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ABSTRACT

Millimeter wave (mmWave) technologies promise to revo-

lutionize wireless networks by enabling multi-gigabit data

rates. However, they suffer from high attenuation, and hence

have to use highly directional antennas to focus their power

on the receiver. Existing radios have to scan the space to find

the best alignment between the transmitter’s and receiver’s

beams, a process that takes up to a few seconds. This de-

lay is problematic in a network setting, where the base sta-

tion needs to quickly switch between users and accommo-

date mobile clients.

We present Agile-Link, the first mmWave beam steering

system that is demonstrated to find the correct beam align-

ment without scanning the space. Instead of scanning, Agile-

Link hashes the beam directions using a few carefully cho-

sen hash functions. It then identifies the correct alignment by

tracking how the energy changes across different hash func-

tions. Our results show that Agile-Link reduces beam steer-

ing delay by orders of magnitude.

1. INTRODUCTION

The ever-increasing demand for mobile and wireless data

has placed a huge strain on today’s WiFi and cellular net-

works [9, 12, 33]. Millimeter wave (mmWave) frequency

bands address this problem by offering multi-GHz of un-

licensed bandwidth – 200× more than the bandwidth allo-

cated to today’s WiFi and cellular networks [23, 25]. Fur-

ther, mmWave radio hardware has recently become commer-

cially viable [26, 11, 19]. This led to multiple demonstra-

tions of point-to-point mmWave communication links [15,

38, 31]. These advances have generated much excitement

about the role that mmWave technology can play in future
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wireless networks, and have led to mmWave communication

being declared as a central component in next-generation

(5G) cellular networks [25, 16, 19]. It has also led to mul-

tiple mmWave standards including IEEE 802.11ad for wire-

less LANs [18] and IEEE 802.15.3c for wireless PANs [17].

However, a key challenge has to be addressed before

mmWave links can be integrated into cellular or 802.11 net-

works. mmWave signals attenuate quickly with distance, so

they need to use highly directional antennas to focus their

power. Due to the narrow beam of the antennas, communi-

cation is possible only when the transmitter’s and receiver’s

beams are well-aligned. First generation mmWave radios

used horn antennas, which require mechanical steering to

identify the best beam alignment. More advanced mmWave

radios use phased-array antennas, which can be steered elec-

tronically. Still, current phased array mmWave radios require

multiple seconds to scan the space with their beams to find

the best alignment [39]. Taking a long delay before aligning

the beams may be acceptable in today’s fixed point-to-point

links. However, such a long delay hampers the deployment

of mmWave links in cellular (or 802.11) networks, where a

base station has to quickly switch between users and accom-

modate mobile clients.

So, how is beam steering done in mmWave phased-arrays?

Since the wavelength is very small (a few millimeters), a

small phased array, the size of a credit card, can have tens

or hundreds of antennas, leading to a very narrow beam, as

shown in Fig.2. Beam steering is done in the analog domain

using phase shifters, which add a controllable phase to each

antenna. Identifying the best beam alignment is equivalent

to identifying the correct phase setting for all phase shifters

on both the transmitter and receiver. This is done by sequen-

tially trying different phase shifts (i.e., different beams) and

measuring the received signal power. The best beam align-

ment maximizes the power.

Trying all possible beam directions incurs excessive delay

though. Indeed, existing products can take seconds to con-

verge [39]. Thus, multiple proposals have been introduced

to optimize the steering time. In particular, the 802.11ad

standard proposes to set the transmitter’s beam pattern to

a quasi-omnidirectional shape, while the receiver scans the

space for the best signal direction. The process is then re-

versed to have the transmitter scan the space while keeping
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Figure 1—Illustrative example of Agile-Link’s algorithm: The figure shows how the algorithm recovers the direction of the signal of
arrival (i.e. 60o in this example) in three steps. The algorithm first hashes the spatial directions into bins (step b and c). Then, it gives votes to
all directions that hash into the bin which has energy. Finally, it picks the direction with the highest number of votes (step d).

the receiver quasi-omnidirectional [18, 37]. While this de-

sign reduces the steering delay, it comes at the cost of worse

SNR and it still requires each node to sequentially scan the

whole space of beam directions, continuing to incur signif-

icant delay in practice [30]. Further, none of the other pro-

posals for improving the steering delay have been evaluated

with mmWave phased arrays, and the vast majority of them

are purely theoretical.

This paper presents Agile-Link, the first mmWave beam

steering system that is evaluated on phased arrays and

demonstrated to find the correct beam alignment without se-

quentially scanning the space.

Agile-Link’s design relies on a combination of smart

hashes and voting. Specifically, there are only a few paths

that the mmWave signal can take between the transmitter

and receiver [25, 4]. Thus, instead of trying all beam direc-

tions, Agile-Link works by hashing spatial directions into

bins, where each bin collects energy from a large number

of directions. Agile-Link can then ignore all bins that have

no energy and focus on those with high energy because they

contain the correct signal alignment. Agile-Link uses a few

carefully-crafted hash functions, which allows it to quickly

identify the best beam alignment by observing how the en-

ergy changes across bins, from one hash function to another.

Designing appropriate hash functions for this problem is

challenging. First, while in theory there are many good hash

functions that one could apply to the signal, in practice we

are allowed to change only the phases on the phase shifters

(see Fig. 2). We are neither allowed to manipulate the magni-

tude of the signal on the individual antennas, nor to turn off

some antennas. This renders many of the standard hashing

techniques useless and significantly constrains the space of

hash functions. Second, the design of the hash functions has

to deal with the possibility of signals along different direc-

tions being hashed to the same bins, combining destructively

and canceling out. In §3, we develop a steering algorithm

that addresses these challenges and quickly identifies the op-

timal steering direction.

We evaluate Agile-Link using mmWave radios, each

equipped with a phased array that has 8 antennas. We also

use simulations to explore its scaling behavior to large ar-

rays with hundreds of antennas, which are expected in the

future [8]. We compare Agile-Link with two baselines: an

exhaustive scan of the space to find the best beams, and the

quasi-omnidirectional search proposed in the 802.11ad stan-

dard. Our evaluation reveals the following findings. In com-

parison with the exhaustive search, Agile-Link reduces the

search time by one to three orders of magnitude, for array

sizes that range from 8 antennas to 256 antennas. In compar-

ison to the quasi-omnidirectional search, Agile-Link reduces

the delay by 1.5× to 10×, for the same range of array sizes.

Thus, we believe that Agile-Link provides an important step

towards practical mmWave networks.

2. ILLUSTRATIVE EXAMPLE

Agile-Link’s algorithm is best understood through a high-

level example. Consider an antenna array with N = 16 an-

tenna elements and the case where the received signal has a

dominant path along the spatial direction of 60o as shown in

Fig. 1(a). Agile-Link’s goal is to discover this 60o direction

from which the signal arrives in order to steer its beam that

direction and maximize the SNR.

Agile-Link starts by hashing the spatial directions into

bins, where each bin collects energy frommultiple directions

in space. For example, if we hash the space into 4 bins, then

each bin should collect energy from N/4 = 4 different direc-

tions. This is achieved by steering the antenna array to beam

along 4 different directions as shown in Fig. 1(b). A bin will

contain energy only if the signal’s path matches a direction

that is hashed to the bin. Hence, in Fig. 1(b) only the first

bin, highlighted in red, will contain energy since it captures

the signal along the 60o direction. This significantly reduces

the search space to the directions within this bin.

However, we cannot simply iterate on these candidate di-

rections. Multiple paths can collide in the same bin and po-

tentially cancel each other –i.e., the RF waves along these

paths can sum up destructively. Thus, there is a probability

that a bin may have negligible energy though it does contain

the directions of real signal paths. To avoid missing direc-

tions of the signal with high SNR, we need to randomize the
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Figure 2—Millimeter Wave Phased Arrays.mmWave phased ar-
rays use phase shifters to control the phase on each antenna and
steer the beam.

hashing. Agile-Link repeats the hashing while randomizing

the directions that fall into the same bin as shown in Fig. 1(c).

This ensures that if two paths collide in the first hashing, they

will not continue to collide and cancel each other.

After repeating the random hashing, Agile-Link uses a

voting based scheme to discover the direction of the signal

that has energy. Specifically, in the first hashing in Fig. 1(b),

the first bin contained energy and hence, the directions that

fall into that bin get a vote. In the second hashing in Fig. 1(c),

the third bin contained energy and the directions in that bin

get votes as shown in Fig. 1(d). However, only the direc-

tion along 60o will get a vote from both hashing functions,

so Agile-Link can quickly recover it as shown in Fig. 1(e),

without having to scan all possible directions.1

In order to be able to implement the above algorithm, how-

ever, Agile-Link needs to steer the antenna array to beam

along any random set of directions. This is very challenging

in practice since we are only allowed to change the phases

on the phase shifters (see Fig. 2). We are neither allowed

to manipulate the magnitude of the signal on the individual

antennas, nor to turn some antennas off. This significantly

constrains the space of possible beam patterns which we can

create to hash the directions to bins. In the following section,

we describe in detail how to address this problem and create

beam patterns that can capture different directions simply by

setting the phase of the phase shifters.

3. Agile-Link

This section describes Agile-Link in detail. For clarity, we

will describe the problem and the algorithm assuming only

the receiver has an antenna array, while the transmitter has

an omni-directional antenna that transmits in all directions.

The extension to the case where both transmitter and receiver

have antenna arrays is achieved simply by applying the algo-

rithm on both sides.

3.1 Formalizing the Problem

At mmWave frequencies, the wireless channel follows a

geometric model [3]. Specifically, for a receiver with N an-

1Note that in more general settings, Agile-Link can use more than
just two hashing functions. In that case, directions that do not have
energy are unlikely to get votes whereas directions that have energy
will get a lot of votes allowing Agile-Link to quickly recover them.

tenna elements that are equally spaced by a distance d =
λ/2, where λ is the wavelength, the wireless channel at the

n-th antenna element in the array can be written as:

hn =

K∑

k

αke
(j(2πcos(θk)nd/λ+ψk)), (1)

where K is the total number of paths and αk, ψk, and θk are
respectively the attenuation, phase, and direction of the sig-

nal along the k-th path. By replacing cos(θk) = f , the above

becomes a standard Fourier transform equation where an-

tenna elements are analogous to time samples and signal di-

rections are analogous to frequencies. Thus, we can rewrite

the above equation as:

h = F′x, (2)

where h is an N × 1 vector representing the channels on the

antenna elements, F′ is the inverse Fourier transform matrix

and x is a vector representing the channel across different di-

rections in space, i.e., xcos(θk) = αke
jψk . x is sparse since only

a few directions will have energy. Hence, by taking a Fourier

transform across the channels of the antenna elements in the

array and calculating the energy in the elements of x, we can

recover the directions of the paths that the wireless signal

takes.

Unfortunately, we cannot measure the channel on each

antenna element in Equations 1 or 2. This is because, in a

phased array, we can only measure the combined signal after

the phase shifters, as shown in Fig. 2. Say φn is the phase

set to the phase shifter on the n-th antenna element. Let a be

a 1 × N vector such that an = ejφn , then each measurement

we collect of the channel can be written as: y = aF′x We

can repeat this measurement M times for different settings

of phase shifters to obtain a vector of measurements:

y = AF′x (3)

The above is a standard sparse recovery equation; we know

from sparse recovery theory that we can recover the vec-

tor x using only M = K logN/K measurements. However,

trying to recover x by applying standard sparse recovery to

these measurements does not work in practice. These mea-

surements are taken over time and due to CFO (carrier fre-

quency offset) between the transmitter and receiver, the mea-

surements will accumulate a random unknown phase which

will corrupt the phase of the measurements. Hence, when

reasoning across multiple measurements, we can only use

the magnitude of these measurements. Agile-Link designs

an algorithm that recovers the directions of the paths using

only the magnitude of the measurements.

3.2 Agile-Link’s Algorithm

As described earlier, Agile-Link works in two stages. First,

by randomly hashing the space into bins such that each bin

collects power from a range of directions. Then, by using

a voting mechanism to recover the directions that have the

energy. Below, we describe these two stages in detail.
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Figure 3—Hashing Beam Patterns (a) Using a wider beam to
hash the direction cannot be done since it requires changing the
size of the array. (b) Using Agile-Link’s hash function to hash
well-spread directions into a bin (c) All the bins of Agile-Link’s
hash function, where the same color corresponds to directions in
the same bin. (d) A random permutation of the hash function in (c).

A. Hashing Spatial Directions into Bins: As described ear-

lier, creating wider beams that hash the space into bins is

difficult since we can only control the phase on each antenna

i.e., in the above model, we can only set the phases of the

vector a. Each setting of this vector a will create a different

beam pattern and the magnitude squared of each measure-

ment |y|2 will correspond to the energy in the regions cov-

ered by the beam pattern. Thus, Agile-Link’s goal is to find

settings of the vector a that (1) create good beam patterns

that can hash the space into bins and cover all regions in

space, and (2) create beam patterns that can be randomized

to change the different directions that hash to the same bins.

Ideally, we would like to set the vector a to create a wider

beam as shown in Fig. 3(a) to hash several directions into a

bin. This, however, will require changing the size of the ar-

ray, which is not feasible as described earlier. Instead, Agile-

Link divides the antenna array into sub-arrays and makes

each sub-array beam toward a different direction. Specifi-

cally, the vector a is divided into R segments, each of length

N/R i.e., a[1:N/R], a[N/R+1:2N/R], · · · , a[(R−1)N/R:N]. Each seg-

ment then sets its beam towards a different direction. The

sub-beam created by each segment will be larger than the

beam created by the full array by a factor of R, and will cover

R different directions. Further, since there are R such sub-

beams and each is R times larger than the basic beam created

by the full array, the beam created by this setting of the vector

a will cover R2 directions. Now, if we wish to hash the space

of directions into B bins, then the total number of directions

covered by each bin will be N/B and thus, R =
√

N/B.
But how do we set the direction in which each sub-array

should direct its beam? The naïve solution would be to try

to recreate the wide beam in Fig. 3(a) by directing the beams

of the sub-arrays to nearby or consecutive directions. How-

ever, this creates bad beams because the side-lobes of each

sub-array will now sum up with the main-lobe of the next

sub-array and significantly reduce its power (the sum is in

the complex domain). In fact, the best beams are obtained

when the sub-arrays direct their beams in well spaced direc-

tions so that the leakage from their side-lobes is minimized.

Fig 3(b) shows an example when we have two sub-arrays of

half the size of the full array direct their beams 60o apart.

In this case, the beam pattern will hash directions that are

60o apart into the same bin. By shifting the direction, we can

then create all different bins as shown in Fig 3(c) where each

color corresponds to a bin in the hashing function.

The question that remains is how do we randomize these

beam patterns (i.e., how do we randomize the beams that

hash directions to bins)? To do that, we leverage a nice prop-

erty of the Fourier transform that says we can randomly per-

mute the output of the Fourier transform by randomly per-

muting its input samples and modulating their phase. Specif-

ically, consider a vector z of length N and its Fourier Trans-

form ẑ, then given a random σ, invertible modulo N, and a

random β < N, we can permute the input samples according

to:

z′(t) = z(σt mod N)× e−2πjβt/N (4)

This will result in a random permutation of the frequencies

according to:

ẑ′(f ) = ẑ(σf + β mod N). (5)

Thus, by randomly permuting the input samples, we can ran-

domly permute the frequencies. Recall from Eq. 2 that in our

setting, input samples correspond to the channel h on the an-

tenna elements of the array and frequencies correspond to

directions of the signal x. Unfortunately, as described earlier,

we do not have access to the antenna elements of the array to

perform this permutation. Luckily, however, we can shift this

permutation from the antenna elements to the phase shifters.

Recall that each measurement is obtained by y = a1×NhN×1

and hence we can perform the permutation on a instead of

h. Thus, we will set the phase of the n-th phase shifter to a

new phase φ′(n) = φ(σn mod N) − 2πβn/N. This creates
a random permutation of the directions and will randomize

which directions hash to which bins. Fig. 3(d) shows an ex-

ample of this where the directions that hash to the same bin

are shown in the same color and are different from the hash-

ing in Fig. 3(c) –i.e., the hashing in Fig. 3(d) is a permutation

of the hashing in Fig. 3(c), over the space of directions.

B. Recovering the Directions of the Paths After hashing the

spatial directions into bins, Agile-Link discovers the actual

directions of the signal using a voting based scheme, where

each bin gives votes to all directions that hash into that bin.

After few random hashes, the directions that have energy will

collect the largest number of votes which allows Agile-Link

to recover them. Unfortunately, directly applying this voting

approach does not work well in practice. Mainly because the



side-lobes of the beams create leakage between the bins and

thus a strong path in one bin can leak energy into other bins

which corrupts the voting process. To overcome this prob-

lem, Agile-Link uses a form of soft voting and takes into

account the leakage between the bins.

Specifically, Agile-Link models the beam patterns shown

in Fig. 3 as a probability distribution P(θ) that indicates the
probability that the received signal arrived from direction θ.
If we hash into B bins, we will have B such patterns and col-

lect B measurements y1×B corresponding to the bins. After

taking the magnitude squared of each measurement and nor-

malizing their power, we can compute the probability that

the energy of the signal is coming from direction θ as:

Pr{θ} =
1

‖y‖22

B∑

b=1

|yb|
2 × Pb(θ), (6)

where Pb(θ) is the beam pattern corresponding to the b-th

bin, ‖y‖22 is the L2 norm squared of y, and the summation is

taken over the probabilities since the direction of the signal

can fall into any of the bins. After performing a few random

hashes, we can compute the probability the energy of the

signal is coming from direction θ as:

Pr{θ} =
L∏

l=1

1

‖yl‖22

Bl∑

b=1

|yb,l|
2 × Pb,l(θ), (7)

where L is the total number of random hashes performed by

Agile-Link and the product is taken over the probabilities

since the direction of arrival has to be large in every single

hashing. Finally, the K directions of θ that have the high-

est probabilities will correspond to the directions of the K

paths that the signal traverses. The best beam alignment is

then chosen to be the direction of the path that delivers the

maximum energy.

3.3 Measurement Complexity

Agile-Link’s algorithm takes B measurements for each

hashing of the space, where B is the number of bins. In the

case where both transmitter and receiver have antenna ar-

rays, Agile-Link takes B × B measurements. The hashing is

repeated L times, for a total number of measurements L×B2.

Since the channel is sparse with only K paths, we only need

to set B = O(K) to ensure a small number of path collisions

in the same bin. We also set L = logN to ensure that the

probability of missing a path is polynomially small. Thus,

Agile-Link’s algorithm requires O(K2 logN)measurements,

which scales sub-linearly with the size of the array. Hence,

for large N, it delivers significant gains over the 802.11ad

standard, as we will show in §4.

While we described the algorithm in the context of 1D an-

tenna arrays, the algorithm holds for 2D arrays as well. We

simply need to apply the hash function along both dimen-

sions of the array. For an N ×N antenna array, the complex-

ity will simply beO(K2 logN2), scaling sub-linearly with the
total number of antennas in the array.

(a) Direction of Arrival of the Signal (b) Direction of Departure of the Signal
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Figure 4— Recovered Directions (a) the direction of arrival that
Agile-Link recovers at the receiver and (b) the direction of de-
parture that is recovered at the transmitter when the transmitter is
placed 120o relative to the receiver’s array and the receiver is placed
50o relative to the receiver’s array.

(a) Phased Array (b) mmWave Radio

Figure 5— Platform (a) The phased array and (b) the mmWave
radio we used to perform our experiments.

4. RESULTS

In order to evaluate Agile-Link’s ability to identify the best

beam alignment quickly, we ran experiments in an office/lab

area with standard furniture and multipath effects. We used

millimeter radios operating in the 24 GHz ISM band and

equipped with a phased array that has 8 antennas as shown

in Fig. 5 [2].

Fig. 4 shows the signal direction recovered by Agile-Link

on the transmitter and receiver side when we set the trans-

mitter to be at an angle of 120o with respect to the receiver’s

array and the receiver at an angle of 50o with respect to

the transmitter’s array. As can be seen, Agile-Link can ac-

curately identify the direction of arrival of the signal at the

receiver as 120o and the direction of departure of the signal

from the transmitter as 50o.

Next we would like to evaluate the gain in latency that

Agile-Link delivers. However, since our radio has a fixed ar-

ray size, we cannot empirically measure how this gain scales

for larger arrays. Hence, we perform extensive simulations

to compute this gain for larger arrays and we use our empiri-

cal results from our 8-antenna array to find the delay for this

array size. We compare against two baselines.

• Exhaustive Search: In this case, the transmitter and the

receiver each uses 2N different beams to scan the different

directions where N is the number of antennas. This takes

4N2 measurements. Then, the combination of transmitter

and receiver beams that delivered the maximum power is

picked as the direction of the signal.

• 802.11ad Standard: In this case, the transmitter sets

its antenna array to a quasi-omnidirectional mode while

the receiver scans 2N directions of the beam. This is

followed by the receiver setting its antenna array to a

quasi-omnidirectional mode while the transmitter scans

2N beam directions. Then, the γ transmit and receive
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Figure 6— Beam Searching Latency The reduction in search time
for Agile-Link compared to 802.11ad and exhaustive search.

beams that delivered the highest power are tested against

each other, i.e., γ2 combinations are tried. The combina-

tion that delivers the maximum power is then picked for

beamforming.

Fig. 6 plots the reduction in latency that Agile-Link

achieves over exhaustive search and the standard. The figure

shows that, for an 8-antenna phased array, Agile-Link can

reduce the search time by 5.3× and 1.2× compared to ex-

haustive search and the 802.11ad standard, respectively. The

gain however increases quickly as the number of antennas

increase. This is due to the fact that the search time is di-

rectly proportional to the number of measurements collected

by each scheme. Recall that, exhaustive search requires a

quadratic number of measurements as a function of the array

size and the standard is linear in the antenna array size since

it uses 4N + γ2 measurements. However, Agile-Link is sub-

linear in the array size and uses only K2 logN measurements,

as described earlier.2 Thus, the gain of Agile-Link over both

exhaustive search and 802.11ad increases very fast: for ar-

rays of size 256, it is 10× better than the 802.11ad stan-

dard and multiple orders of magnitude better than exhaustive

search.

5. RELATEDWORK

The related work can be classified into the following areas:

Practical mmWave Phased Array Systems: Working im-

plementations of phased array mmWave systems have been

limited to industry, with very few known examples, such as

Qualcomm’s 28 GHz demo [8], Samsung’s 28 GHz proto-

type [28], and 60 GHz products from two startups: Wiloc-

ity and SiBeam [1, 29].3 However, none of these systems

present a steering algorithm or measurements of steering

delays. In fact, current products are designed for static

links [29, 1]; they take a long time to steer the beam and

are not suitable for mobile or multi-user networks [39].
2We set K to 4 since most empirical measurement studies [25, 4,
30, 31] show that at mmWave frequencies the channel has only 2 to
3 paths.
3Note that there are other mmWave products on the market [19, 22].
However, they do not support phased arrays and require the use of
horn antennas. Further, while the circuits community produced sev-
eral VLSI chips for mmWave phased arrays [27], these chips have
not been demonstrated to work as part of a full-fledged mmWave
communication system.

Point-to-Point mmWave Communication: Recent inter-

est in mmWave communication has led to a lot of demon-

strations of point-to-point links for Data Centers applica-

tions [15, 38, 10], as well as cellular picocells and WiFi ap-

plications [39, 31, 30]. These implementations mainly focus

on using horn antennas to direct the beam, which require me-

chanical steering and are not suitable for non-static links or

multi-user networks.

Simulation-Based Beam Searching Methods: There is a

large body of theoretical work that proposes more efficient

beam searching algorithms. Most of this work proposes en-

hancements on the 802.11ad standard, employing hierarchi-

cal beams to speed up the search [21, 5, 36, 20, 34, 37, 32].

However, in practice, hierarchical search requires feedback

from the receiver to guide the transmitter at every stage of

the hierarchy, which incurs significant protocol delay. Fur-

thermore, hierarchy-based algorithms do not work in the

worst case. Different paths can combine destructively and

cancel each other at any level of the hierarchy, resulting in

lost paths. Agile-Link’s algorithm, however, randomizes that

hashing of the path directions in order to avoid such worst

case scenarios, as we described in §3.

Sparse Recovery: Past theoretical work proposes using

compressive sensing to reduce the number of measurements

needed to discover the right alignment of the beam [24, 14,

13]. This approach, however, does not work with practical

hardware because it ignores CFO (Carrier Frequency Off-

set), which corrupts the phase of the measurements. In con-

trast, Agile-Link’s algorithm relies only on the magnitude

of the measurements to recover the correct beam alignment,

and hence does not suffer due to CFO, as we explained in §3.

Our work is also related to massive MIMO systems at GHz

frequencies [35, 7, 6]. These systems, however, connect each

antenna to its own TX/RX chain, and hence can immdedi-

ately measure the channel at each antenna. At mmWave fre-

quencies, we can only measure the combined signal from all

antennas in the array, since they are connected to one TX/RX

chain, as shown in Fig 2. Further, using many TX/RX chains

makes the system huge and power hungry, which is not suit-

able for mobile devices and access points.

6. CONCLUSION

In this paper, we have presented Agile-Link, the first

phased array mmWave system that is capable of fast beam

steering. Agile-Link delivers a new algorithm that finds the

correct alignment of the beams between a transmitter and a

receiver orders of magnitude faster than existing radios that

have to scan the entire space to find the best alignment. This

process currently takes up to a few seconds, which is imprac-

tical for dynamic and multi-user networks where the direc-

tion of alignment is constantly changing. Finally, the high

data rates that mmWave communication can deliver makes

it an indispensable part of future cellular networks and wire-

less LANs. We believe Agile-Link brings us closer towards

practical mmWave networks.
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