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ABSTRACT
Radio-based passive-object sensing can enable a new form of per-
vasive user-computer interface. Prior work has employed various
wireless signal features to sense objects under a set of predefined,
coarse motion patterns. But an operational UI, like a trackpad, often
needs to identify fine-grained, arbitrary motion. This paper explores
the feasibility of tracking a passive writing object (e.g., pen) at sub-
centimeter precision. We approach this goal through a practical
design, mTrack, which uses highly-directional 60 GHz millimeter-
wave radios as key enabling technology. mTrack runs a discrete
beam scanning mechanism to pinpoint the object’s initial location,
and tracks its trajectory using a signal-phase based model. In ad-
dition, mTrack incorporates novel mechanisms to suppress inter-
ference from background reflections, taking advantage of the short
wavelength of 60 GHz signals. We prototype mTrack and evaluate
its performance on a 60 GHz reconfigurable radio platform. Exper-
imental results demonstrate that mTrack can locate/track a pen with
90-percentile error below 8 mm, enabling new applications such as
wireless transcription and virtual trackpad.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Signal
processing systems; H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Input devices and strategies

Keywords
60 GHz, Millimeter-wave, Tracking, Phase Shift, Background can-
cellation

1. INTRODUCTION
Radio-based passive object sensing is a rapidly developing tech-

nology that detects the motion of human body parts or associated
objects through wireless signals. Compared with conventional vision-
based approaches [1], e.g., LeapMotion [2] and Kinect [3], it is less
intrusive and unaffected by ambient light conditions or the sunlight
interference. Catalyzed by the proliferation of mobile devices, this
technology holds potential to enable new ubiquitous user-mobile in-
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terfaces and spur a wide range of applications. The lastest passive
sensing technology can already accurately distinguish a prescribed
set of body/limb movement [4] based on Doppler patterns or sig-
nal strength variation. Hand gesture sensing [5] is also achievable
by training a pattern-matching model. To satisfy a broader range
of applications, however, two design challenges remain open: fine
resolution and unsupervised motion tracking.

We envision one such application scenario: tracking a writing
object (e.g., a stylus pen or marker) wirelessly. Conceptually, em-
powered by multiple wireless devices, we can create an interactive
trackpad on any conventional surface, e.g., whiteboard or desktop.
This way, we can deploy large touch screens in a more flexible and
ecomonic way than traditional graphic tablets. This vision entails
tracking a small writing object with at least sub-centimeter preci-
sion. Such precision has proven feasible in certain active RF sens-
ing systems like Tagoram [6]. However, they are applicable only to
objects instrumented with an RFID tag or radio receiver.

In this paper, we design mTrack, which leverages 60 GHz mil-
limeter wave (mmWave) radios to track the trajectory of a writ-
ing object at high precision. 60 GHz radios are standardized in
IEEE 802.11ad [7], and anticipated to penetrate one third of wire-
less links by 2018 [8]. Commercial 802.11ad-capable smartphones
have already been demonstrated [9]. Adopting mmWave instead
of conventional microwave band (2.4 GHz or 5 GHz) brings mul-
tifold advantages. A shorter wavelength can create stronger reflec-
tions from small objects (e.g., a pen), since wireless signals cannot
easily bypass objects larger than wavelength. More importantly,
mmWave devices like 802.11ad allow for miniaturized phase-array
with dozens of antenna elements, which together create highly-
directional “pencil-beams”. Such directional beams are electron-
ically steerable, thereby creating a new dimension for object local-
ization/tracking.

mTrack’s design harnesses these unique advantages of mmWave.
It uses one transmitter (Tx) to emit 60 GHz signals and illuminate
a handhold object that roams on a trackpad area. Part of the sig-
nals are diffused by the object’s surface and captured by two direc-
tional receivers (Rx). mTrack leverages the received signal strength
(RSS) and phase (relative to Tx) to localize and track the object.
Simply put, by measuring the arriving direction of reflected sig-
nals, each Rx can estimate the object’s relative angle, and pinpoint
its initial location on the trackpad. We refer to this as anchor point
acquisition (APA). When the object moves, the reflected signals’
path length varies, which alters the phase, providing salient hints
for tracking the object with sub-wavelength resolution. Our fea-
sibility study using a 60 GHz software-radio (Section 3) verifies
these principles, and unveils the unique advantage of mmWave pas-
sive tracking over its microwave counterpart, in terms of potential
precision, sensitivity to target size, etc. Yet in practical environ-



Properties Tagoram [6] RF-IDraw [10] Tomography [11, 12] WiVi [13] WiTrack [14] mTrack
Object Type Active Active Passive Passive Passive Passive

Signal Feature Phase Phase RSS Phase RSS Phase/RSS
Methodology Hologram Interferometry FP/AoA ISAR FMCW radar PS/BS

Track static object Yes Yes Yes No No Yes
# of Tx&Rx ≥ 2 8 10 ∼ 100 ≥ 4 4 ≥ 3

Tracking Range 1 ∼ 10m 2 ∼ 5m 3m ∼ 20m 2 ∼ 7m 3 ∼ 9m 1m
Granularity 14mm 49mm 80cm ∼ 3m 1m 30cm 8mm

Table 1: Comparison of different RF-based tracking systems. FP, PS and BS stand for fingerprint, phase shift and beam-steering.
Data are from reported figures of cited works.

ment, these principles entail unique challenges, which we propose
to solve in mTrack.

First, reflected signals from irrelevant background objects can
severely distort the target-reflected signal and affect phase-tracking
accuracy. Prior passive tracking techniques use ultra-wideband [14],
or measure and subtract static background reflection directly [15].
In contrast, mTrack’s mmWave uses single-carrier phase-tracking,
and needs to handle background dynamics. To meet this chal-
lenge, we develop two algorithms: dual-differential background re-
moval, and phase counting and regeneration, to recover the legit-
imate phase change induced by target movement only. These two
techniques take unique advantage of short wavelength of mmWave
signals, and stay at different vantage points when considering a
tradeoff between tracking precision and resilience to the inherent
phase noise in 60 GHz radios.

Second, although 60 GHz signals are commonly simplified as
pseudo-optical [16], our measurement shows that they can be widely
diffused after hitting a small object. Thus, one cannot migrate
the specular reflection effect in laser/infrared tracking systems [17]
for 60 GHz tracking. In mTrack, we observe that 60 GHz an-
tenna response bears a roll-off response pattern, and reflected RSS
is strongest when the object direction matches the peak response.
mTrack’s APA mechanism thus leverages steerable 60 GHz Rx an-
tenna to find the matching point, and identify the object’s rela-
tive angle. Since practical 60 GHz phase-array antennas can only
switch between a discrete set of directions, mTrack reconstructs the
ideal continuous scanning results from discrete sampling. Conse-
quently, it can work even if the switching angle is much larger than
beamwidth.

We have implemented mTrack on a custom-built 60 GHz software-
radio platform. We evaluate mTrack’s APA and phase-tracking per-
formance when user is navigating a pen over a 50cm×50cm virtual
trackpad region. Experimental results show that mTrack can local-
ize the pen’s angular position with error less than 1◦, and track its
motion trajectory with only 6 mm of median error and 8 mm of
90-percentile error. We also found that mTrack can be readily used
to enable touch event detection (i.e., pen clicking/leaving the track-
pad), owing to the constrained beam pattern of mmWave antennas.
Using a simple feature-based detection algorithm, it achieves a de-
tection accuracy of around 94%.

The main contributions of mTrack include the following:
(i) A feasibility study of fine-grained, sub-centimeter scale ob-

ject localization/tracking using mmWave radios with steerable an-
tennas, in contrast to microwave radios (Sec. 3).

(ii) A phase-based approach to track small objects like pens to
high precision, thus realizing trackpad applications. The tracking
scheme builds on two novel algorithms to counteract the impact of
background interference (Sec. 5).

(iii) A localization mechanism that leverages 60 GHz antennas to
pinpoint the object’s initial location and complement phase-tracking
via opportunistic calibration (Sec. 6).

(iv) Implementing mTrack on a reconfigurable 60 GHz radio testbed,
and validating its localization/tracking performance in a practical
wireless trackpad setup (Sec. 8).

2. RELATED WORK
RF-based Active Tracking. Localization of radio-equipped

objects has been explored extensively. RSS alone [18], or com-
bined with phase [19], can serve as location signatures. But map-
ping channel information to location usually requires site survey
and the accuracy is time and environment dependent [20]. In short-
range, static environment, it is possible to locate a radio using a
path-loss model (4cm error in an 1m2 area) [21]. However, for
passive tracking, RSS-model becomes inaccurate due to multipath
effects. Thus, mTrack only resorts to the variation of phase to re-
alize passive tracking, which does not rely on any RSS-distance
model.

Centimeter-scale RFID localization was achieved recently in RF-
IDraw [10], which uses an interferometry technique to measure
the relative phase between multiple RFID readers. Tagoram [6]
generates a phase hologram that statistically maps measured phase
to a potential position, and computes moving trajectory through
phase shifting. These tracking schemes require an RFID tag on
the object, which is not readily available for writing objects in daily
use. To enable high precision passive tracking, mTrack faces two
new technical challenges unseen in [6, 10]. First, reflected signal
from irrelevant background objects can severely distort the target-
reflected signal and affect phase-tracking accuracy (more details in
Section 5.2.2). Second, current 60 GHz radio hardware still has
non-negligible phase noise, which contaminates the phase shifting.
To meet these challenges, mTrack incorporates two novel process-
ing techniques that recover legitimate phase change (Section 5). In
addition, mTrack leverages the unique feature of beam steerability
in 60 GHz radios to realize precise localization.

RF-based Passive Tracking. Passive object tracking is rem-
iniscent of the vast literature in radar systems [14, 22]. Conven-
tional radar, however, mainly focused on tracking large moving
objects using Doppler methods, and pushing the granularity us-
ing wideband radios with GHz of sampling rate. mTrack, in con-
trast, leverages single-carrier phased-based approach, taking advan-
tage of electronically steerable 60 GHz antennas to track small ob-
jects with sub-centimeter precision, thus enabling near-field inter-
active applications like a trackpad. On the other hand, typical rang-
ing radars require dedicated hardware, which is not readily avail-
able in 60 GHz communication system. Pulse radar [23] needs
high-speed pulse generator while frequency-modulation continu-
ous wave (FMCW) radar [14] requires a swiping carrier frequency
controlled by VCO. On the contrary, mTrack’s single-carrier de-
sign can be easily realized using 60 GHz communication hardware.
Radar object tracking also faces interferences from background re-
flection. However, mTrack’s mmWave phase-tracking method en-
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Figure 1: Small object (pen)
causes diffusive 60 GHz signals
that can be captured over dif-
ferent view angles.
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Figure 2: Tracking under same 30◦ beamwidth (diameter: pen
1.2cm, bottle 5.8cm and can 10.3cm). (a) Small object (pen) can
cause [-π,π] phase variation in mmWave. (b) Microwave needs an
object (e.g. can) of size 9× larger.
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Figure 4: Setup of feasibility test. (a) Reflection test (Sec. 3.1):
Rx centrally rotates around the target. (b) Tracking test (Sec. 3.2):
Rx points to a moving target. (c) Locating test (Sec. 3.3): Rx
steers its beam toward various directions.

counters unique challenges that have not been addressed in exist-
ing radar tracking algorithms [12, 14, 15, 24] (more details in Sec.
5.2.2).

Radio tomography and imaging techniques [11,25] deploy a mesh
of sensors around sensing area and locate a person by identify-
ing shadowed area that shows weak RSS or outstanding variation.
mTrack is based on object reflection instead of blockage effect, and
achieves a fine-grained tracking with much fewer sensing nodes.
WiFi imaging (e.g., [26]) creates an image of sensing area through
an antenna array, though with a low resolution. WiFi RSS and
Doppler metric have also been leveraged in gesture recognition [4,
5], but the identification algorithm needs to be trained with known
patterns. Besides tracking, millimeter wave has been used to infer
object’s surface curvature and material [27], which can be applied
to identify the target of interest.

To our knowledge, mTrack represents the first work that achieves
sub-centimeter scale passive object tracking, taking advantage of
the small wavelength and steerable antennas of mmWave radios.
Table 1 compares mTrack with other recent RF-based active and
passive tracking systems.

3. UNDERSTANDING MMWAVE PASSIVE
TRACKING

We first use our 60 GHz testbed to explore mmWave characteris-
tics pertaining to high-precision passive object localization/tracking.
Our experiments examine whether small writing objects can effec-
tively reflect mmWave signals, and whether the reflected RSS/phase
can serve as subtle location/motion hints. The experiments also re-
veal unique advantages of mmWave over 2.4 GHz microwave-band
signals.

For a feasibility test, we create a simplified setup illustrated in
Figure 4. Our testbed implementation is detailed in Section 8. By
default, the receiver antenna is placed at view angle 0◦ co-located
with the transmitter. Irrelevant reflections from background objects
are reduced by placing RF absorbers [28] (with approximately 35
dB attenuation) near the boundary of testing region.

3.1 Reflection/Diffusion of Signals by Objects
To enable mmWave passive tracking, receiver must receive re-

flection signal from the target despite the view angle w.r.t. target.
However, 60 GHz signals are often deemed to possess a pseudo-
optical property. So, will they create mirror-like specular reflections
when hitting glossy objects? We examine the reflective property by
rotating the receiver’s view angle around the location of the target
– a stylus pen (0.4 cm radius) with a metal surface.

Figure 1 plots the average RSS of 100 measured values at each
view angle (with and without are abbreviated as w and w/). In the
presence of the pen, the RSS remains consistently high from view
angle 0◦ to 150◦, indicating that when reflecting 60 GHz signals,
the target acts like a quasi-omni-directional antenna, rather than a
mirror. Thus, even a highly directional 60 GHz receiver can capture
the reflection from a wide range of view angles, as long as the target
is illuminated by the transmitter.

We also make two other observations. First, the transmitter’s
beamwidth determines the illumination coverage. 90◦ to 180◦ beam-
width can ensure the target is illuminated as it moves across a wide
region in front of the transmitter. Second, even without target, the
RSS varies, partly due to residual reflections from background, and
partly due to leakage signal from the transmitter especially at a wide
view angle.

3.2 Phase Variation Enables Fine-Grained Mo-
tion Tracking

Moving distance. Under ideal propagation/reflection, the phase
offset between transmitter and receiver should only depend on the
signal path length (illumination plus reflection). Figure 2(a) shows
the phase variation as the target moves at 24 mm/second away from
the transmitter/receiver. Owing to extremely short wavelength, i.e.,
around 5 mm, even a small change of total signal path length can
vary the phase significantly. By unwrapping [29] the phase value,
we observe an increasing trend, indicating increasing path length, a
consequence of the target’s actual movement pattern. In addition,
we see that the unwrapped phase value increases by 230 radians,
translating to a distance 230

2π
×0.25cm ≈ 9.15cm, roughly matching

the actual moving distance of 10 cm (Note that each phase cycle cor-
responds to both illuminating and reflecting paths). In effect, when
zooming in one phase cycle, we can see that even sub-wavelength
movement resolution is feasible.

These two observations hint that phase change of reflected sig-
nals can indicate whether the target is moving towards/against the



Tx/Rx, and the relative moving distance. Small wavelength of 60
GHz signals enables fine-grained distance resolution. However,
two challenges remain open: (i) A single receiver cannot resolve the
target’s moving angle within a 2D plane. (ii) Phase has an inherent
aliasing effect, and cannot indicate the absolute location of target.
This can be clearly observed from Figure 2(a), where phase exhibits
cyclic behavior, with many locations sharing the same phase value.

It is worthy to note that the phase value experiences a jump be-
tween 520ms and 540ms in Figure 2(a). This is caused by the sig-
nals from background reflection — the RF absorber in our feasibil-
ity test is not large enough to isolate all background objects. Our
phase processing techniques (Section 5) will remove such abnor-
mality and guarantee the correctness of accumulated phase.

Target size. Electromagnetic waves can easily bypass around
obstacles whose size is smaller than the wavelength, and will be
blocked/reflected otherwise. Thus, we hypothesize that passive track-
ing of small targets is a unique advantage of mmWave signals over
microwave. To verify the hypothesis, we place a pair of 2.4 GHz
software radios following the same setup as above. Figure 2(b)
plots the resulting phase variation as the target moves. For the sty-
lus pen, the signal phase can hardly reach a full cycle of −π to π,
and shows no clear correlation with wavelength. This is because
the majority of the microwave signals bypass around the pen, with
a radius much smaller than the wavelength (12.5 cm). Hence, back-
ground reflections from afar tend to dominate and distort the phase.
Only when the target (e.g., a can) size is sufficiently large can the
reflected signals dominate and manifest full cyclic behavior as in
the mmWave case. This result confirms our hypothesis.

It is worth noting that mmWave signals may still suffer from dis-
tortion under strong background reflection. This is a unique chal-
lenge in comparison to tracking active objects (e.g., those instru-
mented with RFID tags [6,10]), and will be investigated in mTrack.

3.3 Beam Steering Enables Localizing Abso-
lute Position

Despite the wide diffusion angle of the object (Figure 1), a 60
GHz receiver can have highly narrow beamwidth and will be able
to capture the diffused signals only when it is pointing to the tar-
get. Figure 3 verifies this property. We steer the receiver’s pointing
angle between −20◦ to 20◦, at 1◦ granularity. The measured RSS
peaks at around 0◦ when the receiver points towards the target. This
indicates that we can take advantage of 60 GHz beams’ steerability
to fix the target’s absolute angle relative to the Tx/Rx.

In practice, a 60 GHz antenna may not be steered continuously as
in our experiment. In addition, the RSS may also suffer from back-
ground reflection effect, which causes multipath effect and RSS
variation as shown in Figure 1. mTrack is designed to meet these
challenges.

4. AN OVERVIEW OF mTrack
mTrack builds on the foregoing measurement observations to re-

alize a high-precision mmWave trackpad. Figure 5 shows a typical
mTrack setup. One quasi-omni Tx and two directional Rx antennas
are placed to form a right angle, and track an object within a rect-
angular trackpad region (0 < x < 2a, 0 < y < 2b). a and b are set
to 50 cm by default.

Both the quasi-omni and directional beam patterns can be readily
generated via 802.11ad devices’ phased-array antennas [7,30]. The
quasi-omni transmitter beam in mTrack is used to illuminate the
trackpad area. Typical quasi-omni beamwidth in 60 GHz ranges
from 20◦ to 180◦. The transmit signal is able to cover the tracking
region, without the need to adjust the transmitter’s beam direction
for scanning target. On the other hand, the Rx adopts highly direc-
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Figure 6: mTrack system com-
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tional antennas, for two reasons. First, with a high antenna gain, it
can substantially boost signal quality, enabling mTrack to capture
the weak reflections from target. Second, a directional receiver can
help isolate the leakage interference from the Tx, which may oth-
erwise overwhelm the target-reflected signals. Using highly direc-
tional antennas reduces the beams’ intersecting area. The receiver
keeps track of the target by adaptively steering the beam direction.
The system detects target’s entrance and exit through the touch de-
tection module (detailed in Section 7). It also knows when the target
starts to move and the moving tendency by measuring the trend and
amount of phase shifting (detailed in Section 5).

Figure 6 illustrates mTrack’s design components and their inter-
action. The phase tracking module continuously tracks the target’s
location by measuring and manipulating phase incremental at each
Rx. It resolves the grand challenge from background reflections
and achieves mm-scale tracking accuracy. The anchor point acqui-
sition (APA) module estimates the target’s initial position through
beam searching, leveraging our observation in Section 3.3. APA
has lower location resolution than phase-tracking. Hence, it is only
opportunistically called on to provide absolute location value for
phase tracking and prevent its error accumulation. The touch de-
tection module detects user lifting the writing object or reposition it
on the trackpad. Finally, the tracking/locating/touching output can
serve a variety of applications, including not only trackpad, but also
handwriting transcription, gesture recording, etc.

5. PHASE TRACKING IN mTrack

5.1 Basic Successive Tracking Algorithm
Translating phase change into path-length change. We first

model the relation between target’s moving distance and relative
phase change between a pair of transmitter and receiver. The model
formalizes our empirical observations in Section 3.2 and builds the
foundation for phase-tracking.

Suppose the transmitter sends a single-tone signal of frequency
fc, represented as: Tb(t) = Aej(2πfct), where A is the trans-
mit signal magnitude. After target reflection and propagation, the
receiver-captured signal becomes:

Rb(t) = ηAej[2πfc(t−τ)+Φ1],

where η is the attenuation factor. Signal propagation time τ =
DT

t +DR
t

c
, where c is the light velocity, and DT

t and DR
t are the dis-

tance from target to the transmitter and receiver, respectively. Φ1

denotes the phase change caused by the reflection on the target’s
surface, which is a constant for the same material. Then the phase
shift, defined as the received signal’s phase change from time t− 1
to t, and labeled as ∆ arg(Rb)

t
t−1, is proportional to the change of

total path length due to movement:

∆ arg(R)tt−1 =
2π(DTt +DRt −DTt−1 −DRt−1)

λc
, (1)



Algorithm 1 Basic Phase Tracking Algorithm
1: Input: phase shift ∆ arg(R1)tt−1 and ∆ arg(R2)tt−1,
2: Output: new location o′(xt, yt)
3: if isempty(DT

t−1, D
R1
t−1, D

R2
t−1)

4: o′(xt, yt)← APA() /*Locating module*/
5: {DTt−1, D

R1
t−1, D

R2
t−1} ← {|

−→
o′ −

−−−→
o(Tx)|, |

−→
o′ −

−−−−→
o(Rx1)|,

|
−→
o′ −

−−−−→
o(Rx2)|} /*Acquire initial path length*/

6: else /*Successive tracking*/
7: {DTt , DR1

t , D
R2
t } ← path(DTt−1.D

R1
t−1, D

R2
t−1,∆ arg(R1)tt−1,

∆ arg(R2)tt−1) /*Find new path lengths*/
8: /*Find new location and Update path lengths*/

9: o′(xt, yt)← (
DR1

t
2−DT

t
2
+3a2

2a
,
DR2

t
2−DT

t
2
+3b2

2b
)

10: {DT
t−1, D

R1
t−1, D

R2
t−1} ← {DT

t , D
R1
t , D

R2
t }

11: return o′(xt, yt)
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Figure 7: Multipath Reflection. We model the multipath reflec-
tions into two types: background reflection and target reflection.
The sum of two reflection components is illustrated in phasor space.

where λc is the wavelength corresponding to carrier frequency fc.
From distance tracking to 2D tracking. Figure 5 illustrates

mTrack’s basic model setup. When deploying mTrack, the Tx and
two Rxs are placed at (2a, 2b), (a, 2b) and (2a, b), respectively.
Both a and b are known.

Consider two consecutive signal samples t − 1 and t, while the
target is moving. Based on Eq. (1), we have:

(DT
t +DR1

t ) = (DT
t−1 +DR1

t−1) +
λc∆ arg(R1)tt−1

2π

(DT
t +DR2

t ) = (DT
t−1 +DR2

t−1) +
λc∆ arg(R2)tt−1

2π
.

In addition with an inherent geometrical constraint of those sig-
nal path lengths (Figure 5), we can solve for three unknown path
lengths DT

t , DR1
t and DR2

t with three sets of equations, given that
the corresponding path-lengths at t−1 have already been obtained.
This computation runs in a successive manner, with initial values
DT

0,DR1
0 andDR2

0 given by mTrack’s anchor point acquisition (APA)
module (to be discussed in Section 6). Finally, the target’s absolute
coordinate at time t is computed using the triangulation method,
given the path length to the transmitter and both receivers’ loca-
tions. Algorithm 1 summarizes the successive phase-tracking in
mTrack.

This successive tracking is promising for real-time tracking be-
cause the solutions of path length and new location can be expressed
in closed-form formulas and computed efficiently by single-step op-
erations.

Notably, using highly directional receive antennas may result in a
relatively small detection region. For example, with two Rx anten-
nas of beamwidth 4.5◦ and 0.5m away from the tracking region, the
intersection area of two beams is only 5cm×5cm. mTrack expands
the detection region by adaptively steering the beam, whenever it
gauges that the target may fall out of the Rx’s beam coverage in the
next 0.5 second, assuming its speed is consistent within this short
period.
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flection is much weaker than background. (c) Intermediate case.

5.2 Tracking under Background Reflection

5.2.1 Impact of background reflection on phase shift
Though directional antennas can alleviate multipath effect, an-

tenna beamwidth still needs to be broad enough to cover a rea-
sonably large detection region. Thus, background reflection is un-
avoidable. We model how background reflection affects mTrack’s
successive tracking and derive insights that help disentangle target
reflection from background reflection. We use vector form on the
I-Q plane to represent a signal sample (Figure 7). Since baseband
signal is a single-carrier, background reflections can aggregate into
a single signal sample

−→
S bg. Similarly, target-reflected signal sam-

ple is modeled as
−→
S trg. The demodulated signal at the receiver

−→
S rec

at any time is the sum of two reflected components:
−→
S rec =

−→
S trg +

−→
S bg. (2)

Phase shift of
−→
S trg carriers information about the moving dis-

tance of target, but the receiver can only measure the mixed signal
−→
S rec. So, can this mixed signal’s phase still translate into target’s

moving distance? We answer the question by analyzing how the
phase of

−→
S rec cycles as the target moves over half-wavelength (i.e.,

the phase of
−→
S trg cycles from 0 to 2π). The phase cycling pattern

in turn depends on the magnitude of target reflection |−→S trg|, which
we classify into three ranges, as shown in Figure 8.

(a) Target dominating (TD): Suppose background reflection is
stationary as the target moves across half-wavelength. Accordingly,
as
−→
S trg rotates its phase through one cycle,

−→
S rec crosses the I-plane

once, resulting in phase shift of 2π. Thus, phase shift can still reveal
the moving distance when target travels integer multiples of half-
wavelength λ0.5.

(b) Background dominating (BD): As the phase of
−→
S trg goes

through a 2π cycle, the measured phase of
−→
S rec does not cross the

I-plane, and phase shift is smaller than 2π. The stronger the back-
ground reflection, the smaller it will be. Accordingly, the moving
distance estimated from the phase shift of

−→
S rec is always shorter

than actual value.
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Figure 9: Illustration of signal vectors relation for differential
background removal algorithm.

(c) Intermediate (ITM) case between above two: As shown
in Figure 8(c),

−→
S rec crosses the I-plane twice, causing phase jump

at each crossing point. Due to phase ambiguity of measured sig-
nal
−→
S rec, the measured phase shift also will not reveal the correct

moving distance.

5.2.2 Dealing with Background Reflection
Why is it challenging? Multipath reflection from background

is a unique challenge for mTrack which aims to track small passive
objects at high precision. Unlike radar-like systems that track large
targets (e.g., human body [12, 14]), reflections from small objects
tend to be weaker or comparable to background reflections. Due
to the high sensitivity of mmWave, background reflection can dis-
turb the signal phase even as the target moves over a short distance.
Radar systems can use ultra-wideband signals to resolve the time-
of-arrival of reflected signal paths, thus separating the foreground
and background [31]. In contrast, mTrack relies on a narrow-band
(single-tone) continuous wave that mixes background and target re-
flection.

Unlike active tracking systems [6,10] where reflected paths origi-
nate coherently from the same radio transmitter, in passive tracking,
only parts of the reflected signals contain desired information and
need to be extrapolated. Background suppression in active tracking
systems is much simpler, since the signal phase changes are caused
by baseband modulation, which operates at much higher rate (e.g.,
multiple kHz in RFID [6] ) than background variation. Hence, any
background reflection can be considered as relatively static and fil-
tered out by a DC filter [32]. This approach is not applicable to
passive tracking systems where phase changes at slow rate due to
target movement.

Dual-differential Background Removal. Since the phase shift
directly from the received signal

−→
S rec is contaminated by back-

ground reflection, mTrack employs a Dual-differential Background
Removal (DDBR) algorithm to remove such impact, thus limiting
the tracking error.

Underlying background removal are two assumptions: (i) Back-
ground reflection remains stationary across at least 3 consecutive
signal samples. This holds in general because 60 GHz radios take
RSS/phase samples (assuming one sample per packet) much more
frequently than the change of background. (ii) Target reflection has
the same decreasing or increasing trend of phase shift, and approxi-
mate RSS, across 3 consecutive samples. This holds again because
of the high sampling rate relative to the writing object’s slow mo-
tion.

Under these assumptions, the idea behind background cancella-
tion is intuitive — we leverage the invariant behind signal differen-
tial:

−→
S trec −

−→
S t−1

rec = (
−→
S ttrg +

−→
S tbg)− (

−→
S t−1

trg +
−→
S t−1

bg )

u
−→
S ttrg −

−→
S t−1

trg . (3)

The average phase shift among three consecutive samples can be
computed as:
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Figure 10: An example snapshot of using PCR to remove back-
ground reflection.

1

2
[∆ arg(

−→
S trg)tt−1 + ∆ arg(

−→
S trg)t+1

t ]

= arg(
−→
S t+1

trg −
−→
S ttrg)− arg(

−→
S ttrg −

−→
S t−1

trg ). (4)

The proof for the above equation directly follows the geometrical
relation shown in Figure 9, which is detailed in Appendix A.

From Eqs. (3) and (4), we get the phase shift with background
reflection canceled by differentiating the phase of differential re-
ceived signal:

∆ arg(
−→
S trg)t+1

t−1 = ∆ arg(
−→
S trg)tt−1 + ∆ arg(

−→
S trg)t+1

t

≈ 2[arg(
−→
S t+1

rec −
−→
S trec)− arg(

−→
S trec −

−→
S t−1

rec )]. (5)

The resulting ∆ arg(
−→
S trg)

t+1
t−1 is deemed as a single phase shift

sample (with background canceled) to replace the one in the basic
successive tracking Algorithm 1 to improve tracking accuracy.

Millimeter-wave radios typically have non-negligible phase noise
which is inherent to its ultra-high frequency synthesizer. To pre-
vent phase noise from contaminating the phase shift measurement,
mTrack adapts its phase sampling rate (by dropping intermediate
samples), to ensure the phase shift between consecutive samples is
not dominated by phase noise. We retain a phase sample only if its
shift (relative to the previous sample) is above variance of the phase
noise (available from hardware specifications).

5.3 Phase Counting and Regeneration
One limitation of the above DDBR algorithm is that it attempts to

average out phase noise at the cost of lowering sampling rate. Con-
sequently, between 3 consecutive sampling period, the background
reflection may have already changed, thus violating DDBR’s as-
sumption.

To overcome this limitation, we design a complementary algo-
rithm called phase counting and regeneration (PCR). PCR main-
tains a high sampling rate, but collects a sufficient number of sam-
ples (instead of 3) to recover the target-reflected signal from noise
and background reflection. Under background reflection, although
the absolute phase change of measured signal is no longer linear
w.r.t. target’s moving distance, its phase still exhibits a periodic
pattern (Section 5.2.1). PCR harnesses this phenomenon to iden-
tify/count the phase cycles of measured signal, based on which it
regenerates the phase change caused purely by target reflection.
Then, it can simply run the basic phase-tracking Algorithm 1 to
translate phase change into moving distance.

The three different patterns of background contamination (Sec-
tion 5.2.1) impose significant challenges to this approach. First, the
three cases may be mixed together, and the ITM case has severe
phase aliasing effects. Second, we need to identify the periodic-
ity based only on a few phase cycles to maintain the timeliness of



-45

-40

-35

-30

-25

-20

-15

 10  20  30  40  50  60  70  80

R
S

S
 (

d
B

)

Direction (degrees)

Discrete Sampling
Spline Interpolation

True Position

Figure 11: Spline interpolation im-
proves granularity of direction estima-
tion from discrete steering.

-30

-20

-10

 0

 10

 20

 10 15 20 25 30 35 40 45 50

R
S

S
 (

d
B

)

Direction (deg.)

Only BG
Pen and BG

Only Pen
BG Subtract

Figure 12: APA improves locating ac-
curacy that is disturbed by background
reflection.

Ph
as

e
sh

ift
in

g

0 200 400 600 800 1000
Sample Index

Ph
as

e
sh

ift
in

g
va

ria
nc

e

R
SS

(d
B)

RSS
Phase var.

Touch Lift Click
3

0
-3

0.5

0.25
0

-10

-25
-40

Figure 13: Example snapshot of three type events.
Phase shift variance and RSS are for event detec-
tion and classification.

Params Basic DDBR PCR
Complexity Low Low High

Latency Small Small Large
BG Resilient No Yes Yes
Error w/ BG ≈30mm ≈5mm ≈8mm

Noise Resilient Yes No Yes
Error w/ Noise ≈8mm ≈20mm ≈8mm

Table 2: Performance profiles of mTrack’s phase tracking algo-
rithms. Error statistics from Section 8.

tracking. Both challenges deter simple periodicity identification al-
gorithms like Fast Fourier Transform. PCR addresses these chal-
lenges through three key steps (Figure 10 shows an example).

Reducing ITM to BD. We address the first issue by detecting the
ITM case, and convert it to the BD case which has no phase aliasing
effect. For detection, PCR leverages the unique phase “jumps” in
the ITM case caused by aliasing, i.e., neighboring two jumps are in
opposite directions (Figure 8). Formally, given a time series of N
phase samples x[1], x[2], · · · , x[N ], it sequentially searches for a
point mi with phase jump:

mi = arg min
2≤i≤N

find(|x[i]− x[i− 1]| > π). (6)

It then checks if there exists a follow-on point that together con-
stitutes the feature in ITM:

mj = arg min
mi≤j≤N

find(|x[j]− x[j − 1]| > π) (7)

s.t. mj −mi < Th (8)
|x[mi]− x[mj ]| > π, (9)

where Th is the largest periodicity that PCR can detect. Eq. (9)
ensures the phase jumps at mi and mj are opposite.

Once an ITM case is detected, we can reduce it to the BD case
by compensating the difference between discontinuous series:

x[i] = x[i]− (x[mi]− x[mi − 1]),∀i ∈ [mi,mj). (10)

Periodicity Counting. To reliably detect the periodicity T
of the time series of samples after alias removal, we adopt the
phase coherence analysis in [33]. Let sequence L[i, d] = {x[i +
jd] | ∀ 0 ≤ j < bN/dc}, where {} denotes concatenation of sam-
ples. Since L[i, d] are samples that are separated by d points in the
given time series, by the periodicity definition, variance of L[i, d]
will be minimized, i.e. 0, when d = T . Hence, we find the period-
icity T by iterating possible values in range [Tl, Th] for all sequence
i:

T = arg min
t

var({L[i, t] | ∀1 ≤ i ≤ t}), ∀t ∈ [Tl, Th],

where L[i, t] is L[i, t] with its mean value subtracted.
Regeneration. PCR will generate the counting sequence (red

curve in Figure 10) based on the periodicity detected in the time
series samples. The correct phase pattern is regenerated by creating
2π phase shift between any two neighboring counts. The trend of
phase shift, either increasing or decreasing, is available from the
basic successive tracking or DDBR algorithm.

We emphasize that PCR is uniquely designed for passive track-
ing using small-wavelength mmWave signals. It assumes the back-
ground reflection does not change as the target moves over λ0.5,
which may not hold when using microwave signals. In addition, its
resolution is around λ0.5, hence PCR’s precision worsens to multi-
ple centimeters when using microwave signals.

Table 2 summarizes and compares three processing algorithms.
Since PCR algorithm works on time-series of samples spanning
multiple phase cycles, it incurs proportionally higher complexity
and tracking latency than Basic (successive tracking) and DDBR,
which work on 2 and 3 samples, respectively. However, it is more
resilient to the phase noise, as will be verified in experiments.

6. ANCHOR POINT ACQUISITION
APA complements phase tracking in two aspects: (i) estimating

initial location, which serves as an anchor point to bootstrap the
successive tracking; (ii) opportunistically calibrating the tracking
results to prevent error accumulation.

Locating through discrete beam steering. Our feasibility study
in Section 3 reveals a key challenge in locating the target: practical
60 GHz antennas can only be steered at discrete angles. We resolve
this challenge by leveraging the roll-off pattern of the antenna gain.
The gain of a 60 GHz directional Rx antenna (either horn antenna or
phased-array [30]) decreases continuously near its beam edge. Ac-
cordingly, as a signal source moves from the beam center towards
beam edge RSS falls off smoothly. The fall-off trend is preserved
even if Rx steers itself in discrete steps.

Built on this observation, mTrack realizes discrete spatial sam-
pling of the target’s direction, thereby relaxing the beam resolution
requirement. In analog-to-digital signal conversion, a continuous
signal can be preserved by interpolating it across discrete samples,
using sinc as the basis function. Similarly for mTrack, the continu-
ous spatial RSS variation can be reconstructed by interpolating the
discrete samples, using antenna gain pattern (over angles) as basis
function. Yet, since the exact gain pattern is unavailable, we choose
to use spline interpolation instead. Spline interpolation performs
piecewise polynomial approximation to the discrete samples with
an objective that minimizes curve bending. It can thus recover the
peak RSS position. To perfectly reconstruct continuous variation,
angle of beam-steering for each step is required to be smaller than
2× the beamwidth.
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Figure 11 shows one example test result, with discrete RSS sam-
ples (blue dots) at 8◦ beam-steering steps, along with the interpo-
lated curve. We can see that the interpolated maximum RSS posi-
tion is very close to the ground truth.

Following mTrack’s setup (Figure 5), the target’s angle relative
to each Rx antenna can be translated into its absolute location via
simple geometrical manipulation. We omit the details for the sake
of space.

Background RSS Subtraction. Similar to the successive phase
tracking, the RSS values captured during APA may be contami-
nated by background reflection. However, RSS is much less sensi-
tive than phase because the locating result will be affected only if
the background change alters the peak in the RSS scanning. Thus,
mTrack employs a simple iterative background RSS subtraction
method in APA. Before use, each Rx collects the RSS of back-
ground reflection for each steering angle. When a new APA is in-
voked, the background RSS at each steering direction is subtracted
from the measured RSS. During the writing process, it knows the
precise angular location of the target by combining phase tracking
and initial APA. Hence, it periodically rescans the background RSS
by steering off the target position.

During APA, the tracking module has to be temporarily blocked.
However, since mmWave phase-array antenna can instantaneously
switch its beam (at ns level latency as specified in 802.11ad [34]),
the impact on tracking is negligible.

Figure 12 illustrates one test experiment, where a metal-surface
cup is placed 25cm behind the detection region and a pen is used as
tracking target. When there is only pen (blue curve) or only back-
ground (yellow curve) in the environment, mTrack can locate the
direction of target accurately (in 40◦ and 30◦ respectively). When
the tracking target is mixed with background object, the system is
misled to take the later as locating result (in green curve) due to
its stronger reflected signal strength. In the red curve, background
subtraction cancels the background reflection from cup, and thus
the target position can be accurately located.

Opportunistic Calibration. To curtail the error accumulation
from successive phase tracking, APA is invoked opportunistically
to recalibrate the absolute target position.

mTrack adopts a k/θ test to determine when to invoke a calibra-
tion. APA module periodically estimates anchor points. If past k
anchor points all fall in a sector of angle θ originating from cur-
rent position, the deviation of tracking trajectory can be considered
as sufficiently large. In this case, the calibration will be applied
by updating current position to the latest anchor point. In practice,
mTrack empirically chooses k = 3 and θ = 120◦.

7. TOUCH EVENT DETECTION
Besides tracking, mTrack detects touch-related gestures includ-

ing: (i) “touch” – pen landing on writing region, (ii) “lift” – pen
lifting above the region, and (iii) “click” – essentially a sequential
combination of “touch” and “lift” event. The touch gestures can
serve as commands, e.g., start/pause of tracking and segmentation
of writing trajectory.

The key principle in mTrack’s gesture detection algorithm is to
identify signal features that discriminate each gesture, and distin-
guish them from normal writing. Given the ultra-narrow beam, one
may consider the touch gestures as “beam cutting” events, and use
RSS variation patterns to detect them [5]. However, we find that
RSS fluctuates significantly during writing, which incurs frequent
false alarms. To address this problem, we resort to the phase vari-
ance as an additional feature along with RSS. Since phase shift
reveals the target’s movement, its variance will characterize the
abruptness of change in the pen’s moving speed, which is suitable
for gesture detection.

Figure 13 illustrates a snapshot of signal features for the three
types of gestures. A sliding window of duration 0.1s is used to
smooth the phase variance. We can see that all gestures will create
large phase variance, which is amenable for flagging a valid gesture
event. To discriminate different types of gestures, we can resort to
the RSS pattern, which tends to have higher value when the pen is in
the tracking region. Based on above observations, mTrack identifies
and classifies the gesture using a simple decision tree (Alg. 2).

Algorithm 2 Decision Tree for Touch Gesture Detection
1: Input: phase variance P[n] and RSS R[n]
2: {V,m} ← max(P) /*max value and index*/
3: if V > H
4: if R[m] > mean(R[m : m+ s]) and

R[m] > mean(R[m− s : m]) /*Check RSS*/
5: return “Click” /*Click generates RSS peak*/
6: else if mean(R[m : m+ s]) > mean(R[m− s : m])
7: return “Touch” /*Touch increases RSS*/
8: else
9: return “Lift” /*Lift decreases RSS*/

10: return “NULL” /*Event not detected*/

In Algorithm 2, there are two parameters. s is the number of
samples that are used to compute average RSS, which is empirically
chosen as 0.1s. H denotes the threshold for a valid peak of phase
variance. Since different users’ gesture styles (e.g., touching speed)
may differ, mTrack requests the user to provide a 10-sample train-
ing set before using the gesture detector. It then selects an H that
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Figure 16: Tracking along an example lin-
ear trajectory(10 cm) without BG.
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ground reflection.
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minimizes the difference (computed using standardized Euclidean
distance [35]) between the widths of the 10 peaks.

8. IMPLEMENTATION AND EVALUATION
We use a custom-built 60 GHz software-radio testbed (Figure 14)

to evaluate the viability and performance of mTrack. The testbed
uses WARP [36] as baseband processing unit, but extends its car-
rier frequency to 60 GHz. Baseband digital waveforms are gen-
erated in a host PC, forwarded to WARP, and converted to ana-
log using a high-speed DAC. Resulting analog signals are carrier-
modulated and transmitted by the Vubiq 60 GHz RF front-end [37].
Two receivers are synchronized by a 308.6 MHz external clock sig-
nal sourcing from transmitter oscillator. Received signals will be
decoded following reverse path, and eventually reach the PC host
which runs mTrack’s algorithms.

Tx and Rx RF front-end each has a waveguide module as inter-
face to 60 GHz antennas (Figure 15). Transmitter uses its origi-
nal waveguide module PEM-001 as antenna, which is quasi-omni-
directional (180◦ beamwidth). Tx sends 5 MHz single-carrier base-
band signals modulated by 60 GHz carrier waves. Regarding re-
ceiver, we are unaware of any programmable 60 GHz phased-array
antenna. Thus, in our prototype, signals are captured by a direc-
tional receiver with horn antenna PE9881-34 of 3.4◦ beamwidth.
To emulate the effect of beam steering, the Rx antenna is mounted
on a motion control system [38] that is connected to the PC host
and allows programmable azimuth rotation at 1◦ granularity.

We also implement the RSS/phase extraction module on the 60
GHz testbed. It generates and sends single-tone frames (3000 sam-
ples each) through Tx, and estimates a pair of RSS and phase values
from each received frame. To avoid phase ambiguity, the change
between any two phase values cannot exceed π. By default, the ex-
traction module samples RSS/phase at 300 Hz. Thus, the highest
tracking speed that our prototype can support is 2.5mm×300 Hz/2
= 37.5cm/s. The speed is sufficiently fast to capture normal hand
writing. Note that 300 Hz phase sampling rate is far below our
hardware limit. With 40 MHz bandwidth, the phase sampling rate
can be up to 40 MHz/3000 = 13 KHz, equivalently translated to a
tracking speed of 26 m/s.

On top of the RSS/phase extraction, we implement mTrack’s ma-
jor modules, i.e., tracking, locating and touch detection. Core pro-
cessing algorithms DDBR, PCR and APA are designed as middle-
ware plugins that work transparently between RSS/phase extraction
and these modules. Algorithms operate on samples that are loaded
sequentially into a data buffer.

8.1 Micro Benchmark

8.1.1 Passive Tracking Performance
The experiments are conducted in an office environment with

natural background: one Rx antenna faces a human and a metal
cabinet 1.5 m away; the other one faces a drywall 2 m away. For
a micro-benchmark test, a pen is first attached to the motion track
and moves linearly under the control of the PC host. This setup al-
lows us to obtain the pen’s location over time, and use it as ground
truth to evaluate mTrack. Unless noted otherwise, we use the PCR
algorithm in mTrack (Section 5.3) to combat background reflection.

Combating background reflection. We compare mTrack with
the ground-truth (Oracle) and two alternative techniques: (i) Ba-
sic, which directly employs the phase-tracking algorithm in Section
5 without handling background reflection. (ii) Static subtraction
(SSub), which surveys the background reflection offline when the
target is out of tracking region. Then, it subtracts the measured
background directly from baseband signals, assuming the back-
ground is static and remains the same w/ or w/o target present. This
is typically used in scenario where background signals have long
coherent time, e.g., radar-based object identification [13, 31].

Figure 16 and 17 depict example trajectory outputs of these schemes
when the pen moves linearly across 10 cm w/ and w/o background
reflection. Figure 18 plots the CDF of tracking errors across the
trajectory and over 10 trials. When there is no background, all
methods have little deviation. When background is present, the ba-
sic method exhibits large deviation (median error of 30 mm and
90-percentile 5 mm). Static subtraction leads to even larger er-
ror (median 40 mm and 90-percentile 70 mm), because mmWave’s
phase is highly sensitive to environment. The background signals
hardly remain static and subtracting an incorrect estimation incurs
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man as dynamic background.
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large penalty because of equivalently introducing an artificial back-
ground.

In contrast, mTrack’s DDBR and PCR algorithms both demon-
strate mm-scale precision, with median (90-percentile) error of 11
(18) mm and 6.5 (9) mm, respectively. PCR achieves higher accu-
racy than DDBR mainly because our 60 GHz software defined ra-
dio platform has relatively high phase noise (-80dBc at 5Mhz offset
from carrier according to our measurement). It can lead to maxi-
mum deviation of up to 0.2 radian within one phase cycle. COTS
60 GHz radios have much lower phase noise (typically <110dBc
at 5Mhz) [39]. Our trace-based simulation shows that DDBR can
outperform PCR significantly under such noise level.

Impact of phase noise on DDBR performance. We eval-
uate DDBR’s performance under different levels of phase noise
through trace-based simulation. The phase shift of target reflec-
tion is generated by simulating the target moving along a triangle
of size 5cm×5cm following the setup in Figure 5. Meanwhile, there
is background reflection from a static reflector, whose reflectivity is
1/3 of the target. The simulated phase shift is contaminated by the
trace of phase noise collected from our platform.

Figure 20 shows the impact of phase noise. DDBR’s tracking
error decreases by more than 80% when the phase noise is reduced
from -80dBc to -86dBc, and after background removal, the trajec-
tory is close to the oracle shape (triangle). Further reducing the
phase noise (to <-86dBc) will not significantly improve tracking
performance since phase noise is sufficiently small for DDBR to
function correctly.

Different types of background. We now evaluate the perfor-
mance of Basic and mTrack (using PCR) under 3 different back-
ground types: (i) Strong background: a metal cabinet is placed near
the tracking region, facing one Rx antenna. (ii) Weak background:
a 60 GHz RF absorber is placed at the end of tracking region to iso-
late the impact of cabinet on one Rx antenna, leaving background
reflection from drywall to the other antenna. (iii) No background:
RF absorbers are placed along both the x- and y-axis, protecting
both Rx antennas from background reflection.

We also evaluate mTrack with human as dynamic background:
(i) CS, MS, and FS: A human stands 1m, 2m and 3m facing one

Rx antenna. Human breathing changes background reflection sig-
nals. (ii) WK1 and WK2: The human randomly walks in parallel
or perpendicular at 2∼3m to Rx antenna.

Figure 19 shows that mTrack maintains mm-scale precision across
all background types. Its PCR algorithm effectively eliminates the
impact of background reflection, leaving median (90-percentile)
residual error of only around 8 (12) mm compared with the per-
fect case (no background). In contrast, the basic phase tracking
deviates by up to 30 (50) mm. Figure 21 shows that PCR can still
effectively reduce tracking error under human walking as dynamic
background, since human body will not strongly reflect mmWave
signals.

8.1.2 Performance of APA
We proceed to verify mTrack’s APA algorithm with similar ex-

periment setup as above. The target pen is randomly placed over
30 positions 40 to 50 cm away from the receivers. We evaluate
mTrack’s error in locating the target’s angle relative to the transmit-
ter/receiver (Section 6).

Benchmarking APA with discrete-step beam-steering. To
emulate practical behavior of 60 GHz switched-beam antenna, we
steer the antenna at discrete steps of 8◦ (2× the beamwidth). Fig-
ure 22 shows that the spline interpolation does play a crucial role
in mitigating the effect of discrete switching between beam direc-
tions. Compared with the basic method that directly takes the RSS-
maximizing direction (Section 6), it reduces the 90-percentile error
from 2.5◦ to 1.5◦, translating to positioning error of 10.5 mm.

Background subtraction for APA. In this experiment, in addi-
tion to the default background (cabinet and drywall), we intention-
ally place a metal cup near the end of writing region. Unlike large
background like cabinet or drywall, small reflective object as such
is more likely to create sharp peak along certain direction, thus dis-
turbing APA.

Figure 23 shows the anchor positioning performance. When beam
steering granularity is high (e.g., ≤ 4◦), mTrack has a small direc-
tion estimation error (around 1◦) even without background subtrac-
tion. This is because the pen is closer to the antennas and gener-
ates stronger reflection than the background cup. Their reflection
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Figure 27: Tracking error of different ma-
terials.
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Figure 28: Error map of APA
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Figure 29: Error map of Phase-tracking.
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Figure 32: Character and word recogni-
tion accuracy.

peaks can thus be reliably distinguished through fine-grained scan-
ning. However, with coarser steering granularity, their peaks tend to
merge, leading to an increasing error. Fortunately, background sub-
traction effectively mitigates the impact of background reflection,
hence reducing the estimation error by 50%.

Figure 24 shows the APA performance under human movement
as dynamic background. Human movement at 2m away from re-
ceiver does not affect positioning error, since reflecting RSS from
human body is much weaker than pen. Estimation error without
background subtraction increases to 2.8◦ when human stands close
to receive antenna. However, background subtraction can still con-
sistently reduce positioning error even under human movement.

8.1.3 Joint Performance of Tracking and APA.
Recall APA facilitates phase tracking through opportunistic cali-

bration. In this experiment, we verify the effectiveness of this joint
execution. The target pen moves along a circular trajectory of ra-
dius 7 cm. mTrack continuously runs phase tracking, and performs
the k/θ-test (Section 6) every 2 seconds. It invokes APA calibration
if the test dictates so. Figure 25 shows the tracking error at every
2-second check point. Without APA calibration, the phase track-
ing error steadily accumulates over time and reaches 46 cm when
moving 150 cm continuously along the circle. In contrast, APA cal-
ibration caps the phase tracking error below 10 mm across 90% of
the trajectory.

8.2 Performance on a Trackpad
We now evaluate mTrack’s performance in a real trackpad ap-

plication. The experiments are conducted in an office environment
with natural background (drywall, metal cabinet, a user, and occa-
sional human walking by). A 50cm×50cm writing region is created
on a wood table. To test the precision of APA in locating anchoring
points, the user rests the pen tip on 40 random locations, ensuring
the bottom part of the pen is exposed to the antennas. mTrack steers
the antennas with granularity of 8◦. To test phase tracking, the user
draws 10 circles and 10 triangles (with 20 cm perimeter) following
printed trajectories in the normal hand-writing speed. Since human-
hand deformation will affect phase tracking, testers hold the mid-
dle portion of pen, while directional antennas point to the bottom

portion. Due to lack of timing-synchronization between user writ-
ing trajectory and tracking estimation, we approximate the tracking
error as the minimum projection distance from mTrack’s location
estimation to the trajectory.

Types of writing objects. We evaluate APA for 3 writing ob-
jects of different reflectivity: metal-surfaced pen, plastic marker,
and wood pencil (Figure 15(b)). Our benchmark measurement shows
that, at 40 away from the transmit/receive antenna, the SNR of sig-
nals reflected by these objects are 12.3 dB, 10.1 dB and 4.7 dB, re-
spectively. Figure 26 plots the APA error distribution, which shows
90-percentile error of 2 cm, 4 cm and 16 cm, respectively. Obvi-
ously, object with strong reflectivity enables APA to easily combat
noise, thus achieving higher precision. Note that the APA precision
for pen is lower than the benchmark test in Section 8.1.2, mainly
because the presence of user’s hand creates more uncertainties.

Remarkably, mTrack’s phase-tracking algorithm demonstrates the
high accuracy in this trackpad application (Figure 27). The 90-
percentile errors for pen, marker and pencil are 8 mm, 11 mm and
4.8 cm respectively.

Localization/tracking error across a large region. Distance
between the target and the receiver determines the reflected signal
strength and hence may affect mTrack’s accuracy. The transmitter
and receivers are placed at coordinates (100, 100) cm, (50, 100)cm
and (100, 50)cm, respectively. To quantify such location-dependent
error, we partition the writing area into 10cm ×10cm squares, and
repeat the previous precision test on each square. Figure 28 and 29
plot the APA and phase-tracking error across all squares within a
90cm ×90cm region.

When the pen is close to both receivers (distance< 60cm), mTrack
can achieve high accuracy with APA/tracking error of <1.5 cm
and <8 mm, respectively. Accuracy starts degrading when the tar-
get moves over 70 cm away from receiver, and hence SNR drops.
Nonetheless, the tracking error is still within 1.5 cm even when the
target is 90 cm from the receiver. mmWave attenuates to almost
noise floor at 100 cm owing to high pathloss of mmWave signals.
We expect at least two ways of scaling the writing region: increas-
ing the transmit power, and placing more receivers along the x- and
y-axis. We leave such exploration for future work.



Event Touch Lift Click ND
Touch 94.0% 0 0 6.0%
Lift 0 93.5% 0 6.5%

Click 0 0 94.8% 5.2%

Table 3: Classification accuracy. ND is not detected.

Accuracy of touch event detection. To verify mTrack’s event
detection algorithm, we recruit 7 users to perform the “touch”, “lift”
and “click” gestures on the writing region using a pen. Each user
first provides a 10-sample training set to find the best threshold H
(Sec. 7), and then repeat each gesture for 50 times to test the de-
tection algorithm. Table 3 shows the confusion matrix of gesture
detection among all users, and Figure 30 plots the detection accu-
racy of each users over all events. The detection accuracy of all
three types of events is around 94% and does not vary noticeably
across users. Notably, the event misclassification rate is 0, indicat-
ing that the RSS based approach can reliably discriminate different
gesture events owing to the highly directional beams. The miss de-
tection of events is mainly due to the variation of users’ touching
speed, which may not always be consistent with the training set.

8.3 Application of mTrack
We integrate mTrack with a word recognition application to show-

case its potential in computer-human interaction. In specific, we
record the writing trace from mTrack word by word, and then ex-
port the trace to control the mouse on a PC that runs the MyScript
Stylus [40] word recognition software. mTrack’s event detector
is used to segment the connections between characters in a word.
Figure 31 shows two examples when we use mTrack to track the
character/word trajectory, which exhibit high fidelity even if each
character spans only 1 or 2 cm.

We further recruit 7 users to each write 100 random characters
and 50 words using metal-surfaced pen on a 15 cm× 15cm writing
region. The words are randomly picked from the standard MacKen-
zie set [41], which well represents the usage frequency of English
words. Figure 32 plots the recognition accuracy across users. The
accuracy for both character and word ranges from 81 to 89% across
users. Users also perform the same test on a real trackpad, and the
recognition accuracy is from 88 to 92%, which shows that mTrack’s
performance is close to the trackpad. Considering the potential
penetration of portable millimeter-wave radios [8, 9], we believe
mTrack holds potential as a new form of “in-situ” transcription sys-
tem.

9. DISCUSSION
Object shape and size. mTrack is designed to track writing ob-

jects of small size, like pen or marker, which can be approximated
as a point reflector, because their dimension (with diameter≈ 1cm)
is much smaller than its distance to the antennas (> 20cm). Objects
with deformable shape or large size, e.g. human hand and body,
do not possess these properties, and hence cannot use mTrack’s
model-driven tracking algorithm. Similarly, mTrack can not differ-
entiate phase change due to large hand-shape deformation. Thus,
users need to keep a relatively consistent hand shape when writing
to avoid confusing the tracking algorithm. They also need to en-
sure a sizable part of the pen is exposed to the Tx/Rx to reflect the
mmWave signals.

Phased-Array Antennas. Due to hardware limitation, we are
only able to evaluate our concept with directional antennas. Beam
pattern of a horn antenna differs slightly from that of an 802.11ad
phase-array in two aspects: (i) The beamwidth of a phased-array

is dependent on steering direction. For example, for a linear an-
tenna array, beamwidth along 0◦ direction can be twice of that along
90◦ [30]. However, since beamforming codebook is predefined and
known, we can still compensate the gain distortion of discrete sam-
pling. The systematic solution to this problem will be left for our
future work. (ii) Sidelobes of a phased array may be relatively large
compared with that of a directional horn antenna. Sidelobes may
capture signals from undesired directions. However, since they usu-
ally have much smaller gain compared to the main lobe, as long as
there is a RSS peak when pointing to the target, mTrack’s beam-
steering based APA mechanism can still work.

Tracking multiple objects. mTrack can be potentially extended
to track multiple targets simultaneously. When the objects are suf-
ficiently separated, and not falling in the same beam direction, the
receiver radios can steer the beam towards different objects in a
time-interleaving manner and update their tracking trajectories se-
quentially. Further exploration of this idea is left for our future
work.

10. CONCLUSION
We have presented mTrack, a high precision passive object track-

ing system that uses 60 GHz signals as sensing medium. mTrack
takes advantage of the short wavelength and steerable directional
beams of 802.11ad-like 60 GHz radio devices, and uses subtle RSS/
phase variation to track passive writing objects on a trackpad-like
area. It can track a pen at sub-centimeter level accuracy, which even
outperforms existing systems that use radio-instrumented objects.
Considering the growing popularity of 60 GHz devices, we believe
mTrack can potentially open up a wide range of mobile sensing
applications.
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APPENDIX
A. PROOF OF EQUATION (4)

In this section, we derive the rationale behind background re-
moval as stated in Equation (4). For clarity, we introduce the fol-
lowing notations: θ1 = ∆ arg(

−→
S trg)

t
t−1, θ2 = ∆ arg(

−→
S trg)

t+1
t ,

and θ3 = arg(
−→
S t+1

trg −
−→
S t

trg) − arg(
−→
S t

trg −
−→
S t−1

trg ). Since the
target’s reflection signal strength remains similar among three con-
secutive samples, the two triangles in solid line of Figure 9 can be
considered as isosceles triangles. Following the geometrical rela-
tion, we have:

π − θ1

2
+
π − θ2

2
+ θ3 = π,

or equivalently θ3 = θ1+θ2
2

, which proves Equation (4). ut


