
CCACK: Efficient Network Coding Based Opportunistic Routin g Through

Cumulative Coded Acknowledgments

Dimitrios Koutsonikolas, Chih-Chun Wang, Y. Charlie Hu
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

{dkoutson, chihw, ychu}@purdue.edu

Abstract—The use of random linear network coding (NC)
has significantly simplified the design of opportunistic routing
(OR) protocols by removing the need of coordination among
forwarding nodes for avoiding duplicate transmissions. However,
NC-based OR protocols face a new challenge:How many coded
packets should each forwarder transmit? To avoid the overhead
of feedback exchange, most practical existing NC-based OR pro-
tocols compute offline the expected number of transmissionsfor
each forwarder using heuristics based on periodic measurements
of the average link loss rates and the ETX metric. Although
attractive due to their minimal coordination overhead, these
approaches may suffer significant performance degradationin
dynamic wireless environments with continuously changinglevels
of channel gains, interference, and background traffic.

In this paper, we propose CCACK, a new efficient NC-
based OR protocol. CCACK exploits a novelCumulative Coded
ACKnowledgment scheme that allows nodes to acknowledge
network coded traffic to their upstream nodes in a simple
way, oblivious to loss rates, and with practically zero overhead.
In addition, the cumulative coded acknowledgment scheme in
CCACK enables an efficient credit-based, rate control algorithm.
Our evaluation shows that, compared to MORE, a state-of-the-
art NC-based OR protocol, CCACK improves both throughput
and fairness, by up to 20x and 124%, respectively, with average
improvements of 45% and 8.8%, respectively.

I. I NTRODUCTION

Wireless mesh networks (WMNs) are increasingly being
deployed for providing cheap, low maintenance Internet access
(e.g. [1, 2, 3]). A main challenge in WMNs is to deal with
the poor link quality due to urban structures and interference,
both internal (among flows in the WMN) and external (from
other 802.11 networks). For example, 50% of the operational
links in Roofnet [1] have loss rates higher than 30% [4].
Hence, routing protocol design is critical to the performance
and reliability of WMNs.

Traditional routing protocols (e.g., [5, 6, 7]) for multihop
wireless networks treat the wireless links as point-to-point
links. First a fixed path is selected from the source to the
destination; then each hop along the chosen path simply sends
data packets to the next hop via 802.11 unicast.Opportunistic
Routing(OR), as first demonstrated in the ExOR protocol [8],
has recently emerged as a mechanism for improving unicast
throughput in WMNs with lossy links. Instead of first deter-
mining the next hop and then sending the packet to it, a node
with OR broadcaststhe packet so that all neighbor nodes have
the chance to hear it and assist in forwarding.

In practice, it is not beneficial if all nodes in the network
participate in forwarding traffic for a single flow. Hence,

Fig. 1. The importance of knowing how many coded packets to transmit.

existing OR protocols typically construct abelt of forwarding
nodes (FNs) for each flow and only members of the belt are
allowed to forward packets.

OR provides significant throughput gains compared to tra-
ditional routing, however, it introduces a difficult challenge.
Without any coordination, all members of the FN belt that hear
a packet will attempt to forward it, creating spurious retrans-
missions, which waste bandwidth. To address this challenge,
a coordination protocol needs to run among the nodes, so that
they can determine which one should forward each packet.

Recently, [9] showed that the use ofrandom intra-flow
network coding(NC) can address this challenge in a very
simple and efficient manner, with minimal coordination. With
NC, the source sends random linear combinations of packets,
and each router also randomly mixes packets it already has
received before forwarding them. Random mixing at each
router ensures that with high probability different nodes that
may have heard the same packet can still transmit linearly
independent coded packets.

NC has significantly simplified the design of OR proto-
cols and led to substantial throughput gains [9] compared
to non-coding based protocols. However, the use of NC
introduces a new challenge:How many coded packets should
each forwarder transmit?This challenge, if not efficiently
addressed, may prevent NC-based OR protocols from realizing
the maximum possible gains.

A. The challenge in NC-based OR protocols

We illustrate the main challenge in NC-based OR protocols
with the example shown in Figure 1. This figure shows a
typical scenario of an NC-based OR protocol. The source
S has three downstream FNsA, B, and C. Assume for
simplicity thatS has three innovative packetsX1, X2, andX3

to send. Instead of transmitting the native packets,S transmits
three coded packetsX1 + X2 + X3, 3X1 + X2 + 2X3, and
X1 + 2X2 + 3X3 in sequence, which are denoted by the
correspondingcoding vectors(1, 1, 1), (3, 1, 2), and(1, 2, 3).



Assume that(1, 1, 1) coded packet is received byC, and the
(3, 1, 2) and(1, 2, 3) packets are received byA and by{A, B},
respectively. The downstream FNsA, B, andC have received
a sufficient amount of innovative packets. Collectively, the
three FNs can now act as the new source and the original
source S should stop transmission. However, it is a non-
trivial task for S to know whether its downstream FNs have
accumulated a sufficient amount of innovative packets.

The same challenge exists for the intermediate FNA. After
transmitting a useful coded packet(4, 3, 5), which is received
by FN C, A has to decide whether it should continue or stop
sending coded packets. Furthermore,A has limited knowledge
about the reception status of the three packets transmittedby
S (e.g.,A may not know thatC has received(1, 1, 1) from
S), which makes the decision of whether to stop transmission
even harder forA than for the sourceS.

Note that overhearing, a commonly used way of acknowl-
edging non-coded wireless traffic due to its zero overhead,
does not suit network coded traffic. For the same example
in Figure 1, whenC has the opportunity to transmit, a
network coded packet(5, 4, 6) may be generated from the
two innovative packets received byC. Even if A overhears
this new (5, 4, 6) packet,A still does not know whetherC
received the(4, 3, 5) packet transmitted byA, since it is not
aware of the reception of the(1, 1, 1) packet byC.

One way to address the challenge is to combine individual
packet overhearing, as in non-coding based protocols, with
a credit system, based on coded transmissions, and have
the forwarders perform detailed bookkeeping to guarantee
credit conservation in the system. This approach is taken in
MC2 [10]. Although theoretically optimal [11], this approach
is quite complex in practice. In addition, like every approach
that relies on individual packet overhearing, it requires a
reliable control plane. In typical WMN environments with high
packet loss rates or contention [4], this approach can cause
excessive signaling overhead and retransmissions, which can
significantly limit the performance.

B. Loss rate based approaches

Since theoretically optimal solutions are hard to implement
in practice, existing NC-based OR protocols use heuristics
based on link loss rates, to address the challenge in a simple
manner, and to minimize the control overhead.

MORE [9], the first NC-based OR protocol, employs an
offline approach which requires no coordination among FNs.
In MORE, the source calculates and assigns atransmission
credit to each FN, using the ETX metric [12], computed from
loss rate measurements. Receptions from upstream nodes are
then used to trigger new transmissions at the FNs, with pre-
computed relative frequencies using the transmission credits.
Since the ETX metric expresses theexpectedbehavior, the
approach used in MORE cannot guarantee that the destination
will always receive enough packets, due to the randomness of
the wireless channel. Hence, the source in MORE keeps trans-
mitting packets from the same batch until it receives an ACK
from the destination, unnecessarily increasing interference.

Many other works that improve MORE also use offline
measured loss rates as a basic component in their proposed
solutions (e.g., [13, 14, 15]).

The drawback of all these approaches is that performance
heavily depends on the accuracy and freshness of the loss
rate measurements. Loss rate estimates are obtained through
periodic probing and are propagated from all nodes to the
source. Apparently, the higher the probing frequency, the
higher the accuracy, but also the higher the overhead. As
a recent study [16] showed, even low-rate control overhead
in non-forwarding links can have a multiplicative throughput
degradation on data-carrying links.

To reduce this overhead, the authors of MORE collect the
loss rates and calculate the credits only in the beginning of
each experiment. In practice, this suggests that loss rate mea-
surements should be performed rather infrequently. Unfortu-
nately, recent WMN studies [17, 18] have shown that,although
link metrics remain relatively stable for long intervals ina
quiet network, they are very sensitive to background traffic.
For example, in [17], the authors observe that 100 ping packets
(one per second) between two nodes in a 14-node testbed
caused an increase of 200% or more to the ETT [19] metric
of around 10% of the links. Even worse, a 1-min TCP transfer
between two nodes in the same network caused an increase of
more than 300% to the ETT metric of 55% of the links.

In summary, these approaches suffer from difficulties in
accurately estimating loss rates. Overestimated loss rates cause
redundant transmissions, which waste wireless bandwidth.On
the other hand, underestimated loss rates may have an even
worse impact, since nodes may not transmit enough packets
to allow the destination to decode a batch. This motivates the
need for a new approach,oblivious to loss rates.
C. Our approach – Cumulative Coded Acknowledgments

In this paper, we propose CCACK, a new efficient NC-based
OR protocol. Unlike MORE, FNs in CCACK decide how
many packets to transmit in an online fashion, and this decision
is completely oblivious to link loss rates.1 This is achieved
through a novelCumulativeCodedACK nowledgment scheme
that allows nodes to acknowledge network coded traffic to their
upstream nodes in a simple and efficient way, with practically
zero overhead. Feedback in CCACK is not required strictly
on a per-packet basis; this makes the protocol resilient to
individual packet loss and significantly reduces its complexity,
compared to [10].

Take the scenario in Figure 1 as a continuing example. One
naive approach to ensure thatS (resp.A) knows when to stop
transmission is through the use ofreception reports, for which
each node broadcastsall the basis vectorsof the received linear
space to its upstream nodes, as illustrated in Figure 2(a).2

1By “oblivious to link loss rates” we mean here that loss ratesare not taken
into account in determining how many packets each FN should transmit. We
note that the coded feedback mechanism in CCACK is orthogonal to how the
FN belt is constructed. In this work, we still use the loss-rate-based offline
belt construction proposed in MORE for a fair comparison between CCACK
and MORE.

2We sometimes refer to the linear space spanned by the received vectors
as theknowledge space.



(a) Uncoded Feedback (b) Coded Feedback

Fig. 2. Different types of feedback for network-coded traffic.

An obvious drawback of this approach is the size of the
feedback messages. For practical network coding with symbol
size GF(28) and batch size 32, each coding vector contains
32 bytes. To convey a space of dimensionκ ≫ 1 thus
requiresκ 32-byte vectors, which is too large to piggyback
to normal forward traffic. The unreliability of the wireless
channel further exacerbates the problem as theκ × 32-byte
feedback messages need to be retransmitted several times until
they are overheard by all the upstream nodes.

In contrast, in CCACK each node usesa single coded
feedback vectorto represent the entire space, which may
consist ofκ ≫ 1 basis vectors. In the broadest sense, the three
coded acknowledgment vectorszA to zC in Figure 2(b) serve
as a hash for their corresponding spaces. As will be explained
in Section III, we have devised a simple mechanism that
successfullycompresses(most of) the space information into
a single vector, sayzA for nodeA, while allowing upstream
nodes toextractthe original space fromzA without exchanging
any additional control information. Each single vectorzA

can be easily piggybacked to the forward data traffic. This
compressed/coded acknowledgment is critical to the efficiency
since in CCACK overhearing any of the data packets ofA
with piggybacked coded ACK will convey to the upstream
nodes the entire space (or most of the space) ofA. This
thus drastically reduces the need of retransmitting feedback
information over the unreliable wireless channel.

In addition to efficiently solving the challenge of how
many packets each FN should transmit, the cumulative coded
acknowledgment scheme in CCACK enables us to develop
an efficient rate control algorithm. In contrast, MORE has no
explicit rate control mechanism and its performance degrades
as the number of flows in the network increases [9, 11, 13, 14].

We evaluate the performance of CCACK and compare
it against MORE using extensive simulations. Our results
show that CCACK improves both throughput and fairness
over MORE, by 45% and 8.8%, respectively, on average. For
some challenged flows which completely starve under MORE,
CCACK increases throughput by up to 20x and fairness by up
to 124%. In addition, the coding and memory overheads of
CCACK are comparable to those of MORE.

II. EXISTING CODED FEEDBACK SCHEME

Coded feedback has been used in the past in a different
context; in [20], a null-space-based (NSB) coded feedback
scheme is used to enhance reliability of an NC-based multicast
protocol for multimedia applications in mobile ad hoc net-
works. In this section, we review this scheme and identify two

(a) NSB Feedback for
unreliable multicast.

(b) NSB Feedback for re-
liable unicast OR.

(c) The false positive er-
ror of the NSB feedback.

Fig. 3. Null-Space-Based (NSB) feedback for unreliable multicast, for
reliable unicast OR, and the corresponding false positive event.

problems when trying to apply it to reliable unicast OR: the
collective space problem and the false positive problem. These
two problems motivate the need for a new cumulative coded
feedback scheme which is a major component of CCACK.

Take Figure 3(a) for example. A batch of 3 packets are
coded together and nodesA to C need to decode all three
packets. LetBv denote the buffer containing the innovative
coding vectors received byA (which contains two vectors
(1, 2, 2) and (1, 1, 1) in Figure 3(a)).

Since A has received fewer than 3 innovative packets, it
informs its neighbor nodes that it needs more packets by
appending to each coded packet a vectorzA satisfying

zA · v = 0, ∀v ∈ Bv (1)

Namely, the inner product betweenzA and v ∈ Bv is zero.
There may be multiple choices ofzA that satisfy (1) (e.g.,
in Figure 3(a),zA can be any vector of the form(0, y,−y)).
zA is then chosenuniformly randomlyamong all valid vectors
satisfying (1). LetSA = 〈v : v ∈ Bv〉 denote the linear space
spanned by vectors inBv. One can easily show that:

Lemma 1:With the above random construction ofzA, any
vector v′ ∈ SA must satisfyzA · v′ = 0. Moreover, for any
vector v′′ /∈ SA we haveprob(zA · v′′ = 0) = 1

28 assuming
the GF(28) finite field is used.
From the above lemma, nodeB (resp.C) simply needs to
compute the inner product of its own innovative vectors with
zA. In Fig. 3(a), suppose thatzA is chosen as(0, 1,−1). Since
(0, 1,−1)·(1, 2, 3) = −1 6= 0, nodeB must contain innovative
packet forA. B can broadcast its innovative packet and once
A receives it,A will be able to decode the entire batch.

A. Problems of the NSB Coded Feedback for Unicast OR

The goal of using coded feedback in the context of un-
reliable multicast is different from in the context of reliable
unicast OR. In the former, coded feedback is used by a node
to inform neighbors thatthey have to send more packets. In
contrast, in the latter, we want to use coded feedback so that
nodes can inform their upstream nodes thatthey should not
send any more packets. This fundamental difference causes
two major problems when trying to apply the above NSB
coded feedback scheme to reliable unicast OR protocols, like
MORE.
Problem 1: The collective space problem.Take Figure 1 for
example. NodesB and C would like to convey their space
information toA so thatA can stop packet transmission. Based
on the NSB concept,B and C send zB = (1, 1,−1) and



zC = (−2, 1, 1), respectively, which are orthogonal to their
local innovative vectors (see Figure 3(b)). The idea is to hope
that, upon the reception ofzB and zC , A will know that the
knowledge spaces ofB and C havecollectivelycovered the
local knowledge space ofA and thus will stop transmission.

Nonetheless, whenA checks the inner product of the coded
feedback and its own innovative packets, we have

zB · (3, 1, 2) = 2 6= 0 andzC · (3, 1, 2) = −3 6= 0.

ThereforeA thinks that the coding vector(3, 1, 2) is innovative
to both its downstream nodes and thus continues transmis-
sion even when collectivelyB and C already have enough
information. This misjudgment is caused by that the NSB
coded feedback does not convey the collective space of all
downstream nodes but only the space relationship between
the individual pairs (e.g.,A vs. B andA vs. C). Therefore, if
we apply the NSB coded feedback as in [20] to unicast OR,A
will not stop transmission until one of its downstream nodes
has a local knowledge space that completely covers the local
knowledge space ofA. This defeats the purpose of OR.
Problem 2: Non-negligible false-positive probability.Take
Figure 3(c) for example.A wants to send two packets toB
and a network coded packet has been received byB already.
To convey its local knowledge space back toA, B sends an
orthogonal vectorzB satisfying (1), which is randomly chosen
to be any vector of the formzB = (4x, 4y,−2x−3y). Suppose
thatB chooseszB = (4,−8, 4) andA receives suchzB. Since
zB is orthogonal to all the innovative vectors ofA, A will
wrongfully conclude that the knowledge space ofB covers
the local knowledge space ofA. A thus attempts no further
transmission.Although Lemma 1 guarantees that this false
positive event happens only with probability1

28 , its impact
to the system performance is significant. The reason is that
in a multi-hop transmission, any single hop that experiences
this false positive event will cause an upstream node to stop
transmission prematurely. The communication chain is thus
broken and the destination may not be able to receive enough
independent packets for decoding. Although one can fix this
false-positive issue by retransmitting anotherzB vector, the
necessary timer management for the unreliable feedback chan-
nel and the additional interference caused by retransmission
easily negate the benefits of sending coded feedback.

III. CCACK DESIGN

In this section, we present the design of CCACK. We begin
with an overview of the protocol and then we describe its
two main components: construction of a novel cumulative
coded feedback scheme which addresses the two problems we
discussed in Section II-A, and a rate control algorithm, built
upon this coded feedback scheme.

A. CCACK Overview

The source and the intermediate FNs in CCACK use intra-
flow random linear NC. We selected a batch size ofN = 32
packets and the random coefficients for each linear combina-
tion are selected from a Galois Field (GF) of size28, same as
in [9, 10, 15].

Nodes in CCACK maintain per flow state, which includes:
a packet bufferBv, two coding vector buffersBu andBw, the
current batchof the flow, and acredit counter(Section III-D).
With the exception ofBu andBw, all the other information is
also maintained in MORE. Similar to MORE, this information
is soft-state and it is flushed if no packet for a flow is received
for 5 minutes.

The source and the FNs broadcast randomly mixed packets
and store the coding vectors of these packets inBw. Whenever
a node overhears a packet, the node first checks whether the
packet is innovative by comparing the coding vector to those
of the existing packets inBv. If innovative, the newly received
packet is stored inBv. Regardless being innovative or not, the
node also checks whether the newly received packet is from
an upstream node. If yes, then it stores the forward coding
vector inBu.

Similar to [20], nodes in CCACK embed an additionalACK
vector in the header of each coded data packet of the forward
traffic to report a subset of the packets (or coding vectors)
they have received in the past from their upstream nodes. The
construction of the ACK vector is described in Section III-C.
For the following, we use the termsforward coding vectors
andACK coding vectorsto denote the coding coefficients used
to encode the payload of the packets and the feedback vectors
used to acknowledge the space, respectively.

Each forward coding vector inBu andBw can be marked as
H(heard) or¬H(not heard). A coding vector is marked as¬H
when initially is inserted in either of the two buffers, since the
node has no information at that time whether any downstream
node has heard the packet or not. Nodes mark vectors asH,
using the inner product of these vectors and the ACK coding
vectors they receive from downstream nodes, as explained in
Section III-C.

The destination periodically broadcasts coded feedback to
its upstream nodes in the form of ACK vectors (without any
payload). This is necessary to actively inform its upstream
nodes whether they should temporarily stop transmitting, since
the destination sends no data packets. Once it receivesN
innovative packets for a batch, it decodes the batch to obtain
theN original packets. It then sends an end-to-end ACK back
to the source along the shortest ETX path in a reliable manner.3

B. Solving the collective-space problem

In contrast to the NSB coded feedback scheme in [20],
nodes in CCACK construct the ACK coding vectors usingall
the received forward coding vectors stored inBu, and not only
the innovative vectors stored inBv. Also, when an upstream
nodeA overhears a packet from a downstream node, it uses
the ACK coding vector of that packet to decide whether any
of the coding vectors inBu ∪ Bw, instead ofBv, have been
heard by the downstream node.

3In our current implementation, similar to MORE, the source moves to
batch i + 1 only when it receives the end-to-end ACK from the destination
for batch i. As [15] showed, a better approach is for the source to move to
batchi + 1 immediately after it stops transmitting packets for batchi. In the
future we plan to incorporate this feature in CCACK.



Nodes keep checking the rank of theBu and Bw vectors
marked asH. When this rank becomes equal to the rank of
innovative packets inBv for a nodeA, A stops transmitting
either temporarily, until it receives another innovative packet,
or permanently if the rank of theBv vectors is already equal
to N . In both cases, the downstream nodes have received a
sufficient number of packets that cover the innovative packets
of A from the knowledge space perspective.

Focusing onBu and Bw vectors instead ofBv, this new
structure solves the collective-space problem of the NSB coded
feedback. Continue our example in Figure 3(b). For nodeA,
Bu contains the received coding vectors(1, 2, 3) and(3, 1, 2)
while Bw contains the transmitted vector(4, 3, 5). Suppose
we reuse the NSB coded feedback for nodesB andC. Then
by checking inner products withzB andzC , A knows that the
(1, 2, 3) ∈ Bu and (4, 3, 5) ∈ Bw have been received. Since
the rank of(1, 2, 3) and (4, 3, 5) is the same as the rank of
Bv vectors,A stops transmission.

C. Solving the false positive problem

We now describe our new ACK design that drastically
reduces the false-positive probability from1

28 to
(

1

28

)M
for

any integerM ≥ 1.
Each node maintainsM different N × N hash matrices

H1 to HM whereN = 32 is the batch size and each entry
of the matrix is randomly chosen fromGF (28). All nodes
in the network are aware of theH1 to HM matrices of the
other nodes. This is achievable by using the ID of a node as
a seed to generate theH1 to HM matrices. We assume that
all vectors are row vectors and we use the transposeuT to
represent a column vector.

To improve the efficiency of our feedback mechanism, we
associate ausage count with every vector inBu. When a
vector is placed inBu, its usage count is set to 0. Every time
this vector is selected in the feedback construction algorithm,
its usage count is incremented by 1. The ACK vector is
always constructed using those vectors inBu with the lowest
counts. This will reduce the probability that the same vectors
are repeatedly acknowledged many times.

Nodes construct the ACK vectors using the following algo-
rithm:

§ CONSTRUCT THEACK VECTOR

1: Start from a0 × N matrix ∆.
2: while The number of rows of∆ ≤ N − 1 − M do
3: Choose theu with the smallestusage count from Bu.

If more than one suchu exist, choose one randomly.
4: for j = 1 to M do
5: if the 1×N row vectoruHj is linearly independent

to the row space of∆ then
6: Add uHj to ∆.
7: Perform row-based Gaussian elimination to keep

∆ in a row-echelon form.4

8: end if

4Since∆ is always of row-echelon form, it is easy to check whether the
new vector is linearly independent to the row space of∆.

9: end for
10: Increment theusage count of u by 1.
11: end while
12: Choose randomly the coding coefficientsc1 to cN such

that the following matrix equation is satisfied:

∆(c1, · · · , cN )T = (0, · · · , 0)T.

Remark 1: We also require that the randomly chosen
coefficientsc1 to cN are not all zero.
Remark 2: By Line 2 there will be at least1 degree of
freedom when solving the above equations. Since∆ is in
the row-echelon form, it is easy to choosec1 to cN .

13: Use the vector(c1, · · · , cN ) as the ACK vector.

When a node A overhears a packet with an ACK vectorz
from a downstream node, it uses again the inner product to
check all its vectors inBu and Bw and determine whether
any of them has been heard by the downstream node. More
explicitly, a vectoru ∈ Bu (or Bw) is markedH if and only
if u passesall the following M different “H tests” (one for
eachHj):

∀j = 1, · · · , M, uHjz
T = 0, (2)

where H1 to HM are the hash matrices of the downstream
node of interest.

Remark:In our practical implementation, instead of choos-
ing completely random hash matricesH1 to HM (each with
N2 random elements), we simply chooseH1 to HM as
“random diagonal matrices”, with theN diagonal elements for
eachHj randomly chosen from1 to 255 (excluding zero) and
all other elements being zero. This simplification improvesthe
efficiency as the matrix multiplicationuHj can be performed
in linear instead ofN2 time.

We now quantify the false positive probability (passing all
M tests simultaneously) with this new coded feedback scheme.

Proposition 1: Consider an upstream/downstream node pair
AU andAD, andAU receives an ACK vectorz0 from AD. The
hash matricesH1 to HM of nodeAD are chosen uniformly
randomly. For anyw vector inBu ∪Bw of the upstream node
AU , if suchw is in the space of theu vectors selected by the
downstream nodeAD, then it is guaranteed that suchw vector
will pass allM tests in (2). If suchw is not in the space of the
selectedu vectors, then the false-positive probability (passing
all M tests) is

(

1

28

)M
.

Sketch of the proof: Let SB denote the linear space
spanned from theu vectors selected byAD. It is straight-
forward to show that anyw ∈ SB must havewHjz

T
0

= 0. A
more interesting case is whenw /∈ SB.

Conditioning on the non-zeroz0 vector, for anyj theHjz
T
0

vector must be randomly distributed over the null space ofSB

vectors sinceHj is chosen uniformly randomly. Therefore, the
M vectorsH1z

T
0

to HMzT
0

are equivalent to sending randomly
chosen NSB coded feedback forM times. By Lemma 1, the
overall false positive probability becomes

(

1

28

)M
. A detailed

proof can be found in [21].



In our implementation, we usedM = 4, which gives a false
positive probability of2.33 × 10−10.5

D. Rate control

The cumulative coded feedback scheme in CCACK helps
nodes to determine when they should stop transmitting packets
for a given batch, but it does not tell anything abouthow fast
nodes should transmit before they stop. Unlike in MORE, in
CCACK we cannot use receptions from upstream to trigger
new transmissions, since the goal is exactly to stop the
upstream nodes, when the downstream nodes have sufficiently
enough packets. In addition, we want to apply rate control to
the source as well, and not only to the FNs.

The rate control algorithm in CCACK uses a simple credit
scheme, which is oblivious to loss rates but aware of the
existence of other flows in the neighborhood, and leverages
CCACK’s cumulative coded acknowledgments.

For each flowf at a node, we define the “differential
backlog”6 as:

∆Q
f = dim(Bf

v ) − dim(Bf
H) (3)

whereBf
H is the set of vectors inBf

u ∪Bf
w marked asH, and

dim(S) denotes the number of linearly independent packets
in the setS. Note thatdim(Bf

H) ≤ dim(Bf
v ). ∆Qf is the

difference between the number of innovative packets at a given
node and the cumulative number of innovative packets at its
downstream FNs for flowf . As we saw in Section III-B,
when ∆Qf = 0, i.e., dim(Bf

v ) = dim(Bf
H), the node stops

transmitting packets for flowf . Note that for the destination
of flow f , ∆Qf = 0.

We also define the relative differential backlog∆Qf
rel for

each flowf as:

∆Q
f

rel =
∆Qf

∆Qf + ∆QN

(4)

where,∆QN is the total differential backlog of all the neigh-
bor nodes for all flows, calculated as follows. Every time a
node nj broadcasts a coded data packet, it includes in the
packet header its current total differential backlog∆Qtot

nj
of

all flows crossing that node. All nodes that hear this packet
update their∆QN as an exponential moving average:

∆QN = 0.5 × ∆QN + 0.5 × ∆Q
tot
nj

(5)

Every node in CCACK (including the source and the
destination) maintains a credit counter for each flow. Every
time there is a transmission opportunity for a node A, one flow
f is selected in a round robin fashion, among those flows with
∆Qf > 0, and the credit counter of that flow is incremented
by α×∆Qf

rel+β. If the counter is positive, the node transmits
one coded packet for flowf and decrements the counter by
one, otherwise it selects the next flow. The credit increment

5A naive way of achieving the same level of false-positive probability is to
use a larger finite field sizeGF(232). In such a case, a table look-up method
for GF multiplications has to have232

× 232 4-byte entries, which takes
prohibitively 4 million terabytes to store.

6Our solution is inspired by the theoretical backpressure based rate control
algorithms [22]. The difference is that, instead of queue lengths, we use
innovative coded packets to define acumulative differential backlogfor flow
f at every node with respect to all its downstream nodes for that flow.

α × ∆Qf
rel + β is larger for flows with large “backpressure”,

thus packets of such flows will be transmitted more frequently.
For our implementation we selectedα = 5/6 andβ = 1/6. If
∆Qf

rel = 1, thenα × ∆Qf
rel + β = 1 and the credit counter

will always remain equal to 1, effectively allowing the node
to always transmit.

IV. EVALUATION

A. Methodology

We evaluated the performance of CCACK and compared
it against MORE using extensive simulations. We used the
Glomosim simulator [23], a widely used wireless network
simulator with a detailed physical signal propagation model.

We simulated a network of 50 static nodes placed randomly
in a 1000m × 1000m area. The average radio propagation
range was 250m, the average sensing range was 460m, and the
channel capacity was 2Mbps. TheTwoRaypropagation model
was used and combined with the Rayleigh fading model to
make the simulations realistic. Because of fading, transmission
and sensing range are not fixed but vary significantly around
their average values.

We simulated each protocol in 9 different randomly gen-
erated topologies, i.e., placement of the 50 nodes. We varied
the number of concurrent flows from 1 up to 4. For a given
number of flows, we repeated the simulation 10 times for
each topology, selecting randomly each time a different set
of source-destination pairs, i.e., we had a total of 90 different
scenarios for a given number of flows. In each scenario, every
source sent a 12MB file, consisting of 1500-byte packets.

Following the methodology in [9, 8], we implemented an
ETX measurement module in Glomosim which was run for 10
minutes prior to the file transfer for each scenario to compute
pairwise delivery probabilities. There was no overhead dueto
loss rate measurements during the file transfer.

It is generally known that the full benefit of OR over
traditional routing is exposed when the destination is several
hops away from the source [9]; in those cases, OR reduces
the overhead of retransmissions incurred by high loss rates
and increased self-interference. Hence, for the single-flow
experiment, among the 90 flows we simulated, we show the
results of the 65 flows for which the destination was not
within the transmission range of the source (with ETX shortest
paths of 3-9 hops). For the evaluation with multiple flows, we
kept scenarios with flows of shorter paths, when those flows
interfered with other flows. On the other hand, we do not
show the results for scenarios where the multiple flows were
out of interference range of each other, since those scenarios
are equivalent to the single-flow case. We were left with 68
scenarios with 2 flows, and 69 scenarios with 3 and 4 flows.

B. Single flow

We begin our evaluation with a single flow. Figure 4(a) plots
the Cumulative Distribution Function (CDF) of the through-
puts of the 65 flows with MORE and CCACK. We observe
that CCACK outperforms MORE; the median throughput with
CCACK and MORE is 276Kbps and 205Kbps, respectively.



(a) CDF of throughputs achieved with
MORE and CCACK.

(b) CDF of relative throughput im-
provement of CCACK over MORE.

Fig. 4. Throughput comparison between CCACK and MORE – single flow.

(a) Total number of data transmis-
sions per scenario.

(b) Total number of data transmis-
sions per node for one scenario.

Fig. 5. Total number of data transmissions with MORE and CCACK,
and predicted number of transmissions, based on MORE’s credit calculation
algorithm, with a single flow.

Figure 4(b) plots the CDF of the relative throughput im-
provement of CCACK over MORE for all 65 flows, defined

as T
f
CCACK−T

f
MORE

T
f

MORE

×100%, whereT f
CCACK , T f

MORE are the

throughput of flowf with CCACK and MORE, respectively.
We observe that CCACK achieves a higher throughput than
MORE for 95% of the flows. The median gain of CCACK
over MORE is 34%. However, for some challenged flows with
the destination 7-9 hops away from the source, the throughput
with CCACK is 2-5x higher than with MORE.
Where does the gain for CCACK come from?Figure 5(a)
plots the total number of data transmissions with CCACK
and MORE in each of the 65 scenarios, as well as the
predicted number of transmissions in each scenario using
MORE’s offline ETX-based credit calculation algorithm. The
65 scenarios are sorted with respect to the predicted number
of transmissions.

We observe that nodes with MORE perform a higher
number of transmissions than the predicted number in all 65
scenarios. The actual number is often more than twice the pre-
dicted number, and in some scenarios up to 6-7x the predicted
number. This shows that the credit calculation algorithm based
on offline ETX measurements mispredicts the required number
of transmissions even in the absence of background traffic.
Moreover, the source in MORE keeps transmitting packets
until it receives an ACK from the destination. With long paths,
this may result in a large number of unnecessary transmissions,
as the ACK travels towards the source.

In contrast, the number of data transmissions with CCACK
is much lower than with MORE in all but 2 scenarios. In most
scenarios it is close to the predicted number, and in some

(a) Average per-flow throughputs
(bars) and standard deviations (lines).

(b) CDF of relative throughput im-
provement of CCACK over MORE.

Fig. 6. Throughput comparison between CCACK and MORE – multiple
flows.

cases, it is even lower. This shows the effectiveness of the
coded feedback mechanism in CCACK, combined with the
online rate control mechanism of Section III-D.

Figure 5(b) shows an example (one scenario) of how data
transmissions are distributed over the FNs. Nodes are sorted
with respect to their ETX distance to the destination, i.e.,
node 1 is the source and node 10 is the FN closest to
the destination. With MORE, the source and the FN closest
to the source, perform many more transmissions than the
remaining FNs. In contrast, CCACK ensures that these nodes
stop transmitting when the remaining downstream FNs have
received enough innovative packets. Overall, with CCACK, all
10 nodes perform fewer transmissions than with MORE.

C. Multiple flows

We now evaluate CCACK and MORE with multiple con-
current flows. Here, in addition to throughput, we compare the
two protocols in terms of fairness, usingJain’s fairness index
(FI) [24]. Jain’s FI is defined as(

∑

xi)
2/(n×

∑

x2

i ), where
xi is the throughput of flowi and n is the total number of
flows. The value of Jain’s FI is between 0 and 1, with values
closer to 1 indicating better fairness.
Throughput Comparison Figures 6(a), 6(b) compare
throughput with CCACK and MORE with 2, 3, and 4 flows.
Figure 6(a) plots the average per-flow throughput with the two
protocols as a function of the number of flows. We observe
that CCACK outperforms MORE by 27% on average in the
2-flow case, and by 45% on average in the 3-flow and 4-
flow cases. Note that the gain of CCACK is higher with a
larger number of flows, when the congestion level becomes
higher causing substantial changes to the ETX values. By
quickly and accurately stopping transmissions for a given flow
at nodes whose downstream nodes have collectively received
a sufficient number of packets, a large amount of bandwidth is
saved with CCACK which can be used by the nodes or their
neighbors for transmitting packets for other flows.

Figure 6(b) plots the CDF of per-flow relative throughput
improvement with CCACK over MORE, as defined in Sec-
tion IV-B, with 2, 3, and 4 flows. CCACK improves per-flow
throughputs for more than 85% of the flows in all 3 cases (with
2, 3, and 4 flows). The median improvement is 33%, 55%, and
62%, respectively, with 2, 3, and 4 concurrent flows. Similarto
the single flow experiments, some starving flows with MORE



(a) Average per scenario FIs (bars)
and standard deviations (lines).

(b) CDF of relative FI improvement of
CCACK over MORE.

Fig. 7. Fairness comparison between CCACK and MORE – multiple flows.

(a) Scatterplot of relative throughput
improvement vs. relative FI improve-
ment with 2, 3, and 4 flows.

(b) Per-flow throughputs with MORE
and CCACK for the 6 scenarios with
the largest FI decrease under CCACK.

Fig. 8. Investigating the relationship between throughputand fairness.

show a several-fold improvement with CCACK, up to 3.7x,
8.1x, and 20.4x, in the 2-, 3-, and 4-flow cases, respectively.7

Fairness Comparison Figures 7(a), 7(b) compare fairness
with CCACK and MORE in case of 2, 3, and 4 concurrent
flows. Figure 7(a) plots the average FI with the two protocols.
We observe that the average FI is the same with the two
protocols in the 2-flow case, but is higher with CCACK in
the 3-flow, and 4-flow case by 5.8% and 8.8%, respectively.

Figure 7(b) plots the CDF of per-scenario relative FI im-
provement with CCACK over MORE, defined similarly to the
relative throughput improvement in Section IV-B, with 2, 3,
and 4 flows. We observe that CCACK improves fairness in
more scenarios as the number of flows in the network increases
– in 40% of the 2-flow scenarios, 65% of the 3-flow scenarios,
and 72% of the 4-flow scenarios. Similar to the throughput
results, the improvement is very large for some scenarios: up
to 74% with 3 flows, and up to 124% with 4 flows. This shows
again that CCACK improves throughput for some challenged
flows, which completely starve with MORE.
Throughput vs. Fairness We now investigate more closely
the relationship between throughput and fairness. Figure 8(a)
shows the scatterplots of the relative total throughput im-
provement per-scenario vs. the relative FI improvement per-
scenario, in the 2-, 3-, and 4-flow experiments.

We observe that CCACK improves at least one of the two
metrics in all but two scenarios (two points in the 3rd quadrant
of Figure 8(a)). There are a few points in the 2nd quadrant for
all three cases; these are scenarios, where CCACK improves
fairness, at the cost of a small total throughput decrease. The

7The heavy tails of the 3-flow and 4-flow curves are not shown in
Figure 6(b) for better clarity.

majority of the points for the 2-flow case are gathered in the
1st and 4th quadrants, i.e., CCACK either improves throughput
at the cost of a (typically) small decrease in fairness, or it
improves both metrics. The majority of the points are gathered
in the 1st quadrant for the 3-flow and 4-flow cases. This shows
that as the number of flows increases, CCACK improves both
throughput and fairness in most scenarios.

We now focus on a few points in the 4th quadrant in
Figure 8(a), corresponding to scenarios where FI is reduced
by more than 20% with CCACK. There are two 2-flow,
one 3-flow, and three 4-flow scenarios (points). Note that
all 6 scenarios exhibit large throughput improvements. One
may wonder if these improvements are achieved at the cost
of compromising the fairness, i.e., throughput of one flow
increases significantly, starving the remaining flows.

Figure 8(b) plots the individual per-flow throughputs with
MORE and CCACK for these 6 scenarios. We observe that
in all but 2 cases, CCACK improves throughput ofall flows
involved. The reduction in the FI actually comes from the
fact that throughput improvement is much higher for some
flows than for some others, and not as a result of starvation of
some flows. Take the last scenario (4 flows (3)) as an example.
CCACK improves throughput of the first flow by 11x (from
85Kbps to 978Kbps), but also improves throughputs of the
other 3 flows by 183%, 108%, and 111%.

D. CCACK’s overhead

Finally, we estimate CCACK’s overhead compared to
MORE. Similar to [9], we discuss three types of overhead:
coding, memory, and packet header overhead.
Coding overhead.Unavoidably, CCACK’s coding overhead
is higher than MORE’s, since routers have to perform addi-
tional operations both when transmitting and when receiving
a packet. However, all the additional CCACK operations are
performed onN -byte vectors instead of the wholeK-byte
payload. Therefore, in practical settings (e.g., withN = 32
andK = 1500), the coding overhead of CCACK is expected
to be comparable to that of MORE.

To verify this, we measured the per-packet cost of the vari-
ous operations performed upon a packet transmission/reception
averaged over all packets transmitted/received at all nodes in
the 90 simulation scenarios of Section IV-B. Table I provides
the average values and the standard deviations. The costs are
given in terms ofGF(28) multiplications, which are the most
expensive operations involved in coding/decoding [9].

Construction of an ACK vector in CCACK requires on
average 11584 multiplications. The total coding cost in trans-
mitting a packet (i.e., constructing a coded packet and an
ACK vector) in CCACK is only 24% higher than MORE’s,
assuming the worst case cost for packet encoding (48000
multiplications). If we use instead the average packet encoding
cost at FNs (27240 multiplications), the total cost of transmit-
ting a packet in CCACK is only 38824 multiplications, i.e.,
lower than MORE’s encoding cost at the source.8

8Note that the source in CCACK does not have to construct an ACKvector,
and hence the cost at the source is the same as in MORE.



TABLE I
CODING OVERHEAD IN CCACK IN TERMS OFGF(28) MULTIPLICATIONS.
OPERATIONS MARKED WITH (*) ARE COMMON IN MORE AND CCACK.

Operation Avg. Std. Dev.
Packet Transmission

Coded pkt construction (src/FNs)* 48000/27240 0/13128
ACK vector construction 11584 5369

Total (src/FNs) 59584/38824 5369/10021
Packet Reception

Independence check* 326 156
H tests 428 316

Rank ofH pkts in Bu ∪ Bw 292 169
Total 1046 416

When receiving a packet, the cost of checking for in-
dependence (also in MORE) requires on average only 326
multiplications. The additional operations of performingthe
H tests (if the received packet comes from downstream) and
maintaining the rank of theH pkts in Bu ∪Bw (if a received
packet from downstream passes allM H tests) require on
average only 428 and 292 multiplications, respectively, i.e.,
their costs are comparable to the independence check cost.
The total cost of packet reception operations in CCACK is
only 1.7% of the total packet transmission cost. Hence, the
bottleneck operation in CCACK is preparing a packet for
transmission at an FN with 32 innovative packets inBv.

In [9], the authors found that the bottleneck operation in
MORE (packet encoding at the source) takes on average
270µs on a low-end Celeron 800MHz, limiting the maximum
achievable throughput with MORE to 44Mbps with a 1500
byte packet. In CCACK, the cost of the bottleneck operation
is 24% higher, so we can expect a maximum achievable
throughput of 35Mbps. Note that this value is still higher than
the effective bitrate of current 802.11a/g WMNs [25].
Memory overhead. Same as in MORE, routers in CCACK
maintain an innovative packet bufferBv for each flow, and
also a 64KB look up table for reducing the cost of the GF(28)
multiplications [9]. With a packet size of 1500 bytes, the size
of Bv is 48KB. The extra overhead in CCACK comes from the
two additional buffersBu andBw, which store, however, only
32-byte vectors, and not whole packets. In our implementation,
the total size ofBu andBv is 2×5×32×32 = 10KB, which
is relatively small compared to the size of MORE’s structures.
Header overhead. The N-byte ACK vector and the total
differential backlog∆Qtot

nj
are the two fields we add to the

MORE header. The differential backlog per flow is bounded
by the batch sizeN . With N = 32, two bytes are enough to
support up to 2048 flows, and the total size of the two fields is
equal to 34 bytes. However, in CCACK, we do not include in
the packet header the transmission credits for the FNs, which
are required in MORE. This can potentially make CCACK’s
header smaller than MORE’s depending on the number of FNs.

V. CONCLUSION

In this paper, we presented CCACK, a new efficient NC-
based OR protocol. CCACK exploits a novel Cumulative
Coded Acknowledgment scheme that allows nodes to acknowl-
edge network coded traffic to their upstream nodes in a simple

and efficient way, oblivious to loss rates, and with practically
zero overhead. The cumulative coded acknowledgment scheme
in CCACK also enables an efficient credit-based, rate control
algorithm. Our evaluation shows that CCACK significantly
improves throughput by up to 20x and fairness by up to
124%, compared to MORE. The coding, memory, and header
overhead of CCACK are comparable to those of MORE,
making it easily deployable in WMNs equipped with routers
with network coding capabilities.

ACKNOWLEDGMENT

This work was supported in part by NSF grants CCF-
0845968 and CNS 0905331.

REFERENCES

[1] “MIT Roofnet,” http://www.pdos.lcs.mit.edu/roofnet.
[2] “Bay area wireless users group,” http://www.bawug.org.
[3] “Seattle wireless,” http://www.seattlewireless.net.
[4] D. Aguayo, et al., “Link-level measurements from an 802.11b mesh

network,” in Proc. of ACM SIGCOMM, August 2004.
[5] D. B. Johnson and D. A. Maltz,Dynamic Source Routing in Ad Hoc

Wireless Networks. Kluwer Academic, 1996.
[6] C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance vector

routing,” in Proc. of IEEE WMCSA, February 1999.
[7] J. Bicket, et al., “Architecture and evaluation of an unplanned 802.11b

mesh network,” inProc. of ACM MobiCom, 2005.
[8] S. Biswas and R. Morris, “ExOR: Opportunistic multi-hoprouting for

wireless networks,” inProc of ACM SIGCOMM, 2005.
[9] S. Chachulski, et al., “Trading structure for randomness in wireless

opportunistic routing,” inProc of ACM SIGCOMM, 2007.
[10] C. Gkantsidis, et al., “Multipath code casting for wireless mesh net-

works,” in Proc. of ACM CoNEXT, 2007.
[11] B. Radunovic, et al., “An optimization framework for opportunistic mul-

tipath routing in wireless mesh networks,” inProc. of IEEE INFOCOM
Minisymposium, 2008.

[12] D. S. J. De Couto, et al., “A high-throughput path metricfor multi-hop
wireless routing,” inProc. of ACM MobiCom, 2003.

[13] X. Zhang and B. Li, “Optimized multipath network codingin lossy
wireless networks,” inProc. of IEEE ICDCS, 2008.

[14] ——, “Dice: a game theoretic framework for wireless multipath network
coding,” in Proc. of ACM MobiHoc, 2008.

[15] Y. Lin, et al., “CodeOR: Opportunistic routing in wireless mesh networks
with segmented network coding,” inProc. of IEEE ICNP, 2008.

[16] J. Camp, et al., “A measurement study of multiplicativeoverhead effects
in wireless networks,” inProc. of IEEE INFOCOM, 2008.

[17] S. M. Das, et al., “Studying Wireless Routing Link Dynamics,” in Proc.
of ACM SIGCOMM/USENIX IMC, 2007.

[18] Y. Li, et al., “Effects of interference on throughput ofwireless mesh
networks: Pathologies and a preliminary solution,” inProc. of ACM
HotNets-VI, 2007.

[19] R. Draves, et al., “Routing in multi-radio, multi-hop wireless mesh
networks,” inProc. of ACM MobiCom, September 2004.

[20] J. Sang Park, et al., “Codecast: a network-coding-based ad hoc multicast
protocol,” IEEE Wireless Communications, vol. 13, no. 5, 2006.

[21] D. Koutsonikolas, et al., “CCACK: Efficient Network Coding Based
Opportunistic Routing Through Cumulative Coded Acknowledgments,”
TR-ECE-09-13, Purdue University, December 2009.

[22] L. Tassioulas and A. Ephremides, “Stability properties of constrained
queuing systems and scheduling for maximum throughput in multihop
radio networks,” IEEE Transactions on Automatic Control, vol. 37,
no. 12, 1992.

[23] X. Zeng, et al., “Glomosim: A library for parallel simulation of large-
scale wireless networks,” inProc. of PADS Workshop, May 1998.

[24] R. K. Jain, et al., “A quantitative measure of fairness and discrimination
for resource allocation in shared computer systems,” DEC-TR-301,
Digital Equipment Corporation, Tech. Rep., September 1984.

[25] A. Kamerman and G. Aben, “Net throughput with IEEE 802.11 wireless
LANs,” in Proc. of IEEE WCNC, 2000.


