
CCACK: Efficient Network Coding Based Opportunistic Routing Through
Cumulative Coded Acknowledgments

Dimitrios Koutsonikolas
Chih-Chun Wang

Y. Charlie Hu

TR-ECE-09-13
December 16, 2009

School of Electrical and Computer Engineering
1285 Electrical Engineering Building

Purdue University
West Lafayette, IN 47907-1285

Contents

1 Introduction 1
1.1 The challenge in NC-based OR protocols 2
1.2 Loss rate based approaches 3
1.3 Our approach – Cumulative Coded Acknowledgments 3

2 Existing Coded Feedback Scheme 5
2.1 Problems of the NSB Coded Feedback for Unicast OR 6

3 CCACK design 7
3.1 CCACK Overview 7
3.2 Solving the collective-space problem 8
3.3 Solving the false positive problem 8
3.4 Rate control 10

4 Evaluation 11
4.1 Methodology 11
4.2 Single flow 12
4.3 Multiple flows 13
4.4 Which flows benefit most from CCACK? 15
4.5 CCACK’s overhead 17

5 Protocol implementation and testbed evaluation 18
5.1 Testbed description 18
5.2 Implementation details 19

5.2.1 Removing the dependence on the MAC layer 19
5.2.2 Dealing with queue sizes 20
5.2.3 Dealing with end-to-end ACKs 20

5.3 Experimental setup 21
5.4 Experimental results 22

6 Conclusion 23

ii

Abstract

The use of random linear network coding (NC) has significantly simplified the design of opportunistic routing

(OR) protocols by removing the need of coordination among forwarding nodes for avoiding duplicate transmis-

sions. However, NC-based OR protocols face a new challenge:How many coded packets should each forwarder

transmit?To avoid the overhead of feedback exchange, most practical existing NC-based OR protocols compute

offline the expected number of transmissions for each forwarder using heuristics based on periodic measurements

of the average link loss rates and the ETX metric. Although attractive due to their minimal coordination over-

head, these approaches may suffer significant performance degradation in dynamic wireless environments with

continuously changing levels of channel gains, interference, and background traffic.
In this paper, we propose CCACK, a new efficient NC-based OR protocol. CCACK exploits a novelCumulative

CodedACKnowledgment scheme that allows nodes to acknowledge network coded traffic to their upstream nodes
in a simple way, oblivious to loss rates, and with practically zero overhead. In addition, the cumulative coded
acknowledgment scheme in CCACK enables an efficient credit-based, rate control algorithm. Our experiments on
a 22-node 802.11 WMN testbed show that compared to MORE, a state-of-the-art NC-based OR protocol, CCACK
improves both throughput and fairness, by up to 3.2x and 83%,respectively, with average improvements of 11-
36% and 5.7-8.3%, respectively, for different numbers of concurrent flows. Our extensive simulations show that
the gains are actually much higher in large networks, with longer routing paths between sources and destinations.

1 Introduction

Wireless mesh networks (WMNs) are increasingly being deployed for providing cheap, low maintenance In-
ternet access (e.g. [26, 29, 28]). A main challenge in WMNs isto deal with the poor link quality due to urban
structures and interference, both internal (among flows in the WMN) and external (from other 802.11 networks).
For example, 50% of the operational links in Roofnet [26] have loss rates higher than 30% [1]. Hence, routing
protocol design is critical to the performance and reliability of WMNs.

Traditional routing protocols (e.g., [11, 19, 2]) for multihop wireless networks treat the wireless links as point-
to-point links. First a fixed path is selected from the sourceto the destination; then each hop along the chosen path
simply sends data packets to the next hop via 802.11 unicast.Opportunistic Routing(OR), as first demonstrated
in the ExOR protocol [3], has recently emerged as a mechanismfor improving unicast throughput in WMNs with
lossy links. Instead of first determining the next hop and then sending the packet to it, a node with ORbroadcasts
the packet so that all neighbor nodes have the chance to hear it and assist in forwarding.

In practice, it is not beneficial if all nodes in the network participate in forwarding traffic for a single flow.
Hence, existing OR protocols typically construct abeltof forwarding nodes (FNs) for each flow and only members
of the belt are allowed to forward packets.

OR provides significant throughput gains compared to traditional routing, however, it introduces a difficult
challenge. Without any coordination, all members of the FN belt that hear a packet will attempt to forward it,
creating spurious retransmissions, which waste bandwidth. To address this challenge, a coordination protocol
needs to run among the nodes, so that they can determine whichone should forward each packet.

Recently, [5] showed that the use ofrandom intra-flow network coding(NC) can address this challenge in a very
simple and efficient manner, with minimal coordination. With NC, the source sends random linear combinations
of packets, and each router also randomly mixes packets it already has received before forwarding them. Random

1

Figure 1. The importance of knowing how many coded packets to transmit.

mixing at each router ensures that with high probability different nodes that may have heard the same packet can
still transmit linearly independent coded packets.

NC has significantly simplified the design of OR protocols andled to substantial throughput gains [5] compared
to non-coding based protocols. However, the use of NC introduces a new challenge:How many coded packets
should each forwarder transmit?This challenge, if not efficiently addressed, may prevent NC-based OR protocols
from realizing the maximum possible gains.

1.1 The challenge in NC-based OR protocols

We illustrate the main challenge in NC-based OR protocols with the example shown in Figure 1. This figure
shows a typical scenario of an NC-based OR protocol. The source S has three downstream FNsA, B, andC.
Assume for simplicity thatS has three innovative packetsX1, X2, andX3 to send. Instead of transmitting the
native packets,S transmits three coded packetsX1+X2+X3, 3X1+X2+2X3, andX1+2X2+3X3 in sequence,
which are denoted by the correspondingcoding vectors(1, 1, 1), (3, 1, 2), and(1, 2, 3). Assume that(1, 1, 1) coded
packet is received byC, and the(3, 1, 2) and(1, 2, 3) packets are received byA and by{A,B}, respectively. The
downstream FNsA, B, andC have received a sufficient amount of innovative packets. Collectively, the three FNs
can now act as the new source and the original sourceS should stop transmission. However, it is a non-trivial task
for S to know whether its downstream FNs have accumulated a sufficient amount of innovative packets.

The same challenge exists for the intermediate FNA. After transmitting a useful coded packet(4, 3, 5), which
is received by FNC, A has to decide whether it should continue or stop sending coded packets. Furthermore,A
has limited knowledge about the reception status of the three packets transmitted byS (e.g.,A may not know that
C has received(1, 1, 1) from S), which makes the decision of whether to stop transmission even harder forA than
for the sourceS.

Note that overhearing, a common way of acknowledging non-coded wireless traffic, does not suit network
coded traffic. Consider the same example in Figure 1.C generates a coded packetc1(1, 1, 1) + c2(4, 3, 5). If
the randomly chosen coefficients happen to bec1 = c2 = 1, then a(5, 4, 6) packet is sent. SupposeA overhears
this new packet. IfA were aware of the reception of the(1, 1, 1) packet byC and also knew the coefficients
c1 = c2 = 1, thenA could deduce that the previously transmitted(4, 3, 5) packet was received successfully since
((5, 4, 6) − 1 · (1, 1, 1))/1 = (4, 3, 5). Nonetheless, in practice, neither piece of the information is available toA,
it is thus impossible forA to know whether the(4, 3, 5) packet is received or not by only overhearing the(5, 4, 6)
packet sent byC.

One way to address the challenge is to combine individual packet overhearing, as in non-coding based proto-
cols, with acredit system, based on coded transmissions, and have the forwarders perform detailed bookkeeping
to guarantee credit conservation in the system. This approach is taken in MC2 [9]. Although theoretically op-
timal [20], this approach is quite complex in practice. In addition, like every approach that relies on individual
packet overhearing, it requires a reliable control plane. In typical WMN environments with high packet loss rates
or contention [1], this approach can cause excessive signaling overhead and retransmissions, which can signifi-

2

cantly limit the performance.

1.2 Loss rate based approaches

Since theoretically optimal solutions are hard to implement in practice, existing NC-based OR protocols use
heuristics based on link loss rates, to address the challenge in a simple manner, and to minimize the control
overhead.

MORE [5], the first NC-based OR protocol, employs an offline approach which requires no coordination among
FNs. In MORE, the source calculates and assigns atransmission creditto each FN, using the ETX metric [6], com-
puted from loss rate measurements. Receptions from upstream nodes are then used to trigger new transmissions at
the FNs, with precomputed relative frequencies using the transmission credits. Since the ETX metric expresses the
expectedbehavior, the approach used in MORE cannot guarantee that the destination will always receive enough
packets, due to the randomness of the wireless channel. Hence, the source in MORE keeps transmitting packets
from the same batch until it receives an ACK from the destination, unnecessarily increasing interference.

Many other works that improve MORE also use offline measured loss rates as a basic component in their
proposed solutions (e.g., [24, 23, 15]).

The drawback of all these approaches is that performance heavily depends on the accuracy and freshness of
the loss rate measurements. Loss rate estimates are obtained through periodic probing and are propagated from
all nodes to the source. Apparently, the higher the probing frequency, the higher the accuracy, but also the higher
the overhead. As a recent study [4] showed, even low-rate control overhead in non-forwarding links can have a
multiplicative throughput degradation on data-carrying links.

To reduce this overhead, the authors of MORE collect the lossrates and calculate the credits only in the be-
ginning of each experiment. In practice, this suggests thatloss rate measurements should be performed rather
infrequently. studies [7, 14] have shown that,although link metrics remain relatively stable for long intervals in
a quiet network, they are very sensitive to background traffic. For example, in [7], the authors observe that 100
ping packets (one per second) between two nodes in a 14-node testbed caused an increase of 200% or more to the
ETT [8] metric of around 10% of the links.1 Even worse, a 1-min TCP transfer between two nodes in the same
network caused an increase of more than 300% to the ETT metricof 55% of the links.

In summary, these approaches suffer from difficulties in accurately estimating loss rates. Overestimated loss
rates cause redundant transmissions, which waste wirelessbandwidth. On the other hand, underestimated loss
rates may have an even worse impact, since nodes may not transmit enough packets to allow the destination to
decode a batch. This motivates the need for a new approach,obliviousto loss rates.

1.3 Our approach – Cumulative Coded Acknowledgments

In this paper, we present a novel approach to NC-based OR and propose CCACK, a new efficient NC-based OR
protocol. Unlike existing protocols, FNs in CCACK decide how many packets to transmit in an online fashion,
and this decision is completely oblivious to link loss rates.2 This is achieved through a novelCumulativeCoded
ACK nowledgment scheme that allows nodes to acknowledge network coded traffic to their upstream nodes in a
simple and efficient way, with practicallyzero overhead. In other words, unlike existing NC-based OR proto-
cols which use NC to avoid sending feedback, CCACKencodesfeedback to exploit its benefits while hiding its
overhead. Feedback in CCACK is not required strictly on a per-packet basis; this makes the protocol resilient to
individual packet loss and significantly reduces its complexity, compared to [9].

1The ETT metric estimates the quality of a link taking into account both the loss rate (through the ETX metric) and the link bandwidth.
2By “oblivious to link loss rates” we mean here that loss ratesare not taken into account in determining how many packets each FN

should transmit. We still use MORE’s loss rate based offline algorithm in CCACK to build the FN belt, for a fair comparison between the

two protocols. We note though that the coded feedback mechanism in CCACK is orthogonal to the belt construction.

3

(a) Uncoded Feedback (b) Coded Feedback

Figure 2. Different types of feedback for network-coded tra ffic.

Take the scenario in Figure 1 as a continuing example. One naive approach to ensure thatS (resp.A) knows
when to stop transmission is through the use ofreception reports, for which each node broadcastsall the basis
vectorsof the received linear space to its upstream nodes, as illustrated in Figure 2(a).3

An obvious drawback of this approach is the size of the feedback messages. For practical network coding with
symbol sizeGF(28) and batch size 32, each coding vector contains 32 bytes. To convey a space of dimensionκ ≫
1 thus requiresκ 32-byte vectors, which is too large to piggyback to normal forward traffic. The unreliability of the
wireless channel further exacerbates the problem as theκ × 32-byte feedback messages need to be retransmitted
several times until they are overheard by all the upstream nodes.

In contrast, in CCACK each node usesa single coded feedback vectorto represent the entire space, which
may consist ofκ ≫ 1 basis vectors. In the broadest sense, the three coded acknowledgment vectorszA to
zC in Figure 2(b) serve as a hash for their corresponding spaces. As will be explained in Section 3, we have
devised a simple mechanism that successfullycompresses(most of) the space information into a single vector,
say zA for nodeA, while allowing upstream nodes toextract the original space fromzA without exchanging
any additional control information. Each single vectorzA can be easily piggybacked to the forward data traffic.
This compressed/coded acknowledgment is critical to the efficiency since in CCACK overhearing any of the data
packets ofA with piggybacked coded ACK will convey to the upstream nodesthe entire space (or most of the
space) ofA. This thus drastically reduces the need of retransmitting feedback information over the unreliable
wireless channel.

In addition to efficiently solving the challenge of how many packets each FN should transmit, the cumulative
coded acknowledgment scheme in CCACK enables us to develop an efficient rate control algorithm. In contrast,
MORE has no explicit rate control mechanism and its performance degrades as the number of flows in the network
increases [5, 20, 24, 23].

To evaluate CCACK, we first compare its performance against MORE, using extensive realistic simulations.
Our simulations use a realistic physical model, with randomsignal variations due to fading, take into account
the additional packet header overhead introduced by the useof NC and OR, and are conducted over a variety
of network topologies. Our results show that CCACK improvesboth throughput and fairness over MORE, by
27-45% and 5.8-8.8%, respectively, on average, with different number of flows. For some challenged flows which
completely starve under MORE, CCACK increases throughput by up to 21x and fairness by up to 124%. In
addition, the coding and memory overheads of CCACK are comparable to those of MORE, making it easily
deployable on commodity hardware.

To demonstrate this, we present an application layer implementation of CCACK and MORE on Linux and
their performance evaluation on a 22-node 802.11 WMN testbed deployed in two academic buildings at Purdue
University. Although the small size of our testbed along with the limitations of our implementation limit the
potential gains, our testbed results show that CCACK improves both throughput and fairness, by up to 3.2x and
83%, respectively, with average improvements of 11-36% and5.7-8.3%, respectively, for different numbers of

3We sometimes refer to the linear space spanned by the received vectors as theknowledge space.

4

flows, validating the benefits of our approach.
In summary, we make the following contributions:

• We identify the main challenge present in the newly emerged class of NC-based OR protocols:How many
coded packets should each forwarder transmit?We discuss the inefficiencies of existing loss-based ap-
proaches to addressing this challenge and show, through oursimulation and testbed evaluations the severe
impact such approaches can have on the performance of NC-based OR protocols.

• We propose CCACK, a new efficient NC-based OR protocol. Unlike existing protocols, FNs in CCACK
decide how many packets to transmit in an online fashion, andthis decision is completely oblivious to link
loss rates. Central to the design of CCACK is a novel Cumulative Coded ACKnowledgment scheme that
allows nodes to acknowledge network coded traffic to their upstream nodes in a simple and efficient way,
with practically zero overhead. In addition to efficiently solving the challenge of how many packets each
FN should transmit, the cumulative coded acknowledgment scheme in CCACK enables us to develop an
efficient rate control algorithm.

• CCACK brings a shift to the design paradigm of NC-based OR protocols. Existing NC-based OR protocols
have identified feedback overhead as a main cause for performance degradation of practical wireless routing
protocols and used NC to eliminate the need for feedback exchange, resorting to offline loss-based heuris-
tics. On the contrary, CCACKencodesfeedback to exploit its benefits and avoid the drawbacks of offline
heuristics (e.g., stale information), and at the same time to hide its overhead.

• We present extensive simulations with a realistic physicalmodel showing that CCACK offers significant
throughput and fairness improvements over the state-of-the-art MORE. We identify the reasons for these
benefits and the scenarios mostly benefited from CCACK, and discuss the relationship between these two
performance metrics. We quantify the header, memory, and coding overheads of CCACK, and show that
they are comparable to those of MORE, making CCACK easily deployable on commodity hardware.

• We present an application-layer implementation of CCACK and MORE and their evaluation on a 22-node
802.11 WMN testbed deployed in two academic buildings at Purdue University. Our testbed experiments
confirm the simulation findings.

The remaining of the paper is organized as follows. In Section 2, we introduce the basic principles of coded
feedback through a simple existing coded feedback scheme. We identify two problems with this scheme which
motivate the design of CCACK, presented in Section 3. Section 4 evaluates the performance of CCACK and
MORE through extensive simulations and Section 5 describesthe implementation and evaluation of CCACK and
MORE on a wireless testbed. Finally, Section 6 concludes thepaper.

2 Existing Coded Feedback Scheme

Coded feedback has been used in the past in a different context; in [18], a null-space-based (NSB) coded
feedback scheme is used to enhance reliability of an NC-based multicast protocol for multimedia applications in
mobile ad hoc networks. In this section, we review this scheme and identify two problems when trying to apply it
to reliable unicast OR: the collective space problem and thefalse positive problem. These two problems motivate
the need for a new cumulative coded feedback scheme which is amajor component of CCACK.

Take Figure 3(a) for example. A batch of 3 packets are coded together and nodesA to C need to decode all
three packets. LetBv denote the buffer containing the innovative coding vectorsreceived byA (which contains
two vectors(1, 2, 2) and(1, 1, 1) in Figure 3(a)).

5

(a) NSB Feedback for unreliable multi-

cast.

(b) NSB Feedback for reliable unicast

OR.

(c) The false positive error of the NSB

feedback.

Figure 3. Null-Space-Based (NSB) feedback for unreliable m ulticast, for reliable unicast OR, and the

corresponding false positive event.

SinceA has received fewer than 3 innovative packets, it informs itsneighbor nodes that it needs more packets
by appending to each coded packet a vectorzA satisfying

zA · v = 0, ∀v ∈ Bv (1)

Namely, the inner product betweenzA andv ∈ Bv is zero. There may be multiple choices ofzA that satisfy (1)
(e.g., in Figure 3(a),zA can be any vector of the form(0, y,−y)). zA is then chosenuniformly randomlyamong
all valid vectors satisfying (1). LetSA = 〈v : v ∈ Bv〉 denote the linear space spanned by vectors inBv. One can
easily show that:

Lemma 1 With the above random construction ofzA, any vectorv′ ∈ SA must satisfyzA · v′ = 0. Moreover, for

any vectorv′′ /∈ SA we haveprob(zA · v′′ = 0) = 1

28 assuming theGF(28) finite field is used.

From the above lemma, nodeB (resp.C) simply needs to compute the inner product of its own innovative vectors
with zA. In Fig. 3(a), suppose thatzA is chosen as(0, 1,−1). Since(0, 1,−1) · (1, 2, 3) = −1 6= 0, nodeB must
contain innovative packet forA. B can broadcast its innovative packet and onceA receives it,A will be able to
decode the entire batch.

2.1 Problems of the NSB Coded Feedback for Unicast OR

The goal of using coded feedback in the context of unreliablemulticast is different from in the context of
reliable unicast OR. In the former, coded feedback is used bya node to inform neighbors thatthey have to send
more packets. In contrast, in the latter, we want to use coded feedback so that nodes can inform their upstream
nodes thatthey should not send any more packets. This fundamental difference causes two major problems when
trying to apply the above NSB coded feedback scheme to reliable unicast OR protocols, like MORE.
Problem 1: The collective space problem.Take Figure 1 for example. NodesB andC would like to convey
their space information toA so thatA can stop packet transmission. Based on the NSB concept,B andC send
zB = (1, 1,−1) andzC = (−2, 1, 1), respectively, which are orthogonal to their local innovative vectors (see
Figure 3(b)). The idea is to hope that, upon the reception ofzB andzC , A will know that the knowledge spaces of
B andC havecollectivelycovered the local knowledge space ofA and thus will stop transmission.

Nonetheless, whenA checks the inner product of the coded feedback and its own innovative packets, we have

zB · (3, 1, 2) = 2 6= 0 andzC · (3, 1, 2) = −3 6= 0.

ThereforeA thinks that the coding vector(3, 1, 2) is innovative to both its downstream nodes and thus continues
transmission even when collectivelyB andC already have enough information. This misjudgment is caused by

6

that the NSB coded feedback does not convey the collective space of all downstream nodes but only the space
relationship between the individual pairs (e.g.,A vs. B andA vs. C). Therefore, if we apply the NSB coded
feedback as in [18] to unicast OR,A will not stop transmission until one of its downstream nodeshas a local
knowledge space that completely covers the local knowledgespace ofA. This defeats the purpose of OR.
Problem 2: Non-negligible false-positive probability. Take Figure 3(c) for example.A wants to send two
packets toB and a network coded packet has been received byB already. To convey its local knowledge space
back toA, B sends an orthogonal vectorzB satisfying (1), which is randomly chosen to be any vector of the
form zB = (4x, 4y,−2x − 3y). Suppose thatB chooseszB = (4,−8, 4) andA receives suchzB . SincezB is
orthogonal to all the innovative vectors ofA, A will wrongfully conclude that the knowledge space ofB covers
the local knowledge space ofA. A thus attempts no further transmission.Although Lemma 1 guarantees that
this false positive event happens only with probability1

28 , its impact to the system performance is significant. The
reason is that in a multi-hop transmission, any single hop that experiences this false positive event will cause an
upstream node to stop transmission prematurely. The communication chain is thus broken and the destination may
not be able to receive enough independent packets for decoding. Although one can fix this false-positive issue
by retransmitting anotherzB vector, the necessary timer management for the unreliable feedback channel and the
additional interference caused by retransmission easily negate the benefits of sending coded feedback.

Note that the false positive event has little impact in a multicast scenario. More explicitly, even ifA mis-
interprets thezB vector, the downstream nodeB knows that it has not received all three packets of the current
batch. Therefore, it will simply keep appending feedback vectors in the code packets it transmits in order to
request more information fromA (or from any other neighbor nodes). In contrast, the intermediate nodeB in
Fig. 3(c) does not need to decode/receive all three packets.The decision thatA stops transmission can now be
caused either by a false-positive event or by the fact thatB indeed has received enough packets (although not all
three packets).B thus faces the following dilemma: whether/when to retransmit anotherzB that causes additional
interference; or to stay quiet but risk unsuccessful batch decoding.

3 CCACK design

In this section, we present the design of CCACK. We begin withan overview of the protocol and then we
describe its two main components: construction of a novel cumulative coded feedback scheme which addresses
the two problems we discussed in Section 2.1, and a rate control algorithm, built upon this coded feedback scheme.

3.1 CCACK Overview

The source and the intermediate FNs in CCACK use intra-flow random linear NC. We selected a batch size of
N = 32 packets and the random coefficients for each linear combination are selected from a Galois Field (GF) of
size28, same as in [5, 9, 15].

Nodes in CCACK maintain per flow state, which includes thecurrent batchof the flow, acredit counter(Sec-
tion 3.4), and three buffers: a packet bufferBv, and two coding vector buffersBu andBw. With the exception
of Bu andBw, all the other information is also maintained in MORE. The size ofBv is equal to the batch size
N , since the number of innovative packets is bounded by the batch size. The sizeBu andBw can be larger, since
these buffers only store 32-byte coding vectors and not whole packets. In our implementation we used a size equal
to 5 × N . Similar to MORE, this information is soft-state and it is flushed if no packet for a flow is received for 5
minutes.

The source and the FNs broadcast randomly mixed packets and store the coding vectors of these packets in
Bw. Whenever a node overhears a packet, the node first checks whether the packet is innovative by comparing
the coding vector to those of the existing packets inBv. If innovative, the newly received packet is stored inBv,
similarly to MORE and other existing NC-based OR protocols.Regardless being innovative or not, the node also

7

checks whether the newly received packet is from an upstreamnode. If yes, then it stores the forward coding
vector inBu.

Each forward coding vector inBu andBw can be marked asH (heard by a downstream node) or¬H (not
heard). A coding vector is marked as¬H when initially is inserted in either of the two buffers, since the node has
no information at that time whether any downstream node has heard the packet or not.

Similar to [18], nodes in CCACK embed an additionalACK vectorin the header of each coded data packet of the
forward traffic to report a subset of the packets (or coding vectors) they have received (heard) in the past from their
upstream nodes. For the following, we use the termsforward coding vectorsandACK coding vectorsto denote
the coding coefficients used to encode the payload of the packets and the feedback vectors used to acknowledge
the space, respectively. The construction of the ACK codingvector using the vectors stored inBu is described
in Section 3.3. Nodes mark forward coding vectors asH, using the inner product of these vectors and the ACK
coding vectors they receive from downstream nodes, as we explain in Section 3.3.

The destination periodically broadcasts coded feedback toits upstream nodes in the form of ACK vectors
(without any payload). This is necessary to inform its upstream nodes whether they should temporarily stop
transmitting, since the destination sends no data packets.Once it receivesN innovative packets for a batch, it
decodes the batch to obtain theN original packets. It then sends an end-to-end ACK back to thesource along the
shortest ETX path in a reliable manner.4

3.2 Solving the collective-space problem

In contrast to the NSB coded feedback scheme in [18], nodes inCCACK construct the ACK coding vectors
usingall the received forward coding vectors stored inBu, and not only the innovative vectors stored inBv. Also,
when an upstream nodeA overhears a packet from a downstream node, it uses the ACK coding vector of that
packet to decide whether any of the coding vectors inBu∪Bw, instead ofBv, have been heard by the downstream
node.

Nodes keep checking the rank of theBu andBw vectors marked asH. When this rank becomes equal to the
rank of innovative packets inBv for a nodeA, A stops transmitting either temporarily, until it receives another
innovative packet, or permanently if the rank of theBv vectors is already equal toN . In both cases, the downstream
nodes have received a sufficient number of packets that coverthe innovative packets ofA from the knowledge space
perspective.

Focusing onBu andBw vectors instead ofBv, this new structure solves the collective-space problem ofthe
NSB coded feedback. Continue our example in Figure 3(b). FornodeA, Bu contains the received coding vectors
(1, 2, 3) and(3, 1, 2) whileBw contains the transmitted vector(4, 3, 5). Suppose we reuse the NSB coded feedback
for nodesB andC. Then by checking inner products withzB and zC , A knows that the(1, 2, 3) ∈ Bu and
(4, 3, 5) ∈ Bw have been received. Since the rank of(1, 2, 3) and(4, 3, 5) is the same as the rank ofBv vectors,
A stops transmission.

3.3 Solving the false positive problem

We now describe our new ACK design that drastically reduces the false-positive probability from1

28 to
(

1

28

)M

for any integerM ≥ 1.
Each node maintainsM differentN × N hash matricesH1 to HM whereN = 32 is the batch size and each

entry of the matrix is randomly chosen fromGF (28). All nodes in the network are aware of theH1 to HM

matrices of the other nodes. This is achievable by using the ID of a node as a seed to generate theH1 to HM

4In our current implementation, similar to MORE, the source moves to batchi + 1 only when it receives the end-to-end ACK from the

destination for batchi. As [15] showed, a better approach is for the source to move tobatchi + 1 immediately after it stops transmitting

packets for batchi. In the future we plan to incorporate this feature in CCACK.

8

matrices. We assume that all vectors are row vectors and we use the transposeuT to represent a column vector
(constructed from the row vectoru).

To improve the efficiency of our feedback mechanism, we associate ausage count with every vector inBu.
When a vector is placed inBu, its usage count is set to 0. Every time this vector is selected in the feedback
construction algorithm, itsusage count is incremented by 1. The ACK vector is always constructed using those
vectors inBu with the lowest counts. This will reduce the probability that the same vectors are repeatedly ac-
knowledged many times.

Nodes construct the ACK vectors using the following algorithm:

§ CONSTRUCT THEACK VECTOR

1: Start from a0 × N matrix ∆.
2: while The number of rows of∆ ≤ N − 1 − M do
3: Choose theu with the smallestusage count from Bu. If more than one suchu exist, choose one randomly.
4: for j = 1 to M do
5: if the1 × N row vectoruHj is linearly independent to the row space of∆ then
6: Add uHj to ∆.
7: Perform row-based Gaussian elimination to keep∆ in a row-echelon form.5

8: end if
9: end for

10: Increment theusage count of u by 1.
11: end while
12: Choose randomly the coding coefficientsc1 to cN such that the following matrix equation is satisfied:

∆(c1, · · · , cN)T = (0, · · · , 0)T.

Remark 1: We also require that the randomly chosen coefficients c1 to cN are not all zero.
Remark 2: By Line 3 there will be at least1 degree of freedom when solving the above equations. Since∆ is
in the row-echelon form, it is easy to choosec1 to cN .

13: Use the vector(c1, · · · , cN) as the ACK vector.

When a node A overhears a packet with an ACK vectorz from a downstream node, it uses again the inner
product to check all its vectors inBu andBw and determine whether any of them has been heard by the downstream
node. More explicitly, a vectoru ∈ Bu (or Bw) is markedH if and only if u passesall the followingM different
“H tests” (one for eachHj):

∀j = 1, · · · , M, uHjz
T = 0, (2)

whereH1 to HM are the hash matrices of the downstream node of interest.
Remark: In our practical implementation, instead of choosing completely random hash matricesH1 to HM

(each withN2 random elements), we simply chooseH1 to HM as “random diagonal matrices”, with theN
diagonal elements for eachHj randomly chosen from1 to 255 (excluding zero) and all other elements being zero.
This simplification improves the efficiency as the matrix multiplication uHj can be performed in linear instead of
N2 time.

We now quantify the false positive probability (passing allM tests simultaneously) with this new coded feed-
back scheme.

Proposition 1 Consider an upstream/downstream node pairAU andAD, andAU receives an ACK vectorz0 from

AD. The hash matricesH1 to HM of nodeAD are chosen uniformly randomly. For anyw vector inBu ∪ Bw of

5Since∆ is always of row-echelon form, it is easy to check whether thenew vector is linearly independent to the row space of∆.

9

the upstream nodeAU , if suchw is in the space of theu vectors selected by the downstream nodeAD, then it is

guaranteed that suchw vector will pass allM tests in(2). If suchw is not in the space of the selectedu vectors,

then the false-positive probability (passing allM tests) is
(

1

28

)M
.

Proof: Let SB denote the linear space spanned from theu vectors selected byAD. If w in Bu ∪ Bw of AU is in
SB, thenw =

∑

i αiui is the linear combination of the selectedu vectors (indexed asui). Since by construction
uiHjz

T
0

= 0 for all selectedui, we havewHjz
T
0

=
∑

i αiuiHjz
T
0

= 0. The proof is complete.
Suppose thatw in Bu ∪ Bw of AU is not inSB . Conditioning on the non-zeroz0 vector, for anyj theHjz

T
0

vector must be randomly distributed over the null space ofSB , sinceuiHjz
T
0

= 0 for all selectedui vectors
and sinceHj is chosen randomly. Moreover, conditioning on the non-zeroz0, H1z

T
0

to HMzT
0

are independently
distributed over the null space ofSB . As a result, even though only a single vectorz0 is transmitted, the CCACK
scheme has the same effect of using the NSB coded feedbackM times, sending outM independently randomly
selected vectors (H1z

T
0

to HMzT
0
) from the null space ofSB . By Lemma 1, the overall false-positive event is when

all M tests return false positive. The overall false positive probability becomes
(

1

28

)M
. The proof is complete.

TheM value represents a tradeoff between how many vectors one canacknowledge32

M
and the false-positive

probability (2−8)M . Sinceany false alarm event for any packet over any link will trigger the land-sliding cost of
breaking the communication chain, we observe in our experiments that anyM ≤ 3 will severely jeopardize the
reliability of the CCACK. In our implementation we thus chooseM = 4, which gives a false positive probability
of 2.23 × 10−10 that is necessary for the effectiveness of CCACK.

It is worth noting that a naive way of avoiding false-positive events is to increase the underlying finite field
sizeGF(2b), which is not viable for WMNs. One reason is that to achieve the level of false-positive probability
needed in our CCACK scheme (M = 4), we needb = 32, which uses 4 bytes to represent a single coding
symbol. The size of each forward coding vector and each codedfeedback vector thus grows from32 × 1 bytes
to 32 × 4 bytes, which substantially increases the overhead. An evenbigger challenge is that each addition and
multiplication coding operation now operate onGF(232). A table look-up method has to have232 × 232 4-byte
entries, which takes prohibitively 4 million terabytes to store. Since table look-up is impossible, one thus has
to use online polynomial-based computation each time a coding operation needs to be performed, which is far
beyond the capability of today’s silicon technology.

3.4 Rate control

The cumulative coded feedback scheme in CCACK helps nodes todetermine when they should stop transmitting
packets for a given batch, but it does not tell anything abouthow fastnodes should transmit before they stop.
Unlike in MORE, in CCACK we cannot use receptions from upstream to trigger new transmissions, since the goal
is exactly to stop the upstream nodes, when the downstream nodes have sufficiently enough packets. In addition,
we want to apply rate control to the source as well, and not only to the FNs.

The rate control algorithm in CCACK uses a simple credit scheme, which is oblivious to loss rates but aware of
the existence of other flows in the neighborhood, and leverages CCACK’s cumulative coded acknowledgments.

For each flowf at a node, we define the “differential backlog”6 as:

∆Qf = dim(Bf
v) − dim(Bf

H) (3)

6Our solution is inspired by the theoretical backpressure based rate control algorithms [21]. The difference is that, instead of queue

lengths, we use innovative coded packets to define acumulative differential backlogfor flow f at every node with respect to all its

downstream nodes for that flow.

10

whereBf
H is the set of vectors inBf

u ∪ Bf
w marked asH, and dim(S) denotes the number of linearly independent

packets in the setS. Note thatdim(Bf
H) ≤ dim(Bf

v). ∆Qf is the difference between the number of innovative
packets at a given node and the cumulative number of innovative packets at its downstream FNs for flowf . As we
saw in Section 3.2, when∆Qf = 0, i.e.,dim(Bf

v) = dim(Bf
H), the node stops transmitting packets for flowf .

Note that for the destination of flowf , ∆Qf = 0.
We also define the relative differential backlog∆Qf

rel for each flowf as:

∆Qf
rel =

∆Qf

∆Qf + ∆QN

(4)

where,∆QN is the total differential backlog of all the neighbor nodes for all flows, calculated as follows. Every
time a nodenj broadcasts a coded data packet, it includes in the packet header its current total differential backlog
∆Qtot

nj
of all flows crossing that node. All nodes that hear this packet update their∆QN as an exponential moving

average:

∆QN = 0.5 × ∆QN + 0.5 × ∆Qtot
nj

(5)

Every node in CCACK (including the source and the destination) maintains a credit counter for each flow. Every
time there is a transmission opportunity for a node A, one flowf is selected in a round robin fashion, among those
flows with ∆Qf > 0, and the credit counter of that flow is incremented byα × ∆Qf

rel + β. If the counter is
positive, the node transmits one coded packet for flowf and decrements the counter by one, otherwise it selects
the next flow. The credit incrementα × ∆Qf

rel + β is larger for flows with large “backpressure”, thus packets of
such flows will be transmitted more frequently. For our implementation we selectedα = 5/6 andβ = 1/6. If
∆Qf

rel = 1, thenα × ∆Qf
rel + β = 1 and the credit counter will always remain equal to 1, effectively allowing

the node to always transmit.

4 Evaluation

4.1 Methodology

We evaluated the performance of CCACK and compared it against MORE using extensive simulations. We
used the Glomosim simulator [22], a widely used wireless network simulator with a detailed and accurate physical
signal propagation model. Glomosim simulations take into account the packet header overhead introduced by
each layer of the networking stack, and also the additional overhead introduced by MORE or CCACK. For the
implementation of MORE, we followed the details in [5].

We simulated a network of 50 static nodes placed randomly in a1000m × 1000m area. The average radio
propagation range was 250m, the average sensing range was 460m, and the channel capacity was 2Mbps. The
TwoRaypropagation model was used and combined with the Rayleigh fading model to make the simulations
realistic. Because of fading, transmission and sensing range are not fixed but vary significantly around their
average values.

We simulated each protocol in 9 different randomly generated topologies, i.e., placement of the 50 nodes. We
varied the number of concurrent flows from 1 up to 4. For a givennumber of flows, we repeated the simulation
10 times for each topology, selecting randomly each time a different set of source-destination pairs, i.e., we had
a total of 90 different scenarios for a given number of flows. In each scenario, every source sent a 12MB file,
consisting of 1500-byte packets.

Following the methodology in [5, 3], we implemented an ETX measurement module in Glomosim which was
run for 10 minutes prior to the file transfer for each scenarioto compute pairwise delivery probabilities. There was
no overhead due to loss rate measurements during the file transfer.

11

(a) CDF of throughputs achieved with MORE and

CCACK.

(b) CDF of relative throughput improvement of

CCACK over MORE.

Figure 4. Throughput comparison between CCACK and MORE – sin gle flow.

It is generally known that the full benefit of OR over traditional routing is exposed when the destination is
several hops away from the source [5]; in those cases, OR reduces the overhead of retransmissions incurred by
high loss rates and increased self-interference. Hence, for the single-flow experiment, among the 90 flows we
simulated, we show the results of the 65 flows for which the destination was not within the transmission range
of the source (with ETX shortest paths of 3-9 hops). For the evaluation with multiple flows, we kept scenarios
with flows of shorter paths, when those flows interfered with other flows. On the other hand, we do not show the
results for scenarios where the multiple flows were out of interference range of each other, since those scenarios
are equivalent to the single-flow case. We were left with 68 scenarios with 2 flows, and 69 scenarios with 3 and 4
flows.

4.2 Single flow

We begin our evaluation with a single flow. Figure 4(a) plots the Cumulative Distribution Function (CDF) of the
throughputs of the 65 flows with MORE and CCACK. We observe that CCACK outperforms MORE; the median
throughput with CCACK and MORE is 276Kbps and 205Kbps, respectively.

Figure 4(b) plots the CDF of the relative throughput improvement of CCACK over MORE for all 65 flows,

defined as
T

f
CCACK

−T
f
MORE

T
f
MORE

× 100%, whereT f
CCACK , T f

MORE are the throughput of flowf with CCACK and

MORE, respectively. We observe that CCACK achieves a higherthroughput than MORE for 95% of the flows.
The median gain of CCACK over MORE is 34%. However, for some challenged flows with the destination 7-9
hops away from the source, the throughput with CCACK is 2-5x higher than with MORE.
Where does the gain for CCACK come from? Figure 5(a) plots the total number of data transmissions with
CCACK and MORE in each of the 65 scenarios, as well as the predicted number of transmissions in each scenario
using MORE’s offline ETX-based credit calculation algorithm. The 65 scenarios are sorted with respect to the
predicted number of transmissions.

We observe that nodes with MORE perform a higher number of transmissions than the predicted number in
all 65 scenarios. The actual number is often more than twice the predicted number, and in some scenarios up to
6-7x the predicted number. This shows that the credit calculation algorithm based on offline ETX measurements
mispredicts the required number of transmissions even in the absence of background traffic. The cause is self-
interference which changes the loss rates, which in most cases become higher than in a quiet network, where only
probing traffic exists [14]. Moreover, the source in MORE keeps transmitting packets until it receives an ACK
from the destination. With long paths, this may result in a large number of unnecessary transmissions, as the ACK
travels towards the source.

12

(a) Total number of data transmissions per scenario.(b) Total number of data transmissions per node

for one scenario.

Figure 5. Total number of data transmissions with MORE and CC ACK, and predicted number of

transmissions, based on MORE’s credit calculation algorit hm, with a single flow.

In contrast, the number of data transmissions with CCACK is much lower than with MORE in all but 2 sce-
narios. In most scenarios it is close to the predicted number, and in some cases, it is even lower. This shows the
effectiveness of the coded feedback mechanism in CCACK, combined with the online rate control mechanism of
Section 3.4.

Figure 5(b) shows an example (one scenario) of how data transmissions are distributed over the FNs. Nodes are
sorted with respect to their ETX distance to the destination, i.e., node 1 is the source and node 10 is the FN closest
to the destination. With MORE, the source and the FN closest to the source, perform many more transmissions
than the remaining FNs, (2.5-7.6x and 1.4-4.6x, respectively). In contrast, CCACK ensures that these nodes
stop transmitting when the remaining downstream FNs have received enough innovative packets. Overall, with
CCACK, all 10 nodes perform fewer transmissions than with MORE. The savings range from 17% (for node 9)
up to 74% (for the source).

4.3 Multiple flows

We now evaluate CCACK and MORE with multiple concurrent flows. Here, in addition to throughput, we
compare the two protocols in terms of fairness, usingJain’s fairness index(FI) [10]. Jain’s FI is defined as
(
∑

xi)
2/(n ×

∑

x2

i), wherexi is the throughput of flowi andn is the total number of flows. The value of Jain’s
FI is between 0 and 1, with values closer to 1 indicating better fairness.
Throughput Comparison Figures 6(a), 6(b) compare throughput with CCACK and MORE with 2, 3, and 4 flows.
Figure 6(a) plots the average per-flow throughput with the two protocols as a function of the number of flows. We
observe that CCACK outperforms MORE by 27% on average in the 2-flow case, and by 45% on average in the 3-
flow and 4-flow cases. Note that the gain of CCACK is higher witha larger number of flows, when the congestion
level becomes higher causing substantial changes to the ETXvalues. given flow at nodes whose downstream
nodes have collectively received a sufficient number of packets, a large amount of bandwidth is saved which can
be used by the nodes or their neighbors for transmitting packets for other flows. In contrast, the gain of MORE
over traditional routing in [5] drops as the number of concurrent flows increases.

Figure 6(b) plots the CDF of per-flow relative throughput improvement with CCACK over MORE, as defined
in Section 4.2, with 2, 3, and 4 flows. CCACK improves per-flow throughputs for more than 85% of the flows in
all 3 cases (with 2, 3, and 4 flows). The median improvement is 33%, 55%, and 62%, respectively, with 2, 3, and
4 concurrent flows. Similar to the single flow experiments, some starving flows with MORE show a several-fold

13

(a) Average per-flow throughputs (bars) and standard

deviations (lines).

(b) CDF of relative throughput improvement of

CCACK over MORE.

Figure 6. Throughput comparison between CCACK and MORE – mul tiple flows.

(a) Average per scenario FIs (bars) and standard de-

viations (lines).

(b) CDF of relative FI improvement of CCACK

over MORE.

Figure 7. Fairness comparison between CCACK and MORE – multi ple flows.

improvement with CCACK, up to 4.7x, 9.1x, and 21.4x, in the 2-, 3-, and 4-flow cases, respectively.7

Fairness ComparisonFigures 7(a), 7(b) compare fairness with CCACK and MORE in case of 2, 3, and 4 con-
current flows. Figure 7(a) plots the average FI with the two protocols. We observe that the average FI is the same
with the two protocols in the 2-flow case, but is higher with CCACK in the 3-flow, and 4-flow case by 5.8% and
8.8%, respectively.

Figure 7(b) plots the CDF of per-scenario relative FI improvement with CCACK over MORE, defined similarly
to the relative throughput improvement in Section 4.2, with2, 3, and 4 flows. We observe that CCACK improves
fairness in more scenarios as the number of flows in the network increases – in 40% of the 2-flow scenarios, 65%
of the 3-flow scenarios, and 72% of the 4-flow scenarios. Similar to the throughput results, the improvement is
very large for some scenarios: up to 74% with 3 flows, and up to 124% with 4 flows. This shows again that
CCACK helps some challenged flows, which completely starve with MORE. The improvement in fairness with
CCACK is a result of the rate control algorithm, which calculates the transmission credits of the nodes online,
taking into account their differential backlogs. In contrast, in MORE credits are calculated offline for each flow
and are oblivious to the presence of other flows.
Throughput vs. FairnessWe now investigate more closely the relationship between throughput and fairness.
Figure 8(a) shows the scatterplots of the relative total throughput improvement per-scenario vs. the relative FI
improvement per-scenario, in the 2-, 3-, and 4-flow experiments.

7Note that the heavy tails of the 3-flow and 4-flow curves are notshown in Figure 6(b) for better clarity.

14

(a) Scatterplot of relative throughput improvement vs.

relative FI improvement with 2, 3, and 4 flows.

(b) Per-flow throughputs with MORE and

CCACK for the 6 scenarios with the largest FI

decrease under CCACK.

Figure 8. Investigating the relationship between throughp ut and fairness.

We observe that CCACK improves at least one of the two metricsin all but two scenarios (two points in the
3rd quadrant of Figure 8(a)). There are a few points in the 2ndquadrant for all three cases; these are scenarios,
where CCACK improves fairness, at the cost of a small total throughput decrease. The majority of the points for
the 2-flow case are gathered in the 1st and 4th quadrants, i.e., CCACK either improves throughput at the cost of a
(typically) small decrease in fairness, or it improves bothmetrics. The majority of the points are gathered in the
1st quadrant for the 3-flow and 4-flow cases. This shows that asthe number of flows increases, CCACK improves
both throughput and fairness in most scenarios.

We now take focus on a few points in the fourth quadrant in Figure 8(a), corresponding to scenarios where
FI is reduced by more than 20% with CCACK. There are two 2-flow,one 3-flow, and three 4-flow scenarios
(points). Note that all 6 these points correspond to large throughput improvements, from 72% up to 499%. One
may wonder if these improvements are achieved at the cost of compromising the fairness, i.e., throughput of only
one flow increases significantly, causing starvation to the remaining flows.

Figure 8(b) shows that this is not the case. This figure plots the individual per-flow throughputs with MORE
and CCACK for these 6 scenarios. We observe that in all but 2 cases, CCACK improves throughput ofall flows
involved. The reduction in the FI actually comes from the fact that throughput improvement is much higher for
some flows than for some others, and not as a result of starvation of some flows. Take the last scenario (4 flows
(3)) as an example. CCACK improves throughput of the first flow by 11x (from 85Kbps to 978Kbps), but also
improves throughputs of the other 3 flows by 183%, 108%, and 113%.

A closer look at the topology of that scenario revealed an interesting situation. We found that the first flow was
a 1-hop flow, whose FN belt overlapped with the FN belt of the 4-th, 9-hop flow, near the source of the 4th flow.
With MORE, it took a long time for the destination of the 4th flow to decode each batch; during that time the
source as well as every other FN kept transmitting packets for that batch. Since routers in MORE serve flows in a
round robin fashion, they kept switching between the 1st andthe 4th flow. In other words, a short flow was starved
because of a long flow(!), achieving a throughput of only 85Kbps, although there was no need for the routers to
forward packets of the long flow. In contrast, with CCACK, thecoded acknowledgment scheme quickly caused
the source of the 4th flow to stop transmitting packets, once the remaining FNs had enough packets. Hence, the
FNs near the source were able to forward packets only for the 1-hop flow, increasing its throughput to 978Kbps.

4.4 Which flows benefit most from CCACK?

Finally, we examine which flows benefit most from CCACK in single-flow and multi-flow scenarios. Fig-
ures 9(a), 9(b), 9(c), and 9(d) show the scatterplots for theindividual flow throughputs achieved with MORE and

15

(a) Single flow. (b) Two flows.

(c) Three flows. (d) Four flows.

Figure 9. Scatterplots of per-flow throughputs achieved wit h MORE and CCACK with 1, 2, 3, and 4

concurrent flows.

CCACK with 1, 2, 3, and 4 concurrent flows in the network.
Single flowIn Figure 9(a), we observe that the majority of the points in the single-flow case lie between the lines

Y = 1.2X andY = 1.7X, i.e., the throughput gain of CCACK over MORE for a large range of absolute MORE
throughput values (100-350Kbps), is typically 20-70%, independent of the absolute throughput value of MORE.
In other words, when a single flow is present in the network, CCACK benefits equally both low-throughput and
medium-throughput flows. For flows of higher absolute MORE throughput (>350Kbps), the gain of CCACK is
smaller; for these flows, the destination is 3-4 hops away from the source and MORE itself can realize most of
the gains over traditional routing. On the other hand, for a few flows with very long path lengths (>7hops), the
gains are higher than 100% – these are the points on the left oftheY = 2X line in Figure 9(a). For these flows,
throughput with MORE can be as low as 55Kbps; in contrast, with CCACK there is no flow with throughput lower
than 130Kbps.

These high-gain points reveal an additional benefit of CCACK. Recall that with both protocols, the destination
sends an end-to-end ACK to the source after decoding a batch to trigger the beginning of the next batch. In MORE,
this ACK has to compete with coded traffic as it travel towardsthe source, since nodes never stop transmitting.
With long paths, it may take a long time for the ACK to reach thesource, and this can lead to significant throughput
degradation for these flows, as has also been shown in [15]. Incontrast, with CCACK, the ACK can quickly travel
towards the source without any contention if there is no other flow in the network, since all nodes have already
stopped transmitting, thanks to the coded feedback.

Multiple flows In Figures 9(b), 9(c), and 9(d), we observe that, as the number of flows increases, more points
are gathered on the left of theY = 1.7X line; in the 4-flow case, in Figure 9(d), a large fraction of points is

16

Table 1. Coding overhead in CCACK in terms of GF(28) multiplications. Operations marked with (*)

are common in MORE and CCACK.

Operation Avg. Std. Dev.

Packet Transmission

Coded pkt construction (src/FNs)* 48000/27240 0/13128

ACK vector construction 11584 5369

Total (src/FNs) 59584/38824 5369/10021

Packet Reception

Independence check* 326 156

H tests 428 316

Rank ofH pkts inBu ∪ Bw 292 169

Total 1046 416

gathered on the left of they = 2X line. Note that the absolute MORE throughputs for many of these points
are very low; in particular in the 3-flow and 4-flow cases, throughputs with MORE are as low as only 5Kbps; in
contrast, with CCACK, there is only one flow with 41Kbps, and all the remaining flows achieve throughputs higher
than 50Kbps. In other words, many flows starve with MORE, as the number of flows in the network increases, and
CCACK significantly benefits those flows, with the gains beingas high as 21x. In contrast to the single-flow case,
these are not necessarily flows with long routing paths, as wesaw in the example of Figure 8(b).

On the other hand, there is no clear trend for flows of medium tohigh throughput with MORE. The gain of
many of those flows remains between 20% and 70%, as in the single-flow case, since there is no room for further
room for improvement in a congested network. However, in the3- and 4-flow scenarios, we also observe gains
higher than 70% for some flows of medium MORE throughput (200-400Kbps). On the other hand, for many of
those flows, and also for flows of higher MORE throughput, throughput is slightly reduced with CCACK – the
number of points between the linesY = X andY = 0.7X increases with the number of flows. This is because
these flows typically maintain high throughput with MORE by causing starvation to some other flows. CCACK’s
rate control algorithm reduces the throughputs of those flows in favor of the most challenged flows, improving
overall fairness in the corresponding scenarios.

4.5 CCACK’s overhead

Finally, we estimate CCACK’s overhead compared to MORE. Similar to [5], we discuss three types of overhead:
coding, memory, and packet header overhead.
Coding overhead.Unavoidably, CCACK’s coding overhead is higher than MORE’s, since routers have to perform
additional operations both when transmitting and when receiving a packet. However, all the additional CCACK
operations are performed onN -bytevectorsinstead of the wholeK-bytepayload. Therefore, in practical settings
(e.g., withN = 32 andK = 1500), the coding overhead of CCACK is expected to be comparable to that of
MORE.

To verify this, we measured the per-packet cost of the various operations performed upon a packet transmis-
sion/reception averaged over all packets transmitted/received at all nodes in the 90 simulation scenarios of Sec-
tion 4.2. Table 1 provides the average values and the standard deviations. The costs are given in terms ofGF(28)
multiplications, which are the most expensive operations involved in coding/decoding [5].

Construction of an ACK vector in CCACK requires on average 11584 multiplications. The total coding cost in
transmitting a packet (i.e., constructing a coded packet and an ACK vector) in CCACK is only 24% higher than

17

MORE’s, assuming the worst case cost for packet encoding (48000 multiplications). If we use instead the average
packet encoding cost at FNs (27240 multiplications), the total cost of transmitting a packet in CCACK is only
38824 multiplications, i.e., lower than MORE’s encoding cost at the source.8

When receiving a packet, the cost of checking for independence (also in MORE) requires on average only
326 multiplications. The additional operations of performing the Htests (if the received packet comes from
downstream) and maintaining the rank of theH pkts inBu ∪ Bw (if a received packet from downstream passes
all M H tests) require on average only 428 and 292 multiplications,respectively, i.e., their costs are comparable
to the independence check cost. The total cost of packet reception operations in CCACK is only 1.7% of the total
packet transmission cost. Hence, the bottleneck operationin CCACK is preparing a packet for transmission at an
FN with 32 innovative packets inBv.

In [5], the authors found that the bottleneck operation in MORE (packet encoding at the source) takes on average
270µs on a low-end Celeron 800MHz, limiting the maximum achievable throughput with MORE to 44Mbps with
a 1500 byte packet. In CCACK, the cost of the bottleneck operation is 24% higher, so we can expect a maximum
achievable throughput of 35Mbps. Note that this value is still higher than the effective bitrate of current 802.11a/g
WMNs [12].
Memory overhead.Same as in MORE, routers in CCACK maintain an innovative packet bufferBv for each flow,
and also a 64KB look up table for reducing the cost of the GF(28) multiplications [5]. With a packet size of 1500
bytes, the size ofBv is 48KB. The extra overhead in CCACK comes from the two additional buffersBu andBw,
which store, however, only 32-byte vectors, and not whole packets. In our implementation, the total size ofBu

andBv is 2 × 5 × 32 × 32 = 10KB, which is relatively small compared to the size of MORE’s structures.
Header overhead.The N-byte ACK vector and the total differential backlog∆Qtot

nj
are the two fields we add to

the MORE header. The differential backlog per flow is boundedby the batch sizeN . With N = 32, two bytes are
enough to support up to 2048 flows, and the total size of the twofields is equal to 34 bytes. However, in CCACK,
we do not include in the packet header the transmission credits for the FNs, which are required in MORE. This
can potentially make CCACK’s header smaller than MORE’s depending on the number of FNs.

5 Protocol implementation and testbed evaluation

In this section, we describe an implementation of CCACK on a WMN testbed and present experimental results
comparing CCACK and MORE.

5.1 Testbed description

Our testbed, Mesh@Purdue (MAP) [25], currently consists of22 mesh routers (small form factor desktops)
deployed on two floors of two academic buildings at Purdue University. A schematic of the testbed is shown in
Figure 10. Each router has two radios. For this study, we usedone of them: the Atheros 5212 based 802.11a/b/g
wireless radio operating in b ad hoc mode. Each radio is attached to a 2dBi rubber duck omnidirectional antenna
with a low loss pigtail to provide flexibility in antenna placement. Each mesh router runs Mandrake Linux 10.1
(kernel 2.6.8-12) and the open-sourcemadwifidriver [17] is used to enable the wireless cards. IP addresses are
statically assigned. The testbed deployment environment is not wireless-friendly, having floor-to-ceiling office
walls, as well as laboratories with structures that limit the propagation of wireless signals and create multipath
fading.

8Note that the source in CCACK does not have to construct an ACKvector, and hence the cost at the source is the same as in MORE.

18

Figure 10. A schematic of MAP.

5.2 Implementation details

NC-based wireless protocols (e.g., [5, 13]) are typically implemented as a shim between the IP and the MAC
layer, i.e., at layer 2.5. Here, for ease of debugging, deployment, and evaluation, we implemented CCACK
at the application layer, using broadcast sockets. For a fair comparison, we also implemented MORE at the
application layer, following all the details in [5]. We notethat such an implementation unavoidably results in
some performance degradation for both protocols, comparedto an implementation closer to the MAC layer, from
crossing the kernel-user boundary. Actually, the degradation is larger for CCACK because its credit mechanism is
closely coupled with the MAC layer, as we explain later in this section.

Our implementation handles only synthetic traffic, i.e. data packets are generated within the MORE or CCACK
application, similarly as the implementation in [27], in which packets are generated within Click. The layer-2.5
header of MORE or CCACK is part of the application layer packet payload. The source initially generatesk
random payloads for the current batch and mixes them every time it wants to transmit a packet. It then appends
the MORE or CCACK header and delivers the resulting packet tothe IP layer, which in turn delivers the packet
to the MAC for transmission. Packets are broadcast at the MAClayer, and every neighbor node can hear them.
When a node receives a packet, it extracts and processes the protocol-specific header from the payload; if the node
is an FN (i.e., it finds its ID9 in the FN list in the header), it also uses the coding coefficients (also included in the
header) to check for linear independence. If the received packet is innovative, the rest of the payload is stored for
future mixing (if the node is an FN) or for decoding (if the node is a multicast receiver).

5.2.1 Removing the dependence on the MAC layer

In an ideal implementation at layer 2.5, a node running either MORE or CCACK transmits a packet when (1)the
802.11 MAC allowsand (2)the credit counter is positive. In our application layer implementation, we cannot get
any feedback from the MAC, and hence, we had to modify the transmission policy for the two protocols.

In our implementation of MORE, the application instead delivers packets to the IP when only the second con-
dition holds and there is enough space in the socket buffer; from the IP layer, the packets are delivered to the
wireless driver stored at the card’s queue for transmissionat a later time. Similar to a layer 2.5 implementation,

9To reduce the header overhead, we used 1-byte IDs instead of 4-byte IP addresses.

19

the credit counter is incremented every time a packet is received from an upstream node, and decremented after
every transmission.

Unlike in MORE, the credit counter in CCACK is incremented every time the MAC layer signals a transmis-
sion opportunity. Since the application cannot know when there is a transmission opportunity without access to
the MAC layer, we approximate the number of transmission opportunities via the following heuristic. A node
increments its credit counter every time it hears a data packet transmission from another node by a fraction of1/N
of the actual increment determined by the rate control algorithm, whereN is the number of nodes in the node’s
neighborhood. The intuition behind this is that with a fair MAC layer every node in a neighborhood would roughly
get an equal number of transmission opportunities. To avoidpossible deadlock situations, where every node in a
neighborhood is waiting for another node to transmit, we also use a timeout equal to one data packet transmission
time, after which a node always increments its credit counter.

5.2.2 Dealing with queue sizes

With a layer-2.5 implementation [5] of an NC-based protocol, a pre-coded packet is always available awaiting for
transmission. If another innovative packet is received before the pre-coded packet is transmitted, the pre-coded
packet is updated by multiplying the newly received packet with a random number and adding it to the pre-coded
packet. This approach ensures that every transmitted packet includes information from all the received innovative
packets, including the most recent ones.

In contrast, in our implementation, we have no control over apacket, once it leaves the application layer, and
we cannot update the coded packets buffered at the socket buffer or awaiting for transmission at the card’s queue,
if a new innovative packet is received. This inefficiency canhave a significant impact on the performance of the
two protocols. If a packet is queued either at the IP or at the MAC layer for a long time, it may not contain
information from all the received packets so far. Even worse, the downstream nodes may have already received
enough packets from the current batch, in which case the enqueued packets should not be transmitted at all. This
is true in particular at the MORE sources which may create packets at a rate faster than the (actual) MAC’s
transmission rate; in contrast, in CCACK the sources are also paced down by the rate control algorithm. To avoid
this problem, we limit the socket buffer size to one packet and the card’s queue length to three packets, in order
to minimize the time from the moment a packet is created at theapplication layer till the moment the packet is
actually transmitted.

5.2.3 Dealing with end-to-end ACKs

In both protocols, a destination sends an end-to-end ACK back to the source every time it decodes a batch. It is
critical for the performance of the protocols that these ACKs are propagated to the source in a fast and reliable
way, since, otherwise, the source cannot move to the next batch.

ACK reliability. To provide reliability, the ACKs in MORE areunicastat the MAC layer. In contrast to 802.11
broadcast mode, 802.11 unicast mode provides a reliabilitymechanism through acknowledgments and retransmis-
sions. Unfortunately, there is an upper limit to the number of times a packet can be retransmitted at the MAC layer.
For our Atheros wireless cards, this limit is 11. In our experiments, we found that 11 retransmissions were not
always enough to deliver the packet to the next hop (especially under heavy traffic). Since this particular card does
not allow changing this limit throughiwconfig, we had to implement an additional ACK-retransmission scheme at
the application layer.

Fast ACK propagation. Similar to in [5], ACKs are sent to the source over the shortest ETX path to ensure quick
propagation. In addition, in [5], ACKs are prioritized overdata transmissions. In addition to ensuring fast ACK
propagation, prioritizing ACKs over data packets is critical in our application layer implementation for one more

20

reason. Since we have no control over a packet once it leaves the application layer, we have to guarantee that an
ACK packet will never be dropped if the card’s queue is full ofdata packets.

To implement ACK priority over data packets in our application layer implementation, we leveraged the TOS
bits (“TOS filed”) of the IP header, which can be set usingsetsockoptat the application layer, and the priority
properties in Linux routing [16]. The basic queuing discipline in Linux, pfifo fast, is a three-band first-in, first-
out queue. Each band istxqueuelenpackets long, as configured withifconfig. In our implementation, we set
txqueuelen = 5, as mentioned in 5.2.2. Packets are enqueued in the three bands based on their TOS bits. The
three bands, 0, 1, 2, have different priorities, with band 0 having the highest priority and band 2 having the lowest
priority. Packets from a given band are dequeued only when all higher priority bands are empty. By default, the
TOS bits are set to0000 and packets are enqueued in band 1. For ACKs, we set them to1010. This combination
corresponds to “minimum delay + maximum reliability” (or “mr+md”) and enqueues the ACKs in the highest
priority band 0.

Another factor that caused significant delay to the ACK packets and resulted in very low throughput was the
ARP messages. Since ACKs are unicast at the MAC layer, the sender of an ACK first sends an ARP request before
the actual transmission of the ACK packet, in order to learn the MAC address that corresponds to the IP address
of the next hop. If no reply is received, the ARP request is retransmitted after a timeout (the default is 1 sec). Both
the ARP requests and the ARP replies arebroadcastat the MAC layer. Since 802.11 broadcast implements no
reliability mechanism for broadcast frames, ARP messages are susceptible to loss due to poor channel conditions
or collisions. Indeed, we observed in our experiments that sometimes ARP requests were retransmitted up to
90 times, which resulted in a 1.5 min delay, before the actualACK was sent. To deal with this problem, before
each experiment, we cached permanently at each node on the shortest ETX path from a receiver to the source,
the IP-MAC mapping of the next hop, using theip command, thus completely eliminating the exchange of ARP
messages during the experiment.

In addition to the two protocols, we also implemented an ETX measurement module, same as the one we used
in our simulations. The source code for the two protocols andthe ETX module together is over 7800 lines of C
code.

5.3 Experimental setup

In the implementation of the two protocols we used the same parameters as in our simulation study in Section 4.
In all the experiments, the bitrate of the wireless cards wasset to 2Mbps and the transmission power to 16dBm.
We disabled RTS/CTS for unicast frames as most operational networks do. With these settings, the length of the
shortest ETX paths between different nodes is 1-5 hops in length, and the loss rates of the links vary from 0% to
91%, with an average value of 36%.

We experimented with 20 single-flow scenarios (i.e., randomly selected source-destination pairs), 10 2-flow
scenarios, and 6 3-flow scenarios. For each scenario, we firstran the ETX module to collect the pairwise loss rates
and ETX metric for each link of our testbed, and then we ran thetwo protocols, MORE and CCACK, in sequence.
With both protocols, the source sent a 2.3MB file consisting of 1460-byte packets.

As we have explained in Section 4.1, the gain of CCACK over MORE is more pronounced with flows over long
paths, where the destination is several hops away from the source. Unfortunately, the size of our testbed limited our
choices in flow selection. Hence, in the single-flow experiments described below, we also included flows where
the destination was 2 hops away from the source (unlike in Section 4.2, where the minimum source-destination
distance was 3 hops). Similarly, the small size of the testbed resulted in a large fraction of the nodes being within
sensing range of each other; this prevented us from increasing the total number of flows beyond three, since the
medium became congested, resulting in very poor performance for both protocols.10 These two limitations, along

10As explained in [5], intra-flow NC based protocols cannot increase the capacity of the network and they can only improve throughput

as long as the total load remains below the network capacity.

21

(a) Average per-flow throughputs (bars) and standard

deviations (lines).

(b) CDF of relative throughput improvement of

CCACK over MORE.

(c) Average per scenario FIs (bars) and standard de-

viations (lines).

(d) CDF of relative FI improvement of CCACK

over MORE.

Figure 11. Testbed evaluation.

with the implementation limitations we discussed in Section 5.2.1, are expected to limit the gains of CCACK over
MORE, compared to the simulations results in Section 4.

5.4 Experimental results

The testbed evaluation results are shown in Figures 11(a), 11(b), 11(c), and 11(d).
Figures 11(a), 11(b) compare throughput with CCACK and MOREwith 1, 2, and 3 flows. In Figure 11(a),

we observe that CCACK outperforms MORE by 36% on average in the 1-flow scenarios, by 11% in the 2-flow
scenarios, and by 15% on average in the 3-flow scenarios. Figure 6(b) plots the CDF of per-flow relative throughput
improvement with CCACK over MORE, as defined in Section 4.2, with 1, 2, and 3 flows. CCACK improves per-
flow throughputs for 72% of the flows in the 1-flow scenarios, 55% of the flows in the 2-flow scenarios, and 75%
of the flows in the 3-flow scenarios. The median improvement is18%, 3%, and 28%, respectively, in the 1-, 2-,
and 3-flow scenarios. These gains are lower than the ones observed in the simulation results in Section 4, due to
the limitations we discussed in Section 5.3. In spite of these limitations though, our results still demonstrate the
benefit of CCACK over MORE in the case of challenged flows. We observe that about 20% of the flows in 1-flow
and 2-flow scenarios, and 17% of the flows in the 3-flow scenarios show a several-fold throughput improvement
with CCACK, up to 3x, 2.4x, and 3.2x, respectively.

Figures 11(c), 11(d) compare fairness with CCACK and MORE incase of 2, and 3 concurrent flows. Fig-
ure 11(c) plots the average FI with the two protocols. We observe that the average FI is higher with CCACK in
both the 2-flow, and 3-flow case by 5.7% and 18.9%, respectively. These values are actually higher than the simu-

22

lation results. Due to the small size of the testbed, the network gets more easily congested, even with 2 flows and
CCACK’s backpressure-inspired credit mechanism is very effective in allocating the medium’s bandwidth fairly
among contending flows. Figure 11(d) plots the CDF of per-scenario relative FI improvement with CCACK over
MORE. CCACK improves fairness in 60% of the 2-flow scenarios,and 65% of the 3-flow scenarios and the gains
can be as high as 83% in some challenged scenarios.

6 Conclusion

The use of random linear NC has significantly simplified the design of opportunistic routing (OR) protocols by
removing the need of coordination among forwarding nodes for avoiding duplicate transmissions. However, NC-
based OR protocols face a new challenge:How many coded packets should each forwarder transmit?To avoid
the overhead of feedback exchange, most practical existingNC-based OR protocols compute offline the expected
number of transmissions for each forwarder using heuristics based on periodic measurements of the average link
loss rates and the ETX metric. Although attractive due to their minimal coordination overhead, these approaches
often suffer significant performance degradation in dynamic wireless environments with continuously changing
levels of channel gains, interference, and background traffic.

In this paper, we presented a novel approach to NC-based OR through the design of CCACK, a new efficient
NC-based OR protocol. Instead of avoiding feedback exchange, CCACK encodes feedback messages in addition
to encoding data packets. A novel Cumulative Coded Acknowledgment scheme allows nodes in CCACK to
acknowledge network coded traffic to their upstream nodes ina simple and efficient way, oblivious to loss rates,
and with practically zero overhead. The cumulative coded acknowledgment scheme in CCACK also enables an
efficient credit-based, rate control algorithm. Our experiments on a 22-node 802.11 WMN testbed show that
compared to MORE, a state-of-the-art NC-based OR protocol,CCACK improves both throughput and fairness, by
up to 3.2x and 83%, respectively, with average improvementsof 11-36% and 5.7-8.3%, respectively, for different
numbers of concurrent flows. Our extensive simulations showthat the gains are actually much higher in large
networks, with longer routing paths between sources and destinations.

References

[1] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, and Robert Morris. Link-level measurements from
an 802.11b mesh network. InProc. of ACM SIGCOMM, August 2004.

[2] John Bicket, Daniel Aguayo, Sanjit Biswas, and Robert Morris. Architecture and evaluation of an unplanned
802.11b mesh network. InProc. of ACM MobiCom, 2005.

[3] Sanjit Biswas and Robert Morris. ExOR: Opportunistic multi-hop routing for wireless networks. InProc. of
ACM SIGCOMM, 2005.

[4] Joseph Camp, Vincenzo Mancuso, Omer Gurewitz, and Edward Knightly. A measurement study of multi-
plicative overhead effects in wireless networks. InProc. of IEEE INFOCOM, 2008.

[5] Szymon Chachulski, Michael Jennings, Sachin Katti, andDina Katabi. Trading structure for randomness in
wireless opportunistic routing. InProc. of ACM SIGCOMM, 2007.

[6] Douglas S. J. De Couto, Daniel Aguayo, John C. Bicket, andRobert Morris. A high-throughput path metric
for multi-hop wireless routing. InProc. of ACM MobiCom, 2003.

[7] Saumitra M. Das, Himabindu Pucha, Konstantina Papagiannaki, and Y. Charlie Hu. Studying Wireless
Routing Link Dynamics. InProc. of ACM SIGCOMM/USENIX IMC, 2007.

23

[8] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop wireless mesh networks. InProc. of
ACM MobiCom, September 2004.

[9] Christos Gkantsidis, Wenjun Hu, Peter Key, Bozidar Radunovic, Steluta Gheorghiu, and Pablo Rodriguez.
Multipath code casting for wireless mesh networks. InProc. of ACM CoNEXT, 2007.

[10] Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Hawe.A quantitative measure of fairness and discrim-
ination for resource allocation in shared computer systems. Technical report, Digital Equipment Corporation,
September 1984.

[11] David B. Johnson and David A. Maltz.Dynamic Source Routing in Ad Hoc Wireless Networks. Kluwer
Academic, 1996.

[12] Ad Kamerman and Guido Aben. Net throughput with IEEE 802.11 wireless LANs. InProc. of IEEE WCNC,
2000.

[13] Sachin Katti, Shyamnath Gollakota, and Dina Katabi. Embracing wireless interference: Analog network
coding. InProc. of ACM SIGCOMM, 2007.

[14] Yi Li, Lili Qiu, Yin Zhang, Ratul Mahajan, Zifei Zhong, Gaurav Deshpande, and Eric Rozner. Effects of
interference on throughput of wireless mesh networks: Pathologies and a preliminary solution. InProc. of
HotNets-VI, 2007.

[15] Yunfeng Lin, Baochun Li, and Ben Liang. CodeOR: Opportunistic routing in wireless mesh networks with
segmented network coding. InProc. of IEEE ICNP, 2008.

[16] Linux Advanced Routing and Traffic Control.http://lartc.org//lartc.html/.

[17] madwifi. http://madwifi.org.

[18] Joon-Sang Park, Mario Gerla, Desmond S. Lun, Yunjung Yi, and Muriel Medard. Codecast: a network-
coding-based ad hoc multicast protocol.IEEE Wireless Communications, 13(5), 2006.

[19] Charles E. Perkins and Elizabeth M. Royer. Ad hoc on-demand distance vector routing. InProc. of IEEE
WMCSA, February 1999.

[20] Bozidar Radunovic, Christos Gkantsidis, Peter Key, and Pablo Rodriguez. An optimization framework for
opportunistic multipath routing in wireless mesh networks. In Proc. of IEEE INFOCOM Minisymposium,
2008.

[21] Leandros Tassioulas and Anthony Ephremides. Stability properties of constrained queing systems and
scheduling for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Con-
trol, 37(12), 1992.

[22] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. Glomosim: A library for parallel simulation of large-scale
wireless networks. InProc. of PADS Workshop, May 1998.

[23] Xinyu Zhang and Baochun Li. Dice: a game theoretic framework for wireless multipath network coding. In
Proc. of ACM MobiHoc, 2008.

[24] Xinyu Zhang and Baochun Li. Optimized multipath network coding in lossy wireless networks. InProc. of
IEEE ICDCS, 2008.

24

[25] http://www.engineering.purdue.edu/mesh.

[26] MIT Roofnet. http://www.pdos.lcs.mit.edu/roofnet.

[27] More source code. http://people.csail.mit.edu/szym/more/README.html.

[28] Seattle wireless. http://www.seattlewireless.net.

[29] Bay area wireless users group. http://www.bawug.org.

25

