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Figure 1. We explore interactive possibilities enabled by Google’s project Soli (A), a solid-state short-range radar, capturing energy reflected of hands
and other objects (B). The signal is unique in that it resolves motion in the millimeter range but does not directly capture shape (C). We propose a novel
gesture recognition algorithm specifically designed to recognize subtle, low-effort gestures based on the Soli signal.

ABSTRACT

This paper proposes a novel machine learning architec-
ture, specifically designed for radio-frequency based gesture
recognition. We focus on high-frequency (60 GHz), short-
range radar based sensing, in particular Google’s Soli sensor.
The signal has unique properties such as resolving motion
at a very fine level and allowing for segmentation in range
and velocity spaces rather than image space. This enables
recognition of new types of inputs but poses significant dif-
ficulties for the design of input recognition algorithms. The
proposed algorithm is capable of detecting a rich set of dy-
namic gestures and can resolve small motions of fingers in
fine detail. Our technique is based on an end-to-end trained
combination of deep convolutional and recurrent neural net-
works. The algorithm achieves high recognition rates (avg
87%) on a challenging set of 11 dynamic gestures and gen-
eralizes well across 10 users. The proposed model runs on
commodity hardware at 140 Hz (CPU only).
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INTRODUCTION

As computing moves increasingly beyond the desktop the
HCI community has researched a multitude of alternative in-
put strategies. In particular interaction via whole body or
hand gestures (often called natural user interfaces) has seen
tremendous interest in recent years. In the context of mobile
and wearable computing this remains a challenging problem
because instrumenting the user or the environment does not
scale well: camera based solutions which have reached high
levels of accuracy in stationary settings are not well suited
for ubiquitous mobile gesture interaction due to the need for
direct line of sight and issues with (self-)occlusion.

Non-vision based sensing such as electronic field sensing
and radio frequency sensing has been proposed to alleviate
some of these issues but so far suffered from low spatial res-
olution. However, emerging high-frequency ultra-wideband
chips [12] are the basis for digital millimeter-wave radars
which promise to combine high accuracy at short range with
low-power consumption and compact physical form-factor.
One instance of such sensors is Google’s project Soli [23],
a new sensor developed for interactive input recognition on
mobile and wearable devices.

Millimeter-wave radar has the potential to serve as basis for
mobile gesture recognition by overcoming many issues in vi-
sion based and low-frequency RF sensing. However, it brings
a number of new challenges for HCI and gesture recogni-
tion research: sensing in the electro-magnetic spectrum es-
chews spatial information for temporal resolution. Capturing
a superposition of reflected energy from multiple parts of the
hand such as the palm or fingertips, the signal is therefore
not directly suitable to reconstruct the spatial structure or the
shape of objects in front of the sensor. However, the signal
does capture motion even of very small magnitude and it is
possible to discriminate very subtle and precise hand motions
and gestures. Embracing this challenge we propose a novel



deep learning based gesture recognition approach specifically
designed for the recognition of dynamic gestures with mil-
limeter wavelength RF signals.

Our main contributions are: (1) a novel end-to-end
trained stack of convolutional and recurrent neural networks
(CNN/RNN) for RF signal based dynamic gesture recog-
nition. (2) The algorithm runs in real-time on off-the-
shelf hardware and shows the potential to robustly recog-
nize even challenging micro-interactions. (3) Furthermore,
we contribute an in-depth analysis of sensor signal proper-
ties and highlight inherent issues in traditional frame-level
approaches. Finally, the most important design choices and
parameters of the recognition algorithm are discussed.

We conclude with an outlook onto exciting opportunities for
research in the context of short range radar sensing, including
end-to-end gesture spotting and gesture recognition as well as
continuous 3D tracking.

RELATED WORK

Input recognition is an important area in HCI research, the
need for alternative input paradigms has only grown with the
explosive proliferation of mobile computing. We focus our
literature review on (1) various suitable sensing modalities
and (2) gesture recognition algorithms.

Sensing modalities:

A number of camera based solutions exist, with early work
focusing on 2D RGB cameras [7]. In-air gestures in on-
the-go scenarios have been shown using either wrist-worn
cameras [20] or utilizing the mobile devices built-in cam-
era [34]. More recent methods have enabled fine-grained 3D
hand-pose estimation in real-time from depth-images (e.g.,
[19, 31]). However, size and the requirement for direct line
of sight mostly restrict the applicability of these approaches
for ultra mobile settings. In the light of these challenges re-
searchers have explored several alternative sensing modali-
ties. Including simple IR proximity sensors facing outwards
[2], or upwards [21], and magnetic field sensing for tracking
of rigid motion around a device [18]. Electric field sensing
has been used to track a single fingertip in 3D above a mo-
bile device [8], or to recognize a small number of full-body
gestures [4]. Furthermore, the Doppler shift can be exploited
for audio-based sensing [11]. Finally, capacitive effects can
be used for input recognition (e.g., [28]).

Most closely related to our work are approaches that lever-
age radio frequency waves to detect motion and gestural in-
put. Examples include sensing via disturbances of GSM [39]
signals, picking-up electromagnetic interference in LCDs [3]
or piggybacking onto existing WiFi signals [26]. We refer
to [27] for an overview. To main difference to our work lies in
the nature of the signal. Existing approaches operate in rela-
tively low frequency bands (less than 5 GHz), inherently lim-
iting spatial resolution, whereas we use high-frequency radar
with a central frequency of 60 GHz, which allows for more
fine grained gesture sensing.

Input recognition algorithms:
Due to the complexity of human motion and difficulty to ac-
curately sense it, many gesture recognition algorithms are

now based on some form of machine learning model. Tra-
ditional architectures require features exctracted from low-
level data. Typical choices for camera based sensing include
spatio-temporal features (e.g., [32, 34, 35]), capturing shape
and motion cues. Similarly, non-camera based sensing of-
ten relies on features designed according to domain knowl-
edge [11, 26]. Such feature vectors are then classified into
different gesture classes via appropriate ML models (often
SVMs). Identifying features with relevant information con-
tent is known to be a time consuming and fragile process [39].

In part motivated by difficulties in finding good hand-crafted
features, there is now a growing trend toward feature rep-
resentations learning via deep neutral networks. Such ap-
proaches have been successfully applied to various tasks
in video based action recognition [33] and speech recogni-
tion [15]. Similarly [24] uses CNNs for sign language recog-
nition based on combined color and depth data. Finally, sig-
nificant improvements in human activity recognition based on
accelerometers or gyroscopes have been demonstrated [25]
by leveraging similar architectures.

A further challenging aspect of gesture recognition is that of
modelling the dynamics a motion sequence. Hidden Markov
Models have been applied to several gesture recognition and
HCT tasks [22, 37]. Other state space based models include
dynamic time warping [5] and finite state machines [16]. Re-
cently, Recurrent Neural Networks (RNN), especially aug-
mented with Long short-term memory (LSTM) cells has been
shown to capture sequential information in several domains
including speech- [15], video based action [6] and activity
recognition [25].

A simple gesture recognition approach alongside the low-
level hardware details of the Soli sensor are discussed in [23].
The recognition approach only detects four gestures and only
from a single user. In this paper, we propose a joint model
to learn feature representations and the dynamic patterns in
high frequency radar signals. The model is trained in an end-
to-end manner, can recognize larger gesture sets with high
accuracy and it is robust across users and sessions. Finally,
we make the pre-trained model publicly available for others
to be able to extend our work™.

RADAR-BASED GESTURE RECOGNITION

We build upon Google’s Project Soli [23], a purpose-build
sensor for micro-interactions in mobile and wearable com-
puting. We are specifically motivated by the ability to sense
subtle, fast, precise, unobtrusive and low-effort gestures, in-
volving primarily small muscle groups to prevent fatigue over
time and natural motion. Such gestures would provide a good
trade-off between precision of interaction and effort [38]. For
example, sliding the thumb over the index finger for 2D rela-
tive input which could be mapped to a cursor or used to nav-
igate a hierarchical menu. Other interesting interactions may
include diminutive flicks of individual fingers or dynamic tra-
jectories of fingertips (without moving the wrist).

However, while Soli and similar sensors hold the potential to
bring such micro-interactions to mainstream mobile devices,
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Figure 2. Signal properties. Pixel intensity corresponds to reflected energy; horizontal axis is velocity; vertical axis is range. (A+B) Sensor produces almost
identical response for static objects even of distinct shape. (C+D) In contrast, the sensor resolves even minute motion with high resolution.

there are many challenging problems that need to be over-
come due to the nature of the signal. Before detailing our
approach we now discuss the most salient properties of the
signal and its implications for input recognition.

Hardware

The Soli sensor [23] is a solid-state millimeter-wave radar
for mobile gesture recognition. Classic radar approaches rely
on high spatial resolution to discern several rigidly moving
targets (e.g., planes). In contrast, Soli uses a sensing approach
that prioritizes high temporal resolution to detect subtle, non-
rigid motion. Soli utilizes a single broad antenna beam to
illuminate the entire hand as modulated pulses are transmitted
at very high repetition rates (between 1-10 kHz).

Signal

The raw received signal, consisting of a superposition of re-
flections from scattering centers within the radar’s antenna
beam, is then processed into multiple abstract signal represen-
tations. The high temporal resolution enables a combination
of fast time and slow time processing to map scattering center
reflections into interpretable dimensions (for details see [23]).

Figure 2 illustrates the Range-Doppler images (RDI) attained
by mapping received energy into a two-dimensional space
of radial distance (or range) and velocity. Each blob’s pixel
intensity corresponds to the reflected energy received from
each scattering center. The pixel positions correspond to
that scattering center’s distance and velocity. Multiple scat-
tering centers are then resolvable in either range or velocity
within constraints imposed by the radar point target response,
a function of the transmission parameters and low-level sig-
nal processing. This procedure results in a time-varying two-
dimensional image in which the trajectories of the blobs over
time indicate the gesture motion pattern (cf Figure 2, C+D).

Implications for input recognition

We now turn our attention to gesture recognition. Here many
methods are based on images [20, 31, 35] and rely on spatial
information. As shown in Figure 2 (A+B), short-range radar
data does not directly contain information about shape and
hence many existing algorithms are not applicable.

However, there are communalities to other non-camera meth-
ods, particularly those that rely on the Doppler effect (e.g.,
[11, 39]), which traditionally have been limited to coarse ges-
tures and small gesture sets. These approaches can be sum-
marized as a 3-step process consisting of signal transforma-
tions (e.g., Fourier transform) followed by feature extraction

and a frame-level classification step. In [23] such an approach
is used, capable of discriminating four gestures from a single
user. We have conducted an extensive set of comparisons with
a variety of ML algorithms on a 10 gesture dataset collected
from 5 users. Approaches included random forests using per-
frame features (acc: 26.8%), RFs with temporal representa-
tion based on RDIs (acc: 30%) and HMMs (acc: 35%). While
these poor results are indicative of the issues at hand, we note
that it is impossible to exhaustively explore all possible algo-
rithms and parameters and hence negative results can never
be fully conclusive.

Figure 2 illustrates the issue at the heart of this problem —
the sensor does not resolve shape of objects with high spa-
tial resolution but instead provides high temporal resolution,
capturing primarily changes in hand-pose. In Figure 2 (C),
the user rubs the fingertips together and slides the thumb over
the index finger in Figure 2 (D). Both interactions would be
hard to segment and track in the spatial domain but are clearly
discernable in the Range-Doppler space (see insets). In other
words the issue is one of frame-level classification, which pri-
marily leverages instantaneous properties (e.g., shape), versus
approaches that can effectively model dynamics.

METHOD

We propose a deep-learning architecture designed for gesture
recognition with high-frequency radar. While our implemen-
tation is specific to the Soli sensor, generalizing the approach
to other high-frequency RF signals is straightforward.

Deep Learning with Neural Networks

Our architecture, schematically shown in Figure 3, combines
the steps of representation learning and dynamic modelling
into a single end-to-end model. Foregoing attempts to recon-
struct shape from the signal, we directly use the final gesture
recognition as quantity to optimize for during training. We
show experimentally that our approach outperforms a variety
of alternative designs (see discussion of results).

Representation Learning

Gesturing above the sensor results in a sequence of aligned
Range-Doppler images which can be thought of as a stream of
the dynamics of changing hand configurations (cf. Figure 3,
top to bottom). The first step in any machine learning pipeline
is to extract features from the data. Traditionally this has been
done manually (e.g., [11, 30, 26]) but recently CNNs have
been successful in a variety of challenging tasks (e.g., image
classification [14]) in learning features automatically. While
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Figure 3. Gesture recognition pipeline. (1) Data produced by the sensor when sliding index finger over thumb. (2) Preprocessing and stacking of frames. (3)
Convolutional Neural Networks. (4) Recurrent Neural Networks with per-frame predictions.

not encoding shape, the RDIs still contains interpretable in-
formation about the motion of reflection centers, and CNNs
can extract useful intermediate representations.

More specifically the network learns a feature representation
function f(I;, W) that maps inputs I; (i.e., Range-Doppler
images) to outputs x;, where W contains the weights of the
network. During learning we use the classification error of
the overall pipeline as optimization objective. Designing
CNN architectures is a complex task involving many hyper-
parameters such as the number of layers and neurons, activa-
tion functions and filter sizes. In the experiments section we
report on different CNN variants. Most saliently, we compare
a network adapted from computer vision [33] to a network
that we designed specifically for the Soli data. Please note
that neither CNN variant alone provided enough discrimina-
tive power for gesture recognition.

Dynamic Gesture Modelling

A number of algorithms exist to model dynamic processes,
including Bayesian networks and HMMs specifically. HMMs
have been used for gesture recognition and other HCI tasks
(e.g., [37, 22]). Recently they have been outperformed by
recurrent neural networks (RNNs) [9], augmented with Long
short-term memory (LSTM) [10] cells. Since CNNs alone
can not exploit the temporal information embedded in our
data we use an LSTM RNN for the modelling of dynamics.

Recurrent Neural Networks differ from feedforward networks
in that they contain feedback loops, encoding contextual in-
formation of a temporal sequence. Given an input sequence
X = (x1, ..., z7), where in our case the z, is the feature vector
extracted by the CNN at time t, the hidden states of a recur-
rent layer h = (hq, ..., hr) and the outputs y = (y1, ..., yr)
can be attained:

hy = HWipze + Wiphe—1 + bp)

Yt = Whoht + bo (1)

where W's are weight matrices connecting input, hidden and
output layers, b are bias vectors and H is the hidden layer’s
activation function. Crucially, the hidden states h; are passed
on from timestep to timestep while the outputs y, are fed to a
softmax layer, providing per-frame gesture probabilities.

Tt €Lt

N/ N\
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Figure 4. LSTM input, output, cell and gates connections. Showing the
relationship between gates connections and memory cell location.

When learning over long sequences, standard RNNs can suf-
fer from numerical instabilities known as the vanishing or
exploding gradient problem. To alleviate this issue LSTMs
use memory cells to store, modify, and access internal state
via special gates, allowing for better modelling of long-range
temporal connections. For each unit, the relation between in-
put, internal state and output is formulated as follows:

iy = o(Wais + Whihg—1 + Weici 1 + by)
fi=o(Wasxe + Wighi—1 + Wepei—1 + by)

¢t = frep—1 + iy tanh(Woexy + Whehi—1 +b:) ()
01 = 0(Waors + Whohi—1 + Weocr + bo)

ht = o; tanh(cy)



where o is the logistic sigmoid function, and the input gate,
forget gate output gate and cell activation are respectively rep-
resented by %, f, 0 and ¢ (see Figure 4 for an illustration).

End-to-end training

Figure 3 shows how the CNN and LSTM interact at evalua-
tion time. Importantly, we train these two models jointly in
an end-to-end manner rather than individually. For training
we pass each Range-Doppler image belonging to a gesture
sequence through the CNN for feature extraction. The out-
puts are then passed into the LSTM units. For each time step
and corresponding ¥, a softmax layer in the RNN predicts a
gesture label for which we compute a loss value and then use
back-propagation to compute the gradient of the network’s
weights W. Gradients and loss values are then summed over
time and finally the network’s parameters are optimized, min-
imizing the combined loss similar to [36].

SYSTEM EVALUATION

The goal of our work is to enable recognition of dynamic
gestures of the type illustrated in Figure 5. In this section,
we provide an in-depth experimental analysis of the impact
of different network architecture design choices. We demon-
strate that our proposed method can discriminate a large set
of gestures with an average accuracy of 87.17% and can even
discriminate gestures with identical trajectories based on ges-
ture dynamics alone. A personalized classifier achieves an
accuracy of 88% which can be further improved to 94.5% us-
ing sequence pooling, albeit at the cost of additional latency
and requiring accurate gesture spotting.

Gesture set

Our final gesture set is illustrated in Figure 5. While we do
not claim this to be the definitive gesture set, it serves the pur-
pose of exploring both Soli and the algorithms potential for
input recognition. The gestures were selected via a lengthy
process including literature review, design workshops, focus
groups and Wizard-of-Oz user evaluations.

Design principles

From the above process we distilled the following three guid-
ing principles: (1) Micro-gestures we prefer interactions in-
volving small amounts of motion and those that are per-
formed primarily by muscles driving the fingers and artic-
ulating the wrist, rather than those involving larger muscle
groups to avoid fatigue over time. (2) Proprioception we want
to support proprioception and physical (self-)support in ges-
tures. For example, a finger resting on another while sliding
over the digits to simulate a pointing device (cf. Figure 5, c+i)
or fingers touching each other (Figure 5, a+d). (3) Dynamic
gestures given the properties of the signal most gestures are
dynamic and involve motion — typically of small magnitude.

We initially designed a set of 15 candidate gestures in-
cluded several gestures to explicitly evaluate the discrimina-
tive power of the signal and the ML-architecture. In partic-
ular, gestures hard or impossible to recognize with camera
based sensing (e.g., the LeapMotion sensor), such as Finger-
Rub, due to self-occlusion, small motion and contact between
multiple hand parts. We recruited subjects from our institu-
tion for an informal pre-study. Based on this feedback, we

decided to remove four initial gestures where users indicated
that they were hard to perform and memorize. Interestingly
these were mostly trajectory based gestures (i.e., in-air writ-
ing) and users often performed them by moving the entire
arm, rather than just using individual fingers. Furthermore,
we refined the remaining 11 gestures (cf. Figure 5).

Training and test data

Training deep neural networks requires large amounts of
training data which has to contain sufficient variation in terms
of gesture execution. We asked 10 subjects, again recruited
from our institution, to perform the 11 gestures, receiving
only minimal instruction on how-to perform them (resulting
in large variability). Instances of each gesture were annotated
with a class label and only clear outliers were removed from
the dataset. We recorded raw Range-Doppler images at 40Hz
and captured each gesture 25 times from all 11 subjects, over
10 sessions resulting in 11 x 25 x 10 = 2750 sequences,
each a couple of seconds long. This data set is used in most
of our experiments. To evaluate cross-session performance
and to explore personalized gesture recognition (i.e., classi-
fier trained on a per-user basis), we recorded an additional
(11 x 50 x 5 = 2750) sequences from a single user.

For training and evaluation, a random shuffle 50%-50% split
is used unless stated differently. For cross validation we use
a standard k-fold leave-one-subject/session-out approach.

Input Preprocessing

Before feeding the data to our model we perform background
removal (using a per-pixel Gaussian model) and signal nor-
malization. The latter is necessary since the range of the Soli
sensor is currently limited to 30 cm, causing large variance
in values recorded for reflection centers close to the sensor to
those far away. We scale the data logarithmically and perform
a max-min truncation to reduce the influence of outliers. The
input to our models is formed by stacking consecutive Range-
Doppler frames (shown visually in Figure 3, pt. (2)). Stacked
frames explicitly capture temporal changes (cf. Figure 6).

Experimental conditions

Here we contrast different variants of network architectures.
Furthermore, we compare the proposed end-to-end architec-
ture in terms of accuracy, memory consumption and runtime
performance. In particular, we perform an in-depth analysis
of the following architectures:

e Frame-level classification As baseline we use a stan-
dalone CNN for representation learning only. Based on the
learned features we perform traditional frame-level gesture
classification. This allows us to assess the discriminative
power of the raw data and its transformations. Particu-
larly, we compare the performance of an adapted network
from computer vision community [33], to a network de-
sign specifically with our radar data. To further analyze the
property of radar data representation learned with CNN,
we also compare the performance difference when remov-
ing pooling layers of a CNN (see table 1 column 2).

o Standalone RNN To evaluate the impact of temporal co-
herence we train a standalone RNN that takes features ex-
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Figure 5. Full gesture set used for experiments. Rows illustrate temporal sequence (top to bottom). Arrows indicate motion trajectories.

tracted by a CNN as input. Importantly both models are
trained independently.

e End-to-end model we use the model shown in Figure 3
where CNN+RNN networks are trained jointly based on
temporally coherent prediction loss.

Implementation Details

We implemented and evaluated different CNN architectures
(summarized in Table 1). The deep network architecture has
been adapted from [33], where it is used for video based ac-
tion recognition. This network uses 8 layers, large convo-
lutional kernels, large max-pooling windows and also uses
more nodes in the fully-connected layers. For compatibility
with this network, raw RDI data is resized to a 224 x 224 res-
olution. The shallow network has been designed specifically
for the RDI data. We use three convolutional layers with 2 x 2
and 3 x 3 filters. For the convolution layers we use no padding
and stride one, whereas the max-pooling layers use the same
stride as the filter size in the convolutional layer below. To
analyze the necessity of pooling layers in CNN, we further
compare to a network with the only change of removing the
pooling layers. We use the Rectified-Linear (ReLU) activa-
tion function and local response normalization is applied after
each layer. Dropouts of 0.9 and 0.8 are applied in the first two
fully connected layers respectively. The network is trained by
mini-batch stochastic gradient descent with momentum of 0.9
and a batch size of 64. The initial training rate is set to 1073
and decreased to 10~%, 10~° and 10~ at iteration 5K, 8K
and 11K, stopping after 15K iterations.

For experiments using sequences as input (standalone RNNs
and end-to-end models), the sequences are either subsampled
or completed by inserting frames, resulting in sequences with
uniform length of 40 frames. The alignment of sequence
makes batch training and evaluation possible, which smooths
the optimization process and at the same time accelerates the
training process by exploring the parallelism of GPUs. The
network uses dropouts after the output of each LSTM cell
with ratio of 0.5 and is trained in batches of 16 sequences
each. The sequences are randomly shuffled and the frame or-
der is maintained (this is essential for the RNN). Learning rate
starts at 10~2 and is decreased to a tenth every 20 epochs (an

epoch is defined as one full pass of training data). The train-
ing stops after 50 epochs. As for the end-to-end models, the
last fully connected layer of CNN is connected directly to the
input of LSTM cell. Dropouts of 0.4 are applied to the last
two convolutional layers and dropouts of 0.5 are applied to
the fully connected layers. The whole network is trained end-
to-end and parameters in both networks are optimized jointly,
Similar to the training of the standalone RNN.

Realtime considerations

The two CNN network design choices discussed above also
impact training and runtime behavior. While a deeper net
should display better accuracy, this obviously impacts mem-
ory consumption, training and run-time efficiency negatively.

The deeper model (CNN only) consumes 52X more mem-
ory than our proposed model (1.2 GB vs 23 MB), consumes
5.4x more GPU memory at runtime T (1093 MB vs 204 MB)
and takes 4x more time per frame prediction than the shal-
low model (80 Hz vs 395Hz). The final end-to-end model
proposed in this paper (CNN+RNN) has a model size of
689 MB, consumes 265 MB GPU memory at runtime and pre-
dicts frames at a rate of 150 Hz. Crucially this model can be
evaluated on commodity hardware whereas the deeper archi-
tecture has to be run on a server with high-end GPUs. In
contrast, our model can even be evaluated by a pure CPU im-
plementation running at 140 Hz on an Intel® Core™i7 CPU.

Results

Table 2 summarizes the overall classification accuracies of
the various network architectures. First we unpack the impact
of frame-to-frame feature learning on classification.

Frame-level classification

Overall we compared three variants of the standalone CNN,
summarized in the first three rows of Table 2. While our
results indicate that using deeper networks improves accu-
racy (avg. 48%) over either of the shallower CNN variants
(avg. 41%), the improvement of 7% is not sufficient for us-
able gesture recognition. Unpacking this further we can see
that some gestures, namely the Fast Swipe (97.6%) and Hold
Palm (83.2%) are relatively easy to distinguish. This intu-
itively makes sense as these either contain no motion or fast

TNVIDIA GeForce GTX TITAN X GPU with 12GB of memory.




Layers | CNN shallow w/ pooling CNN shallow w/o pooling ~ CNN deep RNN End-to-end

1 convl 3 x 3 X 32 - pooll 2 x 2 convl 3 X 3 x 32 convl 7 X 7 x 96 - pooll 3 x 3 fel 512 convl 3 * 3 x 32
2 conv2 3 X 3 X 64 - pool2 2 x 2 convl 3 X 3 x 64 conv2 5 X 5 X 256 - pool2 3 x 3 | Istm2 512 conv2 3 x 3 x 64
3 conv33 X 3 X 128-pool32 x 2 convl 3 X 3 x 128 conv3 3 x 3 X 512 fc3 - softmax 11 | conv3 3 x 3 x 128
4 fcd4 512 fcd4 512 conv4 3 X 3 x 512 - fc4 512

5 fe5 512 fe5 512 convS 3 X 3 X 512-poolS3 x 3 | - fe5 512

6 fc6 - softmax 11 fc6 - softmax 11 fc6 4096 - Istmé6 512

7 - - fc7 2048 - fc7 - softmax 11
8 - - fc8 - softmax 11 - -

Table 1. Comparison of network architectures. Network architectures used in our experiments. For standalone CNN, we compare two groups of networks
with different depth: a shallow network optimized for radar data and a deeper network. For the shallow network, an extra network without pooling layers is listed
for comparison. For the end-to-end architecture, we only list the configuration without pooling layers, outperforming those with pooling layers.

. - - L \ | -
Network Architecture g‘g :‘Q ;:) '& ?q* ‘I A d V& % > Q
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
CNN Shallow 40.80%  18.00% 36.00% 3.60% 47.60% 39.60% 96.80% 27.60% 24.00% 51.20% 20.00% 84.40%
CNN Shallow (1) 41.13%  20.00% 34.40% 120% 46.80% 37.20% 97.60% 29.60% 22.00% 54.00% 264%  83.20%
CNN Deep 48.18%  47.60% 34.40% 680%  39.60% 43.20% 98.80% 56.00% 31.20% 52.80% 48.40% 71.20%
RNN Shallow FC (2) | 77.71%  60.35% 6225% 38.72% 89.45% 66.77% 92.52% 94.93% 86.89% 91.39%  85.52 86.22
EtE 85.22%  43.99% 77.85% 79.23% 9532% 81.81% 95.28% 98.18% 87.88% 95.16% 92.27%  90.43
EtE w/o Pooling 87.17% 61.72% 71.09% 71.78% 9448% 84.84% 98.45% 98.63% 88.89% 94.85% 89.56% 92.63%
EtE CV-sub (3) 79.06% 58.71% 67.62% 64.80% 91.82% 72.31% 7291% 93.40% 89.99% 95.16% 82.80% 80.24%
EtE CV-sub Avg (4) 88.27%  70.80% 76.80% 8320% 97.20% 80.40% 83.60% 94.80% 100.00% 100.00% 97.20  86.82%
EtE CV-ses (5) 85.75%  56.69% 61.98% 76.43% 96.83% 92.73% 81.38% 98.42% 97.719% 95.33% 96.92%  89.10%
EtE CV-ses Avg (5) 94.15%  79.20% 74.40% 95.60% 100.00% 97.60% 94.80% 100.00% 100.00% 100.00% 100.00% 94.09%

Table 2. Accuracy of each gesture under different configurations. The first six configurations use 50%-50% split for training and evaluation. The latter
four use cross-validation. (1) CNN shallow network without pooling layers. (2) FC (last fully connected layer before softmax layer) output of CNN shallow
net. (3) Leave-one-subject-out cross-validation on 10 subject with per-frame accuracy. (4) Leave-one-subject-out cross-validation on 10 subject with sequence
average-pooled accuracy. (5) Leave-one-session-out cross-validation on single subject with per-frame accuracy. (6) Leave-one-session-out cross-validation on

single subject with sequence average-pooled accuracy.

motion of the entire hand as a single rigid-object. These find-
ings are in-line with prior work detecting similar gestures
from Doppler data in a frame-to-frame manner [11]. More
importantly, the data clearly shows the difficulties of detect-
ing dynamic gestures in a frame-level setup, further verifying
our assessment of the signal characteristics.

To understand the impact of pooling layers in the CNN, we
compare the performance of the shallow CNN to the same
configuration but without pooling layer. We observe that re-
moving pooling layers from the CNN does slightly improve
the prediction accuracy (cf. Table 2, rows 1+2). Removing
pooling layers from the end-to-end configuration yields simi-
lar results (cf 5™ and 6™ rows of Table 2).

Unpacking this further we note that gesture circle, which
relies on absolute scattering location for classification sees
drastic performance boost from removing the pooling layer.
The gesture pair fast swipe and slow swipe which have very
similar dynamic patterns but differ in the magnitude of the
trajectory, encoded as blob positions in the Range-Doppler
image sequence. Similarly to the standalone CNN, remov-
ing pooling layers yields better classification performance for
these two gestures.

Stand-alone RNN with input from CNN

Due to the relatively small differences in power between the
two CNN variants and the implications for real-time use, we
drop the deeper architecture in further experiments. Row 4

of Table 2 show results from using an RNN on top of an in-
dependently trained CNN. The overall per-frame accuracy is
drastically improved by introducing a dynamic model (avg.
77.7%) — an improvement of 30% over the best frame-level
result, clearly supporting our approach of combining a rep-
resentation learning step with a dynamic model. However,
the model struggles with important gestures containing very
subtle motion, especially Finger Slide.

To further visualize the effectiveness of using contextual in-
formation (in our case LSTM as memory cell) for gesture
recognition, we take a pair of gestures fast swipe and circle
as example. Figure 6 illustrates the temporal evolution of the
example sequences. Both gestures have very similar spatial
blob patterns but the trajectories of the scattering centers are
clearly distinguishable. In table 2 we see an accuracy boost
for the circle gesture. This can be explained by its double
loop trajectory which is captured by the RNN’s memory cell
state. We experimented with stacking multiple RNN layers
but this did not yield significant improvements.

End-to-end model with CNN+RNN

Table 2 (row 5) summarizes the results attained by training
CNN and RNN jointly. The end-to-end model further im-
proves the average accuracy to 87% and increases the accura-
cies of gestures that are problematic in the standalone case.

Looking at the probability evolution over the duration of se-
quences, plotted in Figure 7 further highlights the importance



Figure 6. Range-Doppler temporal evolution of two seperate gestures.
Two gestures (A) fast swipe and (B) circle have very similar spatial blob
patterns, but very different temporal trajectories

of dynamic gesture modelling. Consistent with the frame-
level CNN performance, some gestures (e.g., Fast Swipe) can
be recognized almost instantaneously, whereas other gestures
clearly benefit from modelling the temporal effects. For ex-
ample, Palm Tilt and Pull can be detected with high confi-
dence after short period (roughly 10 frames). The gestures
Finger Slide and Draw Circle carry the most information in
their trajectories and hence prediction confidence rises with
time. The most difficult gesture turned out to be Pinch Index,
explicable by the small amount of motion and large parts of
the fingers being blocked by the palm.
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Figure 7. Temporal evolution of gesture probabilities over sequence
progress. Results from end-to-end model and 11 gestures (see Figure 5).

In addition to the above half-training-half-test evaluation of
the classifier we also perform a leave-one-subject-out cross
validation over all 10 participants. This experiment is a good
predictor of real-world performance since the test data is now
entirely unseen. The per-frame accuracy as summarized in
the confusion matrix (Table 3) and remains high with an av-
erage of 79%. The two Pinch and the Finger Slide gestures
are the most challenging. Again this is very intuitive as these
gestures allow for high individual variability. As for gestures
like Finger Rub and Push, the recognition performance re-
mains consistent with the half-training-half-test setting due
to low variation between different users.

Extented Experiements

Here we briefly summarize a number of experiments that we
think are most promising alleys for future work to attain a
real-world system that could be integrated into wearables.

Personalized dataset

One way of improving the real-world accuracy is to person-
alize the classifier, as wearable devices are usually only worn
by a single user. To verify this assumption we use a personal-
ized dataset collected from a single user. Evaluating accuracy
across sessions (to simulate real-world user scenarios the net-
work is trained once, and evaluated at runtime with different
sessions) improves the recognition rate to 85.75%, which is
comparable to accuracies reported in the literature for szatic
gestures based on other modalities. For example, several mo-
bile systems report accuracies in the 80% range (87.6% [13],
85% [29]).

GT Prediction

(@ (b)) (c) (d (e (f) (g (W () () (b
(a)| 59% 17% 12% 9%
(b)| 16% 68% 6%

(c)| 14% 9% | 65% 6%
(d) 92%

(e) 6% 72% 6%

) 73% 10% 9% 6%
(g) 93%

(h) 90 %

(i) 95 %

() 8% 83%

(k) | 13% 80%

Table 3. Confusion matrix of end-to-end model from leave-one-subject-out
cross-validation. Darker cell-shade indicates higher accuracy.

Sequence Pooling

In contrast to per-frame prediction, a sequence based average-
pooled prediction produces even more robust results due to
temporal filtering. We sum up the softmax-normalized activa-
tion at each time step of a sequence emitted by the RNN, and
use the averaged activation for gesture prediction. This sim-
ple trick uses the full information of a sequence. Rows 8 and
10 of Table 2 compare pooled and averaged (across the entire
sequence) results to per-frame predictions. Not surprisingly,
a significant accuracy boost can be observed, reaching 88%
for the non-personalized classifier and 94.5% for the person-
alized classifier. Especially for gestures with strong tempo-
ral aspects such as Pull and Palm Tilt perfect predictions can
be achieved even on unseen test data. Using this technique
would result in a very robust real-world classifier but adds
a latency penalty for real-time recognition since pooling can
only be performed after the gesture has been completed. At
the same time this approach requires a sophisticated gesture
spotting algorithm (i.e., gesture segmentation).

Gesture spotting

So far we have segmented gestures with simple heuristics
based on experimentally derived thresholds. In this sense a fi-
nal but important step towards a real-world implementation is
that of gesture spotting (i.e., detecting the presence of a hand



Config/Gestures | Accuracy  Gesture I — Gesture 2

EtE (1) 80.34% 84.50% 75.90%
EtE (2) 93.88% 95.50% 92.15%
EtE (3) 78.91% 97.54% 59.03%
CNN Presence 100.00% 100.00% 100.00%

Table 4. Accuracy of pairwise gestures under different configurations.
(1) Pairwise micro gestures with Pinch Index as gesture 1 and Pinch Pinky
as gesture 2 using end-to-end model. (2) Pairwise velocity variance gestures
with Swipe Slow as gesture 1 and Swipe Fast as gesture 2 using end-to-end
model. (3) Pairwise directional variance gestures with Push as gesture 1 and
Pull as gesture 2 using end-to-end model.

versus random motion). To this end we conducted prelimi-
nary experiments deploying the shallow CNN trained specif-
ically to discriminate the user’s hand from random signal. In
our experiments we achieved close to 100% accuracy (see Ta-
ble 4) however this is based on a stationary sensor whereas in
a mobile scenario the signal would be much noisier. However,
our results indicate that it may be possible to differentiate ges-
turing from random motion.

Pairwise Gestures Recognition

The gesture set (in figure 5) are designed intentionally with
some comparable pairs, namely the two pinch gestures, swipe
gestures and push & pull gestures.

The two pinch gestures emphasize the radar’s capability of
distinguishing micro gestures with very small differences. In
Pinch index the index finger is further away than in pinch
pinky, while the two gestures are otherwise very similar.
When classifying the entire gesture set (cf. Table 2) these
two gestures perform relatively poorly. However, when clas-
sifying only into pairwise gestures (see 1% row of Table 4),
these two gestures can be distinguished well.

Fast swipe and slow swipe are two similar gestures that dif-
fer only by their velocities. The 2" row in Table 4 shows
this clearly. Further highlighting how our approach leverages
velocity data encoded in the RDIs efficiently.

Push and pull are performed in opposing directions. Again
this directionality is captured explicitly in the RDIs. How-
ever, in our small scale experiment (row 3 of Table 4) pull
was recognized poorly.

DISCUSSION & FUTURE WORK

We have introduced a novel method for the detection of dy-
namic gestures based on short-range radar in general and
Google’s Soli sensor in particular. Our model consisting of
an end-to-end trained CNN and RNN combination achieves
high accuracies on a large dataset and across different users.
Furthermore, we have demonstrated that frame-to-frame ap-
proaches — somewhat of a standard in the HCI literature — face
inherent challenges and that it is very important to model the
dynamics of changing hand-pose configurations.

Our implementation runs in real-time on commodity PC hard-
ware at 140 Hz. With the current successes of deep-learning
methods in many application domains it is conceivable that
special hardware? will become available soon that would al-
low for interactive use even on mobile and wearable devices.

ihttp ://www.nvidia.com/object/deep-learning.html

In terms of future works, a natural follow-up research direc-
tion is to explore an end-to-end framework which resolves
gesture spotting and classification jointly as demonstrated
in [25] which is based on accelerometers or gyroscopes. We
also want to highlight two interesting aspects of the sensor
that we have not yet explored. First, while we have in-
terpreted the sensor as gesture sensor, it is also possible to
use millimeter wave radar for traditional ranging applications
(tracking targets such as fingertips continuously in 3D). An-
other interesting aspect is that of RF waves penetrating oc-
cluding materials. This may be leveraged to sense through
objects such as items of clothing or other stationary objects
in the line-of-sight to the sensor. While we have not explored
this in-depth we would like to highlight the similarities to re-
cent work exploiting FMCW RF technology to coarsely ‘im-
age’ users through a wall [1]. Another interesting research
direction would be material recognition as shown in [17].

CONCLUSION

In this paper we have proposed the first gesture recognition
technique capable of detecting a rich set of dynamic gestures
based on high-frequency, short-range radar. Our technique is
based on an end-to-end trained combination of deep convolu-
tional and recurrent neural networks. The algorithm achieves
high recognition rates (avg 87%) on a challenging gesture set
including 11 gestures and across 10 users. To foster future
work based on Google’s Soli sensor and other related plat-
forms we will release the pre-trained network architecture and
training dataset publicly.
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