
Poster: AMuSe: An Agile Multipath TCP Scheduler for
Dual-Band 802.11ad/ac Wireless LANs

Swetank Kumar Saha1, Shivang Aggarwal1, Dimitrios Koutsonikolas1,
Joerg Widmer2

1University at Buffalo, The State University of New York, 2IMDEA Neworks Institute, Madrid, Spain
{swetankk,shivanga,dimitrio}@buffalo.edu,joerg.widmer@imdea.org

ABSTRACT
802.11ad links provide data rates up to 6.7 Gbps but re-
main highly susceptible to blockage and mobility. On the
other hand, legacy 802.11ac/n links yield much lower rates
but are robust even under dynamic scenarios. In this work,
we explore using Multipath TCP (MPTCP) to engage both
802.11ad and 802.11ac interfaces simultaneously for perfor-
mance speed-up and improved reliability. We show that
vanilla MPTCP achieves these goals under static conditions
but often results in performance worse than using the faster
interface alone under dynamic scenarios. We then design
and implement AMuSe, a new MPTCP scheduler that allows
MPTCP to perform near-optimally under all scenarios.
ACM Reference Format:
SwetankKumar Saha1, ShivangAggarwal1, Dimitrios Koutsonikolas1,
Joerg Widmer2. 2018. Poster: AMuSe: An Agile Multipath TCP
Scheduler for Dual-Band 802.11ad/ac Wireless LANs. In The 24th
Annual International Conference on Mobile Computing and Network-
ing (MobiCom ’18), October 29-November 2, 2018, New Delhi, India.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3241539.
3267755

1 INTRODUCTION
Millimeter-wave (mmWave) wireless is fast emerging as the
prime candidate technology for providing multi-Gbps data
rates in future wireless networks. The IEEE 802.11ad stan-
dard provides data rates of up to 6.7 Gbps. It achieves this
multi-fold increase over legacy WiFi through 2 GHz-wide
channels. Nonetheless, communication at mmWave frequen-
cies faces fundamental challenges due to the high propa-
gation and penetration loss. The use of directional trans-
missions makes links susceptible to disruption by human
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
MobiCom ’18, October 29-November 2, 2018, New Delhi, India
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5903-0/18/10.
https://doi.org/10.1145/3241539.3267755

blockage and client mobility. Even if future PHY/MAC im-
provements may result in faster beam steering, any realistic
indoor scenario is expected to contain enough dynamism to
cause a large number of re-connection events.
In this work, we tackle the challenge of supporting the

multi-Gbps throughput provided by the 60 GHz technology
while still providing the reliability of legacy WiFi, which is
the key for wide-spread adoption of 60 GHz WLANs. Specif-
ically, we explore Multipath TCP (MPTCP), a transport layer
protocol that uses the 802.11ad and 802.11ac interfaces si-
multaneously to achieve higher throughput when both net-
works are available and seamlessly falls back to 802.11ac in
an application-transparent manner when the 802.11ad net-
work becomes unavailable. MPTCP’s design as a transport
layer solution decouples it from other layers.

In spite of these attractive features, using MPTCP in multi-
band WLANs is far from straightforward. A large number
of recent studies investigated the performance of MPTCP in
scenarios combining WiFi and cellular (3G/LTE) networks
(e.g., [2, 3]) and showed that the protocol performs poorly
over heterogeneous paths. The authors in [1, 4] even argue
that the two radios should never be used simultaneously.
In contrast, to the best of our knowledge, our work is

the first to show that the use of MPTCP is not just a viable
but even a very promising solution towards dual-band 5/60
GHz WLANs. Our experimental study, using COTS APs and
laptops, reveals that MPTCP can provide optimal through-
puts under baseline, static scenarios. However, realistic dy-
namic environments, e.g., 802.11ac contention or blockage of
the 802.11ad link, can result in severe performance degrada-
tion. We then design and implement AMuSe, a new MPTCP
scheduler that addresses the root-cause of the performance
degradation. Our evaluation in real indoor WLAN scenarios
shows that AMuSe can achieve up to 2.5x throughput im-
provement and can reduce application-level delay by several
10s of seconds compared to the default MPTCP.

2 MPTCP PERFORMANCE
We first experimented with four congestion control algo-
rithms available in the Linux MPTCP implementation: Cubic
(decoupled), Lia, Olia, and Balia under backlogged traffic

Poster Presentation MobiCom’18, October 29–November 2, 2018, New Delhi, India

705

https://doi.org/10.1145/3241539.3267755
https://doi.org/10.1145/3241539.3267755
https://doi.org/10.1145/3241539.3267755


5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 77 80 85 90 95

Packets/100 (802.11ad)

0

500

1000

1500

2000

2500

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

(a) Throughput vs. packet ratio.

0 2 4 6 8 10 12 14
Delay (msecs)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

5
15
25
35
45
55
65
75
77
85
95

(b) Delay (ofo-queue): Pktsad .
Figure 1: Impact of packet scheduling decisions.

and found that for each of the four algorithms, MPTCP can
indeed achieve performance very close to the expected sum
(at least greater than 96% and up to 99%). We next turn our
attention to another key MPTCP component: the packet-
scheduler, responsible for the distribution of application
traffic among the subflows. To understand how the traffic dis-
tribution between the subflows impactsMPTCP performance,
we design an MPTCP scheduler FixedRatio that performs
packet assignment based on a user-defined ratio. Fig. 1(a)
plots the MPTCP throughput against the number of packets
assigned to the 802.11ad subflow (Pktsad ) out of every 100
packets. Maximum throughput of ∼2.1 Gbps is achieved with
Pktsad = 77 and performance worsens as we move away
from this value with the worst throughput being as low as
400 Mbps (Pktsad = 5).

We found that the stark difference in performance with
different assignment ratios is a result of the degree to which
packets arrive out-of-order in the end-to-end MPTCP flow.
A higher number of out-of-order packets can cause packets
to be buffered in the receiver’s ofo-queue and in extreme
cases can even result in throttling of the sender because of
limited/no space in the receiver’s buffer. In fact, in Fig. 1(b),
which plots the CDF of the delay experienced by bytes in
the ofo-queue, we observe that the Pktsad = 77 value (that
results in highest throughput) indeed yields the lowest delay.
Throughput-optimal ratio. Pktsad = 77 results in optimal
throughput as the the underlying packet-distribution ratio
imposed by this assignment Pktsratio = Pktsac/Pktsad =
23/77 = 0.29 is nearly identical to the ratio of the actual
individual throughputs of the two interfaces Tputratio =
Tputac/Tputad = 500/1600 = 0.31. Assigning packets in this
very specific ratio minimizes the chance of packets arriving
out-of-order at the meta-level MPTCP buffers/queues.

3 PERFORMANCE ISSUES
We now look at more challenging scenarios where we show
that the default MPTCP architecture is unable to adapt, re-
sulting in sub-optimal performance which is often worse
than that of single path TCP (SPTCP) over the faster subflow.
Network Scans. Fig. 2(a) shows the throughput of 802.11ad
and 802.11ac subflows over 60 s and the scan initiated at the
30 s mark. The 802.11ac throughput is cut down severely

during the scan period (marked as "802.11ac scan") that lasts
for around 6 s, as expected. However, we observe that the
802.11ad flow is also impacted negatively during this period,
even though the scan takes place in the 5 GHz band. On in-
vestigation, we observed a 6x increase in the amount of data
held in the ofo-queue at the receiver end. During the scan
period, the packet scheduler, unaware of the scan, assigns
packets in the same ratio as before the scan. This is problem-
atic as the receiver’s packet stream now has gaps, preventing
the receiver from delivering packets to the application.
WiFi (802.11ac) Contention. Fig. 2(b) shows a timeline of
the per-flow throughput of a 180 s MPTCP session. We start
with a static link where 802.11ad and 802.11ac are at their
maximum throughputs of ∼550 Mbps and ∼1650 Mbps, re-
spectively, and we introduce contention with 300 Mbps TCP
cross-traffic at the 30th second for 30 s. The throughput of the
802.11ac subflow drops by 300 Mbps to around 250 Mbps, as
expected. Surprisingly, the 802.11ad subflow is also affected
negatively during the contention period with its throughput
dropping below 1200 Mbps. In fact, the MPTCP throughput
during the contention period averages to ∼1450(=1200+250)
Mbps (less than 802.11ad alone). On further investigation, we
found that during the contention period the receiver adver-
tised buffer space (recv_win) reduces significantly. Note that
the recv_win is maintained at the meta-level and, although
advertised on both subflows, is actually shared among them.
Under such a scenario, the global sequence numbers can-
not advance, even though cwnd allows for it, resulting in
reduction of throughput on both interfaces.
60 GHz (802.11ad) Blockage. Fig. 2(c) shows a timeline
of subflow throughputs along with link status. Blockage
is introduced at the 20th second causing the link status to
switch to fail after a further 2 s. Once the blockage is removed,
connection at the MAC layer is restored at the 31st second.
We observe the following two issues:
(i) Although the 802.11ad link is restored at the 31st second,
MPTCP does not resume traffic on the 802.11ad subflow for
another ∼12 seconds until the 43rd second. We found that
in the case of a timeout-based loss event, TCP congestion-
control sets the pf flag on the socket, indicating the flow to be
potentially failed. The MPTCP scheduler treats subflows with
the pf flag set as being unavailable and does not schedule
any packets on them. TCP congestion-control, on the other
hand, is waiting for an ACK to unset the pf flag and enter
the TCP_CA_RECOVERY state that can restore the cwnd to the
value before the loss event, but no packets are being directed
to the 802.11ad subflow.
(ii) On resumption, 802.11ad flow starts with a cwnd and
ssthresh that are half of their pre-loss values. Fig. 2(c) shows
a sample timeline where the 802.11ad flow resumes to 1350
Mbps instead of 1650 Mbps.

Poster Presentation MobiCom’18, October 29–November 2, 2018, New Delhi, India

706



0 10 20 30 40 50 60
Time (sec)

0

150

300

450

600

750

900

1050

1200

1350

1500

1650

1800

1950

2100

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

802.11ac scan

802.11ad
802.11ac

(a) Network scan: Throughput timeline.

0 10 20 30 40 50 60 70 80 90
Time (sec)

0

150

300

450

600

750

900

1050

1200

1350

1500

1650

1800

1950

2100

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

802.11ac contention

802.11ad
802.11ac

(b) 802.11ac contention: Timeline showing
throughput drop during contention.

0 10 20 30 40 50 60 70 80 90
Time (sec)

0

150

300

450

600

750

900

1050

1200

1350

1500

1650

1800

1950

2100

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Throughput
Drop

802.11ad 802.11ac 802.11ad Link Status

F
a
il
e
d

O
K

R
e
tr

y
in

g
8

0
2

.1
1

a
d

 L
in

k
 S

ta
tu

s

(c) 802.11ad blockage: 802.11ad through-
put drop after re-connection.

Figure 2: Performance issues.

Default

100

Fixed
Ratio

Default

200

Fixed
Ratio

Default

300

Fixed
Ratio

Default

400

Fixed
Ratio

Contention (Mbps)

0

300

600

900

1200

1500

1800

2100

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

802.11ad only 802.11ac only MPTCP (both)

(a) minRTT vs. FixedRatio.

0 10 20 30 40 50 60 70 80 90
Time (sec)

0

150

300

450

600

750

900

1050

1200

1350

1500

1650

1800

1950

2100

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

802.11ad 802.11ac 802.11ad Link Status

F
a
il
e
d

O
K

R
e
tr

y
in

g
8

0
2

.1
1

a
d

 L
in

k
 S

ta
tu

s

(b) 802.11ad Blockage: Improved re-
covery time.

Figure 3: AMuSe evaluation.

4 AMUSE: DESIGN & IMPLEMENTATION
AMuSe-SCAN arbitrates the network scan requests gen-
erated from the user space and disables the scheduling of
packets to the subflow where the request has been made
for the duration of the network scan. However, disabling fu-
ture scheduling alone may not be enough to prevent packets
from being held-up in the TCP queues or at any of the buffers
in the lower layers of the network stack. We thus adopt a
two-step approach, where AMuSe: (1) stops the assignment
of packets to subflow about to undertake scanning and (2)
waits for the subflow-level send-queue to be emptied out.
We observed that with AMuSe’s network scan management
solution applied the 802.11ad throughput remains unaffected
during the scan interval. We repeated the measurements sev-
eral times and observed 2.2x performance gain on average.
AMuSe-CONTENTION leverages our findings regarding
the existence of a unique MPTCP throughput-optimal ratio,
for given subflow throughputs. The reaction to contention is
to set the packet-assignment ratio to match the ratio of the
throughput of 802.11ad and 802.11ac flows, accounting for
the drop in 802.11ac throughput due to contention. We test
our solution under different amounts of contention (from
100 Mbps to 400 Mbps). Fig. 3(a) shows the expected sum,
after accounting for 802.11ac throughput reduction in the
presence of contention, and MPTCP performance under the
default and FixedRatio scheduler, which uses the optimal ra-
tio for a given amount of contention. In all cases, FixedRatio’s
throughput is close to the expected sum while the default
scheduler’s throughput can be much lower.

AMuSe-BLOCKAGE reduces the delay in resuming traffic
over the 802.11ad subflow by resetting the pf flag to allow
for traffic to be scheduled on the 802.11ad subflow. However,
we found that this alone was not enough to resume the traffic
flow on the 802.11ad interface. When the 802.11ad link is
blocked, the subflow-level cwnd is cut to 1, with packets in
flight also equal to one. As a result, the scheduler is unable
to schedule any new packets on 802.11ad subflow since the
cwnd is reported as being full. In order to overcome this,
AMuSe uses the TCP’s window recovery mechanism to re-
store the cwnd to the value just before loss the event. In
contrast to Fig. 2(c), where MPTCP resumed traffic on the
802.11ad subflow after a 12 s delay, with AMuSe engaged
(Fig. 3(b)) MPTCP starts using the 802.11ad interface in less
than 1s after link re-establishment. This is a vast reduction
in delay for resuming traffic on the subflow. In a dynamic
environment, where such blockage events will occur quite
frequently, AMuSe’s gains would translate into a significant
improvement in user-experience.

5 ACKNOWLEDGEMENTS
This work has been supported in part by NSF grant CNS-
1553447, the ERC project SEARCHLIGHT grant no. 617721,
the Ramon y Cajal grant RYC-2012-10788, and the Madrid
Regional Government through the TIGRE5-CM program
(S2013/ICE-2919).
REFERENCES
[1] Kien Nguyen, Mirza Golam Kibria, Kentaro Ishizu, and Fumihide Kojima.

2017. Feasibility Study of Providing Backward Compatibility with
MPTCP to WiGig/IEEE 802.11ad. In Proc. of IEEE Vehicular Technology
Conference Fall (VTC-Fall).

[2] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012.
How Hard Can It Be? Designing and Implementing a Deployable Mul-
tipath TCP. In Proc. of 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

[3] Swetank Kumar Saha, Abhishek Kannan, Geunhyung Lee, Nishant
Ravichandran, Parag Kamalakar Medhe, Naved Merchant, and Dim-
itrios Koutsonikolas. 2017. Multipath TCP in Smartphones: Impact on
Performance, Energy, and CPU Utilization. In Proc. of ACM MobiWac.

[4] Sanjib Sur, Ioannis Pefkianakis, Xinyu Zhang, and Kyu-Han Kim. 2017.
WiFi-Assisted 60 GHz Wireless Networks. In Proc. of ACM MobiCom.

Poster Presentation MobiCom’18, October 29–November 2, 2018, New Delhi, India

707


	Abstract
	1 Introduction
	2 MPTCP Performance
	3 Performance Issues
	4 AMuSe: Design & Implementation
	5 Acknowledgements
	References



