P ′ Q

stable.P∧ trans.(P ∧ ¬Q) ⇒ P (P ∧ Q)

??? (P Q)∧ (P ′ Q ′) ⇒ (P ∧P ′) (Q ∧Q ′)

Induction

A metric (or "variant function") is a function from the state
space to a well-founded set (e.g., the natural numbers).
The well-foundedness of the range means that the value of the
function is bounded below (i.e., can only decrease a finite
number of times).
Theorem 10 (Induction). For a metric M ,
(∀m :: P ∧M = m (P ∧M < m) ∨ Q) ⇒ P Q

Induction

Theorem 11. For a metric M ,
(∀m :: P ∧M = m next (P ∧M ≤ m) ∨ Q)
∧(∀m :: transient.(P ∧M = m))
⇒ P Q

(∀i ,m :: {P ∧M = m ∧ gi}gi −→ ai{(P ∧M < m) ∨ FP})
⇒ P FP

	Computation model
	Specification
	Reasoning about a single action
	Safety
	Progress

