CCACK: Efficient Network Coding Based Opportunistic Routing Through
Cumulative Coded Acknowledgments

Dimitrios Koutsonikolas
Chih-Chun Wang
Y. Charlie Hu

TR-ECE-09-13
December 16, 2009

School of Electrical and Computer Engineering
1285 Electrical Engineering Building
Purdue University
West Lafayette, IN 47907-1285

Contents

1 Introduction
1.1 The challenge in NC-based OR protocols
1.2 Lossrate based approaches

1.3 Our approach — Cumulative Coded Acknowledgments

2 Existing Coded Feedback Scheme
2.1 Problems of the NSB Coded Feedback for

3 CCACK design
3.1 CCACKOverview

3.2 Solving the collective-space problem
3.3 Solving the false positive problem e

UnicastOR

3.4 Ratecontrol L e e e e e e e e

4 Evaluation
4.1 Methodology
42 Singleflow
4.3 Multipleflows
4.4 Which flows benefit most from CCACK?

45 CCACK'soverhead e e e e,

5 Protocol implementation and testbed evaluation
5.1 Testbed description

5.2 Implementation details e e e

5.2.1 Removing the dependence on the
5.2.2 Dealing with queue sizes
5.2.3 Dealing with end-to-end ACKs . .
5.3 Experimentalsetup
5.4 Experimentalresults

6 Conclusion

MAClayer oo

11
11
12
13
15
17

18
18
19
19
20
20
21
22

23

Abstract

The use of random linear network coding (NC) has signifigasitihplified the design of opportunistic routing
(OR) protocols by removing the need of coordination amongdating nodes for avoiding duplicate transmis-
sions. However, NC-based OR protocols face a new challedge: many coded packets should each forwarder
transmit? To avoid the overhead of feedback exchange, most practiéstirg NC-based OR protocols compute
offline the expected number of transmissions for each fal@rarsing heuristics based on periodic measurements
of the average link loss rates and the ETX metric. Althougtactive due to their minimal coordination over-
head, these approaches may suffer significant performaageadation in dynamic wireless environments with

continuously changing levels of channel gains, interfeegmnd background traffic.

In this paper, we propose CCACK, a new efficient NC-based Ofqnl. CCACK exploits a nov€umulative
CodedACKnowledgment scheme that allows nodes to acknowledge rietwded traffic to their upstream nodes
in a simple way, oblivious to loss rates, and with practigakro overhead. In addition, the cumulative coded
acknowledgment scheme in CCACK enables an efficient ¢rasde, rate control algorithm. Our experiments on
a 22-node 802.11 WMN testbed show that compared to MORE eaddtéthe-art NC-based OR protocol, CCACK
improves both throughput and fairness, by up to 3.2x and 88%pgectively, with average improvements of 11-
36% and 5.7-8.3%, respectively, for different numbers ofcaarent flows. Our extensive simulations show that
the gains are actually much higher in large networks, withger routing paths between sources and destinations.

1 Introduction

Wireless mesh networks (WMNSs) are increasingly being dggadfor providing cheap, low maintenance In-
ternet access (e.g. [26, 29, 28]). A main challenge in WMN® ideal with the poor link quality due to urban
structures and interference, both internal (among flowkénWMN) and external (from other 802.11 networks).
For example, 50% of the operational links in Roofnet [26]dénss rates higher than 30% [1]. Hence, routing
protocol design is critical to the performance and religpibf WMNs.

Traditional routing protocols (e.g., [11, 19, 2]) for miatip wireless networks treat the wireless links as point-
to-point links. First a fixed path is selected from the souecthe destination; then each hop along the chosen path
simply sends data packets to the next hop via 802.11 uni€xtortunistic RoutindOR), as first demonstrated
in the EXOR protocol [3], has recently emerged as a mechafisimproving unicast throughput in WMNs with
lossy links. Instead of first determining the next hop anatbending the packet to it, a node with @Radcasts
the packet so that all neighbor nodes have the chance totlseat assist in forwarding.

In practice, it is not beneficial if all nodes in the networkt@pate in forwarding traffic for a single flow.
Hence, existing OR protocols typically construdiedt of forwarding nodes (FNs) for each flow and only members
of the belt are allowed to forward packets.

OR provides significant throughput gains compared to fi@uh routing, however, it introduces a difficult
challenge. Without any coordination, all members of the &l that hear a packet will attempt to forward it,
creating spurious retransmissions, which waste bandwidih address this challenge, a coordination protocol
needs to run among the nodes, so that they can determine wéckhould forward each packet.

Recently, [5] showed that the userahdom intra-flow network codin@NC) can address this challenge in a very
simple and efficient manner, with minimal coordination. NMC, the source sends random linear combinations
of packets, and each router also randomly mixes packeteady has received before forwarding them. Random

g 435)

=
—
LD [,
[OS)
=2
=]
“L».)
|
1=2] 2
=] %
—| %
—| %
— H

(3.12)| To send @
(L23)] ornotto

@ send?
—

Figure 1. The importance of knowing how many coded packets to transmit.

mixing at each router ensures that with high probabilitfedtdnt nodes that may have heard the same packet can
still transmit linearly independent coded packets.

NC has significantly simplified the design of OR protocols katko substantial throughput gains [5] compared
to non-coding based protocols. However, the use of NC intted a new challengddow many coded packets
should each forwarder transmitPhis challenge, if not efficiently addressed, may preventdéSed OR protocols
from realizing the maximum possible gains.

1.1 The challenge in NC-based OR protocols

We illustrate the main challenge in NC-based OR protocoth tie example shown in Figure 1. This figure
shows a typical scenario of an NC-based OR protocol. Thecsdtihas three downstream FN§ B, andC.
Assume for simplicity thatS has three innovative packels;, X», and X3 to send. Instead of transmitting the
native packets$ transmits three coded packefs + X5+ X3, 3X1 + X2 +2X3, andX; +2X5+3X3 in sequence,
which are denoted by the correspondowgling vectorg1, 1,1), (3, 1,2), and(1, 2, 3). Assume thafl, 1, 1) coded
packet is received bg', and the(3, 1,2) and(1, 2, 3) packets are received by and by{ A, B}, respectively. The
downstream FNgl, B, andC have received a sufficient amount of innovative packetsleCilely, the three FNs
can now act as the new source and the original sofirslkould stop transmission. However, it is a non-trivial task
for S to know whether its downstream FNs have accumulated a srffiaimount of innovative packets.

The same challenge exists for the intermediateA&Mfter transmitting a useful coded packet 3, 5), which
is received by FNC', A has to decide whether it should continue or stop sendingdcpedekets. Furthermored
has limited knowledge about the reception status of theethezkets transmitted iy (e.g.,A may not know that
C has receivedl, 1, 1) from S), which makes the decision of whether to stop transmissien éarder ford than
for the sources.

Note that overhearing, a common way of acknowledging natedowireless traffic, does not suit network
coded traffic. Consider the same example in FigureZlgenerates a coded packe(1,1,1) + c2(4,3,5). If
the randomly chosen coefficients happen tape- ¢, = 1, then a(5, 4, 6) packet is sent. Supposkoverhears
this new packet. IfA were aware of the reception of tl{é, 1,1) packet byC and also knew the coefficients
c1 = co = 1, thenA could deduce that the previously transmittdd3, 5) packet was received successfully since
((5,4,6) —1-(1,1,1))/1 = (4, 3,5). Nonetheless, in practice, neither piece of the infornmaisoavailable ta4,
it is thus impossible for to know whether thé4, 3,5) packet is received or not by only overhearing the4, 6)
packet sent by

One way to address the challenge is to combine individugkgiamverhearing, as in non-coding based proto-
cols, with acredit systembased on coded transmissions, and have the forwarderspedietailed bookkeeping
to guarantee credit conservation in the system. This appreataken in MC [9]. Although theoretically op-
timal [20], this approach is quite complex in practice. Irdiidn, like every approach that relies on individual
packet overhearing, it requires a reliable control plametypical WMN environments with high packet loss rates
or contention [1], this approach can cause excessive signaverhead and retransmissions, which can signifi-

cantly limit the performance.
1.2 Loss rate based approaches

Since theoretically optimal solutions are hard to impletarpractice, existing NC-based OR protocols use
heuristics based on link loss rates, to address the challeng simple manner, and to minimize the control
overhead.

MORE [5], the first NC-based OR protocol, employs an offlinprapch which requires no coordination among
FNs. In MORE, the source calculates and assignaremission credito each FN, using the ETX metric [6], com-
puted from loss rate measurements. Receptions from upstedes are then used to trigger new transmissions at
the FNs, with precomputed relative frequencies using #resimission credits. Since the ETX metric expresses the
expectedehavior, the approach used in MORE cannot guarantee thaleistination will always receive enough
packets, due to the randomness of the wireless channel.eHtesource in MORE keeps transmitting packets
from the same batch until it receives an ACK from the destmatunnecessarily increasing interference.

Many other works that improve MORE also use offline measuosd rates as a basic component in their
proposed solutions (e.g., [24, 23, 15]).

The drawback of all these approaches is that performancéhetepends on the accuracy and freshness of
the loss rate measurements. Loss rate estimates are @bthimegh periodic probing and are propagated from
all nodes to the source. Apparently, the higher the prohiaguency, the higher the accuracy, but also the higher
the overhead. As a recent study [4] showed, even low-rateaaoverhead in non-forwarding links can have a
multiplicative throughput degradation on data-carryimis.

To reduce this overhead, the authors of MORE collect the fates and calculate the credits only in the be-
ginning of each experiment. In practice, this suggests loss rate measurements should be performed rather
infrequently. studies [7, 14] have shown thalithough link metrics remain relatively stable for longéntals in
a quiet network, they are very sensitive to background ¢raffor example, in [7], the authors observe that 100
ping packets (one per second) between two nodes in a 14-astietl caused an increase of 200% or more to the
ETT [8] metric of around 10% of the links.Even worse, a 1-min TCP transfer between two nodes in the same
network caused an increase of more than 300% to the ETT noét&8% of the links.

In summary, these approaches suffer from difficulties irueaiely estimating loss rates. Overestimated loss
rates cause redundant transmissions, which waste wirbsbwvidth. On the other hand, underestimated loss
rates may have an even worse impact, since nodes may natitagrsough packets to allow the destination to
decode a batch. This motivates the need for a new approatitiousto loss rates.

1.3 Owur approach — Cumulative Coded Acknowledgments

In this paper, we present a novel approach to NC-based ORrapdge CCACK, a new efficient NC-based OR
protocol. Unlike existing protocols, FNs in CCACK decidenhmany packets to transmit in an online fashion,
and this decision is completely oblivious to link loss rateEhis is achieved through a noveumulativeCoded
ACK nowledgment scheme that allows nodes to acknowledge netweaied traffic to their upstream nodes in a
simple and efficient way, with practicallgero overhead In other words, unlike existing NC-based OR proto-
cols which use NC to avoid sending feedback, CCA&Codedeedback to exploit its benefits while hiding its
overhead. Feedback in CCACK is not required strictly on agasket basis; this makes the protocol resilient to
individual packet loss and significantly reduces its comipfecompared to [9].

1The ETT metric estimates the quality of a link taking into@aat both the loss rate (through the ETX metric) and the liakdwidth.
2By “oblivious to link loss rates” we mean here that loss ratesnot taken into account in determining how many packath E&l

should transmit. We still use MORE's loss rate based offligerithm in CCACK to build the FN belt, for a fair comparisoetiveen the
two protocols. We note though that the coded feedback mésrhan CCACK is orthogonal to the belt construction.

3

(1.0.0) a.0.0
(0,1,0) (0,1.0)
(0.0.1) (0.0.1) —
S & Ty
[(3.1.2)]
- Hash] J[d.2.3)]
(a) Uncoded Feedback (b) Coded Feedback

Figure 2. Different types of feedback for network-coded tra ffic.

Take the scenario in Figure 1 as a continuing example. One ragiproach to ensure thét(resp. A) knows
when to stop transmission is through the useeafeption reportsfor which each node broadcasil the basis
vectorsof the received linear space to its upstream nodes, ag#testin Figure 2(aj.

An obvious drawback of this approach is the size of the feeklpaessages. For practical network coding with
symbol sizeGF (2%) and batch size 32, each coding vector contains 32 bytes.@g@ space of dimensien>
1 thus requires: 32-byte vectors, which is too large to piggyback to normabhfard traffic. The unreliability of the
wireless channel further exacerbates the problem as theg2-byte feedback messages need to be retransmitted
several times until they are overheard by all the upstreadeso

In contrast, in CCACK each node usessingle coded feedback vectir represent the entire space, which
may consist ofx > 1 basis vectors. In the broadest sense, the three coded deldyment vectorsy to
zc in Figure 2(b) serve as a hash for their corresponding spadsswill be explained in Section 3, we have
devised a simple mechanism that successfotignpressegmost of) the space information into a single vector,
say z4 for node A, while allowing upstream nodes &xtractthe original space from,4 without exchanging
any additional control information. Each single vectar can be easily piggybacked to the forward data traffic.
This compressed/coded acknowledgment is critical to tfiei@fcy since in CCACK overhearing any of the data
packets ofA with piggybacked coded ACK will convey to the upstream notesentire space (or most of the
space) ofA. This thus drastically reduces the need of retransmitteggback information over the unreliable
wireless channel.

In addition to efficiently solving the challenge of how margcgets each FN should transmit, the cumulative
coded acknowledgment scheme in CCACK enables us to develefiieient rate control algorithm. In contrast,
MORE has no explicit rate control mechanism and its perforteadegrades as the number of flows in the network
increases [5, 20, 24, 23].

To evaluate CCACK, we first compare its performance againSR¥, using extensive realistic simulations.
Our simulations use a realistic physical model, with randsignal variations due to fading, take into account
the additional packet header overhead introduced by theoluBEC and OR, and are conducted over a variety
of network topologies. Our results show that CCACK improbesh throughput and fairness over MORE, by
27-45% and 5.8-8.8%, respectively, on average, with d@ifienumber of flows. For some challenged flows which
completely starve under MORE, CCACK increases throughgutpbto 21x and fairness by up to 124%. In
addition, the coding and memory overheads of CCACK are coampa to those of MORE, making it easily
deployable on commodity hardware.

To demonstrate this, we present an application layer imetgaiion of CCACK and MORE on Linux and
their performance evaluation on a 22-node 802.11 WMN testiployed in two academic buildings at Purdue
University. Although the small size of our testbed alonghwtite limitations of our implementation limit the
potential gains, our testbed results show that CCACK imgsdwoth throughput and fairness, by up to 3.2x and
83%, respectively, with average improvements of 11-36% &ideB.3%, respectively, for different numbers of

3We sometimes refer to the linear space spanned by the reloadetors as thknowledge space

flows, validating the benefits of our approach.
In summary, we make the following contributions:

¢ We identify the main challenge present in the newly emerdassmf NC-based OR protocolstow many
coded packets should each forwarder transmit® discuss the inefficiencies of existing loss-based ap-
proaches to addressing this challenge and show, throughimutation and testbed evaluations the severe
impact such approaches can have on the performance of N&HER protocols.

e We propose CCACK, a new efficient NC-based OR protocol. @nékisting protocols, FNs in CCACK
decide how many packets to transmit in an online fashion,thisddecision is completely oblivious to link
loss rates. Central to the design of CCACK is a novel Cumudafioded ACKnowledgment scheme that
allows nodes to acknowledge network coded traffic to thestngam nodes in a simple and efficient way,
with practically zero overhead. In addition to efficientlghdng the challenge of how many packets each
FN should transmit, the cumulative coded acknowledgmemerse in CCACK enables us to develop an
efficient rate control algorithm.

e CCACK brings a shift to the design paradigm of NC-based ORoggmis. Existing NC-based OR protocols
have identified feedback overhead as a main cause for pexfmendegradation of practical wireless routing
protocols and used NC to eliminate the need for feedbackagwgeh resorting to offline loss-based heuris-
tics. On the contrary, CCACkncodedeedback to exploit its benefits and avoid the drawbacks ftihef
heuristics (e.g., stale information), and at the same tortede its overhead.

e We present extensive simulations with a realistic physimeatlel showing that CCACK offers significant
throughput and fairness improvements over the stateehth MORE. We identify the reasons for these
benefits and the scenarios mostly benefited from CCACK, aslids the relationship between these two
performance metrics. We quantify the header, memory, adéihgooverheads of CCACK, and show that
they are comparable to those of MORE, making CCACK easilyayable on commodity hardware.

e We present an application-layer implementation of CCACK MORE and their evaluation on a 22-node
802.11 WMN testbed deployed in two academic buildings at@eitUniversity. Our testbed experiments
confirm the simulation findings.

The remaining of the paper is organized as follows. In Sac®ipowe introduce the basic principles of coded
feedback through a simple existing coded feedback scheneeid&itify two problems with this scheme which
motivate the design of CCACK, presented in Section 3. Secti@valuates the performance of CCACK and
MORE through extensive simulations and Section 5 descthegmplementation and evaluation of CCACK and
MORE on a wireless testbed. Finally, Section 6 concludepéper.

2 Existing Coded Feedback Scheme

Coded feedback has been used in the past in a different ¢pineil8], a null-space-based (NSB) coded
feedback scheme is used to enhance reliability of an NCebasdticast protocol for multimedia applications in
mobile ad hoc networks. In this section, we review this salamd identify two problems when trying to apply it
to reliable unicast OR: the collective space problem anddlse positive problem. These two problems motivate
the need for a new cumulative coded feedback scheme whicimg@a component of CCACK.

Take Figure 3(a) for example. A batch of 3 packets are codgetier and noded to C need to decode all
three packets. LeB, denote the buffer containing the innovative coding vecteceived byA (which contains
two vectors(1,2,2) and(1, 1, 1) in Figure 3(a)).

Nss] 22 (1,2,3)-(4,—8,4) =0

. — =
= o ® (11, 1) (4,—8,4) = 0
@ Y ¢ NSB_”@;)I (12.3)
e (LL1,1)
Ix Ay ox 3 B)
-
@ B —

(@) NSB Feedback for unreliable multib) NSB Feedback for reliable unica®) The false positive error of the NSB
cast. OR. feedback.

Figure 3. Null-Space-Based (NSB) feedback for unreliable m ulticast, for reliable unicast OR, and the

corresponding false positive event.

Since A has received fewer than 3 innovative packets, it informadighbor nodes that it needs more packets
by appending to each coded packet a veetpsatisfying

za-v=0, YveEB, 1)

Namely, the inner product between andv € B, is zero. There may be multiple choicesof that satisfy (1)
(e.g., in Figure 3(a);z4 can be any vector of the forifd), y, —y)). z4 is then chosemniformly randomlyamong
all valid vectors satisfying (1). Let4 = (v : v € B,)) denote the linear space spanned by vector3,inOne can
easily show that:

Lemma 1 With the above random construction0f, any vector’ € S, must satisfy: 4 - v' = 0. Moreover, for

any vector” ¢ 5S4 we haveprob(z4 - v = 0) = 5 assuming th&F(2%) finite field is used.

From the above lemma, nodg(resp.C) simply needs to compute the inner product of its own inngeatectors
with z4. In Fig. 3(a), suppose that; is chosen a$0, 1, —1). Since(0, 1, —1) - (1,2,3) = —1 # 0, nodeB must
contain innovative packet fod. B can broadcast its innovative packet and odceeceives it,A will be able to

decode the entire batch.
2.1 Problems of the NSB Coded Feedback for Unicast OR

The goal of using coded feedback in the context of unreliabldticast is different from in the context of

reliable unicast OR. In the former, coded feedback is used bgde to inform neighbors thétey have to send
more packetsIn contrast, in the latter, we want to use coded feedbackaborodes can inform their upstream
nodes thathey should not send any more packéthis fundamental difference causes two major problemswhe
trying to apply the above NSB coded feedback scheme to teliaiicast OR protocols, like MORE.
Problem 1: The collective space problem.Take Figure 1 for example. Nod€s and C would like to convey
their space information tal so thatA can stop packet transmission. Based on the NSB con&ephdC send
zp = (1,1,—1) andz¢ = (—2,1,1), respectively, which are orthogonal to their local inndxatvectors (see
Figure 3(b)). The idea is to hope that, upon the receptiorpaindz-, A will know that the knowledge spaces of
B andC havecollectivelycovered the local knowledge spaceAfnd thus will stop transmission.

Nonetheless, wheA checks the inner product of the coded feedback and its owsvative packets, we have

z5-(3,1,2) =24 0andz¢ - (3,1,2) = —3 #£0.

ThereforeA thinks that the coding vectdB, 1, 2) is innovative to both its downstream nodes and thus corginue
transmission even when collectivalyand C' already have enough informatiohis misjudgment is caused by

that the NSB coded feedback does not convey the collectiaeespf all downstream nodes but only the space
relationship between the individual pairs (e.g.vs. B and A vs. C). Therefore, if we apply the NSB coded
feedback as in [18] to unicast OR, will not stop transmission until one of its downstream nodes a local
knowledge space that completely covers the local knowlsggee ofA. This defeats the purpose of OR.
Problem 2: Non-negligible false-positive probability. Take Figure 3(c) for exampleA wants to send two
packets taB and a network coded packet has been received lajready. To convey its local knowledge space
back to A, B sends an orthogonal vectep satisfying (1), which is randomly chosen to be any vectorhef t
form zp = (4z,4y, —2x — 3y). Suppose thaB chooses:p = (4, —8,4) and A receives suchpg. Sincezp is
orthogonal to all the innovative vectors df, A will wrongfully conclude that the knowledge spaceftovers
the local knowledge space df. A thus attempts no further transmissioAlthough Lemma 1 guarantees that
this false positive event happens only with probabiggy its impact to the system performance is significant. The
reason is that in a multi-hop transmission, any single hap ¢éxperiences this false positive event will cause an
upstream node to stop transmission prematurely. The conaation chain is thus broken and the destination may
not be able to receive enough independent packets for degodilthough one can fix this false-positive issue
by retransmitting anotherp vector, the necessary timer management for the unreligiglglfack channel and the
additional interference caused by retransmission easijate the benefits of sending coded feedback.

Note that the false positive event has little impact in a ioa#t scenario. More explicitly, even # mis-
interprets thezp vector, the downstream node knows that it has not received all three packets of the ctirren
batch. Therefore, it will simply keep appending feedbacktees in the code packets it transmits in order to
request more information from (or from any other neighbor nodes). In contrast, the inteliate nodeB in
Fig. 3(c) does not need to decode/receive all three pacHéts.decision tha# stops transmission can now be
caused either by a false-positive event or by the fact thatdeed has received enough packets (although not all
three packets)B thus faces the following dilemma: whether/when to retrahamotherzz that causes additional
interference; or to stay quiet but risk unsuccessful battoding.

3 CCACK design

In this section, we present the design of CCACK. We begin aithoverview of the protocol and then we
describe its two main components: construction of a noveludative coded feedback scheme which addresses
the two problems we discussed in Section 2.1, and a rateat@hgorithm, built upon this coded feedback scheme.

3.1 CCACK Overview

The source and the intermediate FNs in CCACK use intra-flowloen linear NC. We selected a batch size of
N = 32 packets and the random coefficients for each linear combmate selected from a Galois Field (GF) of
size28, same asin [5, 9, 15].

Nodes in CCACK maintain per flow state, which includes ¢herent batchof the flow, acredit counter(Sec-
tion 3.4), and three buffers: a packet buff@y, and two coding vector buffer8, and B,,. With the exception
of B, and B,,, all the other information is also maintained in MORE. Theesof B, is equal to the batch size
N, since the number of innovative packets is bounded by thehtste. The sizé3,, and B,, can be larger, since
these buffers only store 32-byte coding vectors and not&patkets. In our implementation we used a size equal
to5 x N. Similar to MORE, this information is soft-state and it isdhed if no packet for a flow is received for 5
minutes.

The source and the FNs broadcast randomly mixed packetstargdtse coding vectors of these packets in
B,,. Whenever a node overhears a packet, the node first checkhavhie packet is innovative by comparing
the coding vector to those of the existing packet®jn If innovative, the newly received packet is storedAp,
similarly to MORE and other existing NC-based OR protoc8sgardless being innovative or not, the node also

checks whether the newly received packet is from an upstmeeae. If yes, then it stores the forward coding
vector inB,,.

Each forward coding vector i#,, and B,, can be marked aBsl (heard by a downstream node) 6H (not
heard). A coding vector is marked a$1 when initially is inserted in either of the two buffers, sinthe node has
no information at that time whether any downstream node kasththe packet or not.

Similar to [18], nodes in CCACK embed an additiod&IK vectorin the header of each coded data packet of the
forward traffic to report a subset of the packets (or codingaes) they have received (heard) in the past from their
upstream nodes. For the following, we use the tefonward coding vectorand ACK coding vectorso denote
the coding coefficients used to encode the payload of thegtmelnd the feedback vectors used to acknowledge
the space, respectively. The construction of the ACK codiegtor using the vectors stored B, is described
in Section 3.3. Nodes mark forward coding vectordHasising the inner product of these vectors and the ACK
coding vectors they receive from downstream nodes, as waiaxp Section 3.3.

The destination periodically broadcasts coded feedbadkstapstream nodes in the form of ACK vectors
(without any payload). This is necessary to inform its ugmtn nodes whether they should temporarily stop
transmitting, since the destination sends no data packatge it receivesV innovative packets for a batch, it
decodes the batch to obtain theoriginal packets. It then sends an end-to-end ACK back tedece along the
shortest ETX path in a reliable manrfer.

3.2 Solving the collective-space problem

In contrast to the NSB coded feedback scheme in [18], nod€XCIACK construct the ACK coding vectors
usingall the received forward coding vectors storediy), and not only the innovative vectors storeddp. Also,
when an upstream nodé overhears a packet from a downstream node, it uses the ACKgedctor of that
packet to decide whether any of the coding vectorB,jnJ B,,,, instead ofB,,, have been heard by the downstream
node.

Nodes keep checking the rank of tihg and B,, vectors marked akl. When this rank becomes equal to the
rank of innovative packets i, for a nodeA, A stops transmitting either temporarily, until it receivexother
innovative packet, or permanently if the rank of tBgvectors is already equal 1§. In both cases, the downstream
nodes have received a sufficient number of packets that dow@mnovative packets of from the knowledge space
perspective.

Focusing onB, and B,, vectors instead oB,, this new structure solves the collective-space problerthef
NSB coded feedback. Continue our example in Figure 3(b)nBdeA, B, contains the received coding vectors
(1,2,3) and(3, 1, 2) while B,, contains the transmitted vectgr, 3, 5). Suppose we reuse the NSB coded feedback
for nodesB and C. Then by checking inner products withy and z¢, A knows that the(1,2,3) € B, and
(4,3,5) € B, have been received. Since the ranKbf2,3) and(4, 3,5) is the same as the rank &%, vectors,

A stops transmission.

3.3 Solving the false positive problem

We now describe our new ACK design that drastically redubeddlse-positive probability fronglg to (%)M
for any integerd > 1.

Each node maintaind/ different N x N hash matricesd; to H,; where N = 32 is the batch size and each
entry of the matrix is randomly chosen froGF' (28). All nodes in the network are aware of th& to H),
matrices of the other nodes. This is achievable by usingEhefla node as a seed to generate theto H,

“In our current implementation, similar to MORE, the sourcaves to batchi + 1 only when it receives the end-to-end ACK from the
destination for batclh. As [15] showed, a better approach is for the source to mowatchi + 1 immediately after it stops transmitting
packets for batch. In the future we plan to incorporate this feature in CCACK.

8

matrices. We assume that all vectors are row vectors and e/¢hestranspose’ to represent a column vector
(constructed from the row vectai).

To improve the efficiency of our feedback mechanism, we aasausage_count with every vector inB,,.
When a vector is placed iR, its usage_count is set to 0. Every time this vector is selected in the feedback
construction algorithm, its.sage_count is incremented by 1. The ACK vector is always constructedgiihose
vectors inB, with the lowest counts. This will reduce the probability tthlae same vectors are repeatedly ac-
knowledged many times.

Nodes construct the ACK vectors using the following aldorit

§ CONSTRUCT THEACK VECTOR
1: Start from a0 x N matrix A.
2: while The number ofrowsofA < N — 1 — M do
3. Choose the: with the smallestisage_count from B,,. If more than one such exist, choose one randomly.

4. forj=1toM do

5: if thel x N row vectoruH; is linearly independent to the row space/then
6: AdduH; to A.

7 Perform row-based Gaussian elimination to kéem a row-echelon form.
8: end if

9: end for

10: Increment theisage_count of u by 1.

11: end while

12: Choose randomly the coding coefficiemisto ¢ such that the following matrix equation is satisfied:
A(Cl, e ,CN)T = (O, te ,O)T.

Remark 1: We also require that the randomly chosen coeftiigrio ¢y are not all zero.
Remark 2: By Line 3 there will be at leastdegree of freedom when solving the above equations. Sinice
in the row-echelon form, it is easy to chooseto ¢y .

13: Use the vectofcy, - - - , cy) as the ACK vector.

When a node A overhears a packet with an ACK veetdrom a downstream node, it uses again the inner
product to check all its vectors i, and B,, and determine whether any of them has been heard by the deamst
node. More explicitly, a vector € B, (or B,,) is markedH if and only if u passesll the following M different
“H _tests” (one for eachi;):

Vj=1,---,M, uH;jz" =0, (2)
whereH; to H,, are the hash matrices of the downstream node of interest.

Remark: In our practical implementation, instead of choosing catgly random hash matricd$; to H,
(each withN? random elements), we simply choogh to Hj; as “random diagonal matrices”, with th§
diagonal elements for eadli; randomly chosen fron to 255 (excluding zero) and all other elements being zero.
This simplification improves the efficiency as the matrix tiplication wf; can be performed in linear instead of
N? time.

We now quantify the false positive probability (passingMlitests simultaneously) with this new coded feed-
back scheme.

Proposition 1 Consider an upstream/downstream node phirand Ap, and Ay receives an ACK vectag from
Ap. The hash matrice&l; to H,; of nodeAp are chosen uniformly randomly. For amyvector inB, U B,, of

5SinceA is always of row-echelon form, it is easy to check whethemtéw vector is linearly independent to the row spacé\of

the upstream noddy, if suchw is in the space of the vectors selected by the downstream nddg then it is

guaranteed that sucty vector will pass allM tests in(2). If suchw is not in the space of the selectedectors,
then the false-positive probability (passing &l tests) is(zig)M

Proof: Let Sp denote the linear space spanned fromheectors selected byip. If win B, U B, of Ay isin
S, thenw =)", a;u; is the linear combination of the selectedrectors (indexed as;). Since by construction
u;H;z} = 0 for all selectedy;, we havewH, 2} = 3", c;u; H; 2} = 0. The proof is complete.

Suppose that in B, U B, of Ay is not in Sp. Conditioning on the non-zerg, vector, for any; the szg
vector must be randomly distributed over the null spaces gf sinceuiszg = 0 for all selectedu; vectors
and sincef; is chosen randomly. Moreover, conditioning on the non-zgrdd; 2] to Hy, 2} are independently
distributed over the null space 6fz. As a result, even though only a single vectgiis transmitted, the CCACK
scheme has the same effect of using the NSB coded feedlaitkes, sending oud/ independently randomly
selected vectors{; z} to Hy,z{) from the null space of 5. By Lemma 1, the overall false-positive event is when

all M tests return false positive. The overall false positivebaiality becomes(zig)M. The proof is complete.

]

The M value represents a tradeoff between how many vectors onacrbmmwledgeﬁ% and the false-positive
probability (2-8)*. Sinceany false alarm event for any packet over any link will trigtiee land-sliding cost of
breaking the communication chaiwe observe in our experiments that ahy < 3 will severely jeopardize the
reliability of the CCACK. In our implementation we thus clseadl/ = 4, which gives a false positive probability
of 2.23 x 10719 that is necessary for the effectiveness of CCACK.

It is worth noting that a naive way of avoiding false-pogtigvents is to increase the underlying finite field
size GF(2%), which is not viable for WMNs. One reason is that to achievelével of false-positive probability
needed in our CCACK schem@/(= 4), we needh = 32, which uses 4 bytes to represent a single coding
symbol. The size of each forward coding vector and each céelegdback vector thus grows froB2 x 1 bytes
to 32 x 4 bytes, which substantially increases the overhead. An bigger challenge is that each addition and
multiplication coding operation now operate 6iF (232). A table look-up method has to ha2é2 x 232 4-byte
entries, which takes prohibitively 4 million terabytes tore. Since table look-up is impossible, one thus has
to use online polynomial-based computation each time angodperation needs to be performed, which is far
beyond the capability of today’s silicon technology.

3.4 Rate control

The cumulative coded feedback scheme in CCACK helps nodkgd¢omine when they should stop transmitting
packets for a given batch, but it does not tell anything altmyt fastnodes should transmit before they stop.
Unlike in MORE, in CCACK we cannot use receptions from upestneo trigger new transmissions, since the goal
is exactly to stop the upstream nodes, when the downstredesrtave sufficiently enough packets. In addition,
we want to apply rate control to the source as well, and not tmthe FNs.

The rate control algorithm in CCACK uses a simple credit sthewhich is oblivious to loss rates but aware of
the existence of other flows in the neighborhood, and lews&CACK’s cumulative coded acknowledgments.

For each flowf at a node, we define the “differential backl8gfs:

AQ! = dim(B!) — dim(BJ,) 3)

50ur solution is inspired by the theoretical backpressusedaate control algorithms [21]. The difference is thastéad of queue
lengths, we use innovative coded packets to defimeiraulative differential backlodor flow f at every node with respect to all its
downstream nodes for that flow.

10

whereB}; is the set of vectors ilB{f U Bfu marked adH, and din{S) denotes the number of linearly independent
packets in the sef. Note thatdim(B};) < dim(Bg). AQ/ is the difference between the number of innovative
packets at a given node and the cumulative number of inn@vptickets at its downstream FNs for flgwAs we
saw in Section 3.2, wheAQ/ = 0, i.e.,dim(B]) = dim(BY,), the node stops transmitting packets for figw
Note that for the destination of flow, AQ/ = 0.

We also define the relative differential backldg)’ , for each flowf as:
;o AQY

AQye = AOT + AN (4)

where,AQy is the total differential backlog of all the neighbor nodes il flows, calculated as follows. Every
time a noden; broadcasts a coded data packet, it includes in the packéehiescurrent total differential backlog
AQZ’; of all flows crossing that node. All nodes that hear this paakelate theiA @y as an exponential moving
average:

AQn = 0.5 x AQN + 0.5 x AQ;Y! (5)

Every node in CCACK (including the source and the destimtinaintains a credit counter for each flow. Every
time there is a transmission opportunity for a node A, one ffaw selected in a round robin fashion, among those
flows with AQ/ > 0, and the credit counter of that flow is incrementedcdy AQ{@Z + (. If the counter is
positive, the node transmits one coded packet for ffomnd decrements the counter by one, otherwise it selects
the next flow. The credit increment x AQ{@Z + [is larger for flows with large “backpressure”, thus packets o
such flows will be transmitted more frequently. For our immpéntation we selected = 5/6 and = 1/6. If
AQ!, =1, thena x AQ! , + 3 = 1 and the credit counter will always remain equal to 1, effei allowing

rel

the node to always transmit.

4 Evaluation
4.1 Methodology

We evaluated the performance of CCACK and compared it agM@RE using extensive simulations. We
used the Glomosim simulator [22], a widely used wirelessvngt simulator with a detailed and accurate physical
signal propagation model. Glomosim simulations take irdooant the packet header overhead introduced by
each layer of the networking stack, and also the additiomattead introduced by MORE or CCACK. For the
implementation of MORE, we followed the details in [5].

We simulated a network of 50 static nodes placed randomly i60@m x 1000m area. The average radio
propagation range was 250m, the average sensing range Wag 46d the channel capacity was 2Mbps. The
TwoRaypropagation model was used and combined with the Rayleidimdamodel to make the simulations
realistic. Because of fading, transmission and sensingerame not fixed but vary significantly around their
average values.

We simulated each protocol in 9 different randomly generadgologies, i.e., placement of the 50 nodes. We
varied the number of concurrent flows from 1 up to 4. For a gimamber of flows, we repeated the simulation
10 times for each topology, selecting randomly each timefardint set of source-destination pairs, i.e., we had
a total of 90 different scenarios for a given number of flows.ehch scenario, every source sent a 12MB file,
consisting of 1500-byte packets.

Following the methodology in [5, 3], we implemented an ETXamgrement module in Glomosim which was
run for 10 minutes prior to the file transfer for each scentmioompute pairwise delivery probabilities. There was
no overhead due to loss rate measurements during the filfaran

11

100%

90%

@
Q
R

70%
60%

50%
—MORE

CCACK

40%
30%

o
o
X

Cumulative Fraction of Flows

20% 20%
10% 10%

0% 0%

0 200 400 600 800 -50% 0% 50% 100% 150% 200% 250% 300% 350% 400% 450%
Throughput (Kbps) Relative Throughput Improvement (%)

(a) CDF of throughputs achieved with MORE afiry CDF of relative throughput improvement of
CCACK. CCACK over MORE.

Figure 4. Throughput comparison between CCACK and MORE — sin gle flow.

It is generally known that the full benefit of OR over tradité routing is exposed when the destination is
several hops away from the source [5]; in those cases, OResdhe overhead of retransmissions incurred by
high loss rates and increased self-interference. Hencehéosingle-flow experiment, among the 90 flows we
simulated, we show the results of the 65 flows for which theidason was not within the transmission range
of the source (with ETX shortest paths of 3-9 hops). For theuation with multiple flows, we kept scenarios
with flows of shorter paths, when those flows interfered witheo flows. On the other hand, we do not show the
results for scenarios where the multiple flows were out ddrierence range of each other, since those scenarios
are equivalent to the single-flow case. We were left with Ghados with 2 flows, and 69 scenarios with 3 and 4
flows.

4.2 Single flow

We begin our evaluation with a single flow. Figure 4(a) pltis Cumulative Distribution Function (CDF) of the
throughputs of the 65 flows with MORE and CCACK. We observé @RACK outperforms MORE; the median
throughput with CCACK and MORE is 276Kbps and 205Kbps, reisgely.

Figure 4(b) plots the CDF of the relative throughput impremt of CCACK over MORE for all 65 flows,

P
defined as’ccackTwore 100%, whereTl, o T orp are the throughput of flowf with CCACK and

T

MORE, respect%gfyj We observe that CCACK achieves a higlmeughput than MORE for 95% of the flows.
The median gain of CCACK over MORE is 34%. However, for somallehged flows with the destination 7-9
hops away from the source, the throughput with CCACK is 24gkér than with MORE.

Where does the gain for CCACK come from? Figure 5(a) plots the total number of data transmissions wit
CCACK and MORE in each of the 65 scenarios, as well as thegesthumber of transmissions in each scenario
using MORE's offline ETX-based credit calculation algomith The 65 scenarios are sorted with respect to the
predicted number of transmissions.

We observe that nodes with MORE perform a higher number aftrassions than the predicted number in
all 65 scenarios. The actual number is often more than twieegtedicted number, and in some scenarios up to
6-7x the predicted number. This shows that the credit catimn algorithm based on offline ETX measurements
mispredicts the required number of transmissions evenarattsence of background traffic. The cause is self-
interference which changes the loss rates, which in mostsdascome higher than in a quiet network, where only
probing traffic exists [14]. Moreover, the source in MORE pedéransmitting packets until it receives an ACK
from the destination. With long paths, this may result inrgdenumber of unnecessary transmissions, as the ACK
travels towards the source.

12

-=MORE o E=MORE
o
CCACK g CCACK

-+-Predicted -+-Predicted

Number of Total Data Transmissions

Number of Data T

0 5 10 15 20 25 30 35 40 45 50 55 60 65 1 2 3 4 5 6
Scenario ID Node ID

(a) Total number of data transmissions per scenaf). Total number of data transmissions per node
for one scenario.

Figure 5. Total number of data transmissions with MORE and CC ACK, and predicted number of

transmissions, based on MORE's credit calculation algorit hm, with a single flow.

In contrast, the number of data transmissions with CCACK iglmlower than with MORE in all but 2 sce-
narios. In most scenarios it is close to the predicted nunaret in some cases, it is even lower. This shows the
effectiveness of the coded feedback mechanism in CCACKbaowed with the online rate control mechanism of
Section 3.4.

Figure 5(b) shows an example (one scenario) of how datantnias®ns are distributed over the FNs. Nodes are
sorted with respect to their ETX distance to the destinatien node 1 is the source and node 10 is the FN closest
to the destination. With MORE, the source and the FN clogse#ité source, perform many more transmissions
than the remaining FNs, (2.5-7.6x and 1.4-4.6x, respdgliveln contrast, CCACK ensures that these nodes
stop transmitting when the remaining downstream FNs haseived enough innovative packets. Overall, with
CCACK, all 10 nodes perform fewer transmissions than withRED The savings range from 17% (for node 9)
up to 74% (for the source).

4.3 Multiple flows

We now evaluate CCACK and MORE with multiple concurrent flowere, in addition to throughput, we
compare the two protocols in terms of fairness, usiag’s fairness indexFl) [10]. Jain’s Fl is defined as
(>)/ (n x 3 2?), wherex; is the throughput of flow andn is the total number of flows. The value of Jain’s
Fl is between 0 and 1, with values closer to 1 indicating Ipégiieness.

Throughput Comparison Figures 6(a), 6(b) compare throughput with CCACK and MOR#®] 3, and 4 flows.
Figure 6(a) plots the average per-flow throughput with the pnotocols as a function of the number of flows. We
observe that CCACK outperforms MORE by 27% on average in thev2case, and by 45% on average in the 3-
flow and 4-flow cases. Note that the gain of CCACK is higher w&ithrger number of flows, when the congestion
level becomes higher causing substantial changes to the\&lués. given flow at nodes whose downstream
nodes have collectively received a sufficient number of ptgsla large amount of bandwidth is saved which can
be used by the nodes or their neighbors for transmitting gtactor other flows. In contrast, the gain of MORE
over traditional routing in [5] drops as the number of comeunt flows increases.

Figure 6(b) plots the CDF of per-flow relative throughput noyement with CCACK over MORE, as defined
in Section 4.2, with 2, 3, and 4 flows. CCACK improves per-flinotighputs for more than 85% of the flows in
all 3 cases (with 2, 3, and 4 flows). The median improvemen8%,3%5%, and 62%, respectively, with 2, 3, and
4 concurrent flows. Similar to the single flow experimentsnecstarving flows with MORE show a several-fold

13

B MORE
CCACK

2 4 -100% 0% 100% 200% 300% 400% 500% 600% 700%

3
Number of flows Relative Throughput Improvement (%)

'y
1=
53

w
@
o

w
=3
°

a
o

—2 flows
-+ 3 flows

4 flows

&
o
Cumulative Fraction of Flows

BoR NN
1=}
=)

Average Flow Throughput (Kbps)
o
o

«
=)

o

(a) Average per-flow throughputs (bars) and standbjdCDF of relative throughput improvement of
deviations (lines). CCACK over MORE.

Figure 6. Throughput comparison between CCACK and MORE — mul tiple flows.

0.9 I
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
o
2 -60% -40% -20% 0% 20% 40% 60% 80% 100% 120% 140%

3
Number of flows Relative FI Improvement (%)

100%

CCACK

—2 flows

--- 3flows

Average Fairness Index

4flows

Cumulative Fraction of Scenarios
w
(=]
X

= MORE ‘
4

(a) Average per scenario Fls (bars) and standardlie CDF of relative FI improvement of CCACK
viations (lines). over MORE.

Figure 7. Fairness comparison between CCACK and MORE — multi ple flows.

improvement with CCACK, up to 4.7x, 9.1x, and 21.4x, in the®; and 4-flow cases, respectivély.

Fairness ComparisonFigures 7(a), 7(b) compare fairness with CCACK and MORE isecaf 2, 3, and 4 con-
current flows. Figure 7(a) plots the average FI with the twat@rols. We observe that the average Fl is the same
with the two protocols in the 2-flow case, but is higher with&AIK in the 3-flow, and 4-flow case by 5.8% and
8.8%, respectively.

Figure 7(b) plots the CDF of per-scenario relative Fl immnment with CCACK over MORE, defined similarly
to the relative throughput improvement in Section 4.2, itl3, and 4 flows. We observe that CCACK improves
fairness in more scenarios as the number of flows in the n&timoreases — in 40% of the 2-flow scenarios, 65%
of the 3-flow scenarios, and 72% of the 4-flow scenarios. &imd the throughput results, the improvement is
very large for some scenarios: up to 74% with 3 flows, and up24?4 with 4 flows. This shows again that
CCACK helps some challenged flows, which completely starith WIORE. The improvement in fairness with
CCACK is a result of the rate control algorithm, which caltels the transmission credits of the nodes online,
taking into account their differential backlogs. In costian MORE credits are calculated offline for each flow
and are oblivious to the presence of other flows.

Throughput vs. FairnessWe now investigate more closely the relationship betweeoutshput and fairness.
Figure 8(a) shows the scatterplots of the relative totabubhput improvement per-scenario vs. the relative Fl
improvement per-scenario, in the 2-, 3-, and 4-flow expeniisie

"Note that the heavy tails of the 3-flow and 4-flow curves areshotvn in Figure 6(b) for better clarity.

14

& & & & & L & & & L
& S £ & £ & £ & £ &
2 flows F& FF FE FF FE &

< o 3flows H 4th flow
X o —
= 90% = © 4flows g 1200 W 3rd flow E
a o
g o)5—1000 1 2nd flow
H 60% o 5 E [1st flow
<] oo 3
s . o -, 800
>
= 30,007 ° e
T - oXaq o £ 600
2 @< <9 -
2 0% B QO 2
5 SR 4950 O "m0 S 400
©-100%-50% 0% 508 A00% 150% 200% 250% 300% 350% 400% 450% 500% =
-) ’) . :i i
-60% - S 0
Relative Throughput Improvement (%) 2 flows (1) 2 flows (2) 3flows 4 flows(1) 4 flows (2) 4 flows (3)

(a) Scatterplot of relative throughput improvement(®. Per-flow throughputs with MORE and
relative Fl improvement with 2, 3, and 4 flows. CCACK for the 6 scenarios with the largest FI
decrease under CCACK.

Figure 8. Investigating the relationship between throughp ut and fairness.

We observe that CCACK improves at least one of the two meini@dl but two scenarios (two points in the
3rd quadrant of Figure 8(a)). There are a few points in the @matirant for all three cases; these are scenarios,
where CCACK improves fairness, at the cost of a small totalughput decrease. The majority of the points for
the 2-flow case are gathered in the 1st and 4th quadrantsSCCACK either improves throughput at the cost of a
(typically) small decrease in fairness, or it improves botétrics. The majority of the points are gathered in the
1st quadrant for the 3-flow and 4-flow cases. This shows thtiteasumber of flows increases, CCACK improves
both throughput and fairness in most scenarios.

We now take focus on a few points in the fourth quadrant in Eige(a), corresponding to scenarios where
Fl is reduced by more than 20% with CCACK. There are two 2-flome 3-flow, and three 4-flow scenarios
(points). Note that all 6 these points correspond to largeutifhput improvements, from 72% up to 499%. One
may wonder if these improvements are achieved at the costropmomising the fairness, i.e., throughput of only
one flow increases significantly, causing starvation to émeaining flows.

Figure 8(b) shows that this is not the case. This figure plodsindividual per-flow throughputs with MORE
and CCACK for these 6 scenarios. We observe that in all bus2gaCCACK improves throughput afl flows
involved. The reduction in the FI actually comes from thet that throughput improvement is much higher for
some flows than for some others, and not as a result of stanvafisome flows. Take the last scenadoflpows
(3)) as an example. CCACK improves throughput of the first flow ty @from 85Kbps to 978Kbps), but also
improves throughputs of the other 3 flows by 183%, 108%, argdd.1

A closer look at the topology of that scenario revealed agrétting situation. We found that the first flow was
a 1-hop flow, whose FN belt overlapped with the FN belt of th&,49-hop flow, near the source of the 4th flow.
With MORE, it took a long time for the destination of the 4thvfldo decode each batch; during that time the
source as well as every other FN kept transmitting packetthéd batch. Since routers in MORE serve flows in a
round robin fashion, they kept switching between the 1stthadith flow. In other words, a short flow was starved
because of a long flow(!), achieving a throughput of only 8p&kalthough there was no need for the routers to
forward packets of the long flow. In contrast, with CCACK, ttmded acknowledgment scheme quickly caused
the source of the 4th flow to stop transmitting packets, ohea¢maining FNs had enough packets. Hence, the
FNs near the source were able to forward packets only for theplflow, increasing its throughput to 978Kbps.

4.4 Which flows benefit most from CCACK?

Finally, we examine which flows benefit most from CCACK in dexflow and multi-flow scenarios. Fig-
ures 9(a), 9(b), 9(c), and 9(d) show the scatterplots fointidual flow throughputs achieved with MORE and

15

- *
Y=2X Y=1.7X Y=1.2X Y=2X Y=1.7X Y=1.2X
600 700
—_ Y=X
- + Y=X v
=3 2 600
£ 500 + S
= B - =
5 . ¥=0.7X £ s00 .
2400 g H . . L . ¥=0.7X
= = -
= s ¥ o e
2300 i 2 4 . *
S Y s £ 300 N
S . i S e 1
G200 -2 I 200 5 {{:‘
g - S b B
100 100 o 24
0 0
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 800
MORE Throughputs (Kbps) MORE Throughputs (Kbps)
(a) Single flow. (b) Two flows.
900 - 1000 5
a0 v=2X Y=1.7X Y=1.2X 500 v=2x. YT yo1ox” v=x
Y=X
700 * = * g 800 "
600 + Y=0.7X X 700 * ., . Y=0.7X
* 4 *
‘g’_ 600 - .
500 +
'Sn 500 . +

N
=3
5
+
+
+
+
¥
+

o
* £ 400 - - ¥
= . A

w
=3
5

#

»-N
o o
o o
3
'u’ ;-& .
N LT
TN e
P
“ku .
B
d
R
4
A
,
i
3
)

g
S 300 = T,
3

-
O 200 |t
a3

100
e

700 800 900 o 200

CCACK Throughputs (Kbps)
.

o 100 200 1000

300 400 500 600 400 600 800
MORE Throughputs (Kbps) MORE Throughputs (Kbps)

(c) Three flows. (d) Four flows.

Figure 9. Scatterplots of per-flow throughputs achieved wit h MORE and CCACK with 1, 2, 3, and 4

concurrent flows.

CCACK with 1, 2, 3, and 4 concurrent flows in the network.

Single flowln Figure 9(a), we observe that the majority of the pointdimgingle-flow case lie between the lines
Y =1.2X andY = 1.7X, i.e., the throughput gain of CCACK over MORE for a large rang absolute MORE
throughput values (100-350Kbps), is typically 20-70% ependent of the absolute throughput value of MORE.
In other words, when a single flow is present in the network ACK benefits equally both low-throughput and
medium-throughput flows. For flows of higher absolute MORBtighput ¢-350Kbps), the gain of CCACK is
smaller; for these flows, the destination is 3-4 hops awamftibe source and MORE itself can realize most of
the gains over traditional routing. On the other hand, foew flows with very long path lengths>(fhops), the
gains are higher than 100% — these are the points on the ldfedf = 2X line in Figure 9(a). For these flows,
throughput with MORE can be as low as 55Kbps; in contrast) @TCACK there is no flow with throughput lower
than 130Kbps.

These high-gain points reveal an additional benefit of CCAR&call that with both protocols, the destination
sends an end-to-end ACK to the source after decoding a blatdbder the beginning of the next batch. In MORE,
this ACK has to compete with coded traffic as it travel towalus source, since nodes never stop transmitting.
With long paths, it may take a long time for the ACK to reachgbarce, and this can lead to significant throughput
degradation for these flows, as has also been shown in [1Bpritnast, with CCACK, the ACK can quickly travel
towards the source without any contention if there is nooftoev in the network, since all nodes have already
stopped transmitting, thanks to the coded feedback.

Multiple flows In Figures 9(b), 9(c), and 9(d), we observe that, as the nuwiftows increases, more points
are gathered on the left of tHé = 1.7X line; in the 4-flow case, in Figure 9(d), a large fraction ofrpge is

16

Table 1. Coding overhead in CCACK in terms of GF(28) multiplications. Operations marked with (*)
are common in MORE and CCACK.

Operation ‘ Avg. Std. Dev.
Packet Transmission
Coded pkt construction (src/FNs)*48000/27240 0/13128
ACK vector construction 11584 5369
Total (src/FNs) 59584/38824 5369/10021
Packet Reception
Independence check* 326 156
H_tests 428 316
Rank ofH pkts in B, U B,, 292 169
Total 1046 416

gathered on the left of thg = 2X line. Note that the absolute MORE throughputs for many oféhpoints
are very low; in particular in the 3-flow and 4-flow cases, tigbputs with MORE are as low as only 5Kbps; in
contrast, with CCACK, there is only one flow with 41Kbps, atidhe remaining flows achieve throughputs higher
than 50Kbps. In other words, many flows starve with MORE, esitimber of flows in the network increases, and
CCACK significantly benefits those flows, with the gains baasdigh as 21x. In contrast to the single-flow case,
these are not necessarily flows with long routing paths, asamein the example of Figure 8(b).

On the other hand, there is no clear trend for flows of mediurigh throughput with MORE. The gain of
many of those flows remains between 20% and 70%, as in theedilog¢ case, since there is no room for further
room for improvement in a congested network. However, indhand 4-flow scenarios, we also observe gains
higher than 70% for some flows of medium MORE throughput (200Kbps). On the other hand, for many of
those flows, and also for flows of higher MORE throughput, digtgout is slightly reduced with CCACK — the
number of points between the lin@s= X andY = 0.7.X increases with the number of flows. This is because
these flows typically maintain high throughput with MORE kauesing starvation to some other flows. CCACK'’s
rate control algorithm reduces the throughputs of thosedlowfavor of the most challenged flows, improving
overall fairness in the corresponding scenarios.

4.5 CCACK’s overhead

Finally, we estimate CCACK'’s overhead compared to MORE.l&ino [5], we discuss three types of overhead:
coding, memory, and packet header overhead.

Coding overhead.Unavoidably, CCACK'’s coding overhead is higher than MOREisce routers have to perform
additional operations both when transmitting and wheniveog a packet. However, all the additional CCACK
operations are performed aw-byte vectorsinstead of the wholé(-byte payload Therefore, in practical settings
(e.g., withN = 32 and K = 1500), the coding overhead of CCACK is expected to be comparabtbat of
MORE.

To verify this, we measured the per-packet cost of the varigperations performed upon a packet transmis-
sion/reception averaged over all packets transmitteeired at all nodes in the 90 simulation scenarios of Sec-
tion 4.2. Table 1 provides the average values and the stmigatations. The costs are given in termsidf (28)
multiplications, which are the most expensive operationslived in coding/decoding [5].

Construction of an ACK vector in CCACK requires on averagb84lmultiplications. The total coding cost in
transmitting a packet (i.e., constructing a coded packetaamACK vector) in CCACK is only 24% higher than

17

MORE's, assuming the worst case cost for packet encodin@0@éultiplications). If we use instead the average
packet encoding cost at FNs (27240 multiplications), thal toost of transmitting a packet in CCACK is only
38824 multiplications, i.e., lower than MORE'’s encodingicat the sourc@.

When receiving a packet, the cost of checking for indepeceldalso in MORE) requires on average only
326 multiplications. The additional operations of perforghthe Htests (if the received packet comes from
downstream) and maintaining the rank of tHepkts in B, U B,, (if a received packet from downstream passes
all M H_tests) require on average only 428 and 292 multiplicatioespectively, i.e., their costs are comparable
to the independence check cost. The total cost of packgbtieneoperations in CCACK is only 1.7% of the total
packet transmission cost. Hence, the bottleneck operatiQCACK is preparing a packet for transmission at an
FN with 32 innovative packets iR,,.

In [5], the authors found that the bottleneck operation inlREXpacket encoding at the source) takes on average
270us on a low-end Celeron 800MHz, limiting the maximum achieeabiroughput with MORE to 44Mbps with
a 1500 byte packet. In CCACK, the cost of the bottleneck djmeras 24% higher, so we can expect a maximum
achievable throughput of 35Mbps. Note that this value Ikhgtiher than the effective bitrate of current 802.11a/g
WMNs [12].

Memory overhead. Same as in MORE, routers in CCACK maintain an innovative pablffer B,, for each flow,
and also a 64KB look up table for reducing the cost of thed®Ffultiplications [5]. With a packet size of 1500
bytes, the size oB, is 48KB. The extra overhead in CCACK comes from the two addél buffersB,, and B,,,
which store, however, only 32-byte vectors, and not wholekgss. In our implementation, the total size Bf
andB, is2 x 5 x 32 x 32 = 10K B, which is relatively small compared to the size of MORE'sistures.
Header overhead.The N-byte ACK vector and the total differential backlagy;” are the two fields we add to
the MORE header. The differential backlog per flow is bounkigthe batch sizév. With N = 32, two bytes are
enough to support up to 2048 flows, and the total size of thditias is equal to 34 bytes. However, in CCACK,
we do not include in the packet header the transmissiontsréali the FNs, which are required in MORE. This
can potentially make CCACK'’s header smaller than MORE'stheling on the number of FNs.

5 Protocol implementation and testbed evaluation

In this section, we describe an implementation of CCACK onMNMestbed and present experimental results
comparing CCACK and MORE.

5.1 Testbed description

Our testbed, Mesh@Purdue (MAP) [25], currently consist@dimesh routers (small form factor desktops)
deployed on two floors of two academic buildings at Purduevélsity. A schematic of the testbed is shown in
Figure 10. Each router has two radios. For this study, we osedof them: the Atheros 5212 based 802.11a/b/g
wireless radio operating in b ad hoc mode. Each radio islathto a 2dBi rubber duck omnidirectional antenna
with a low loss pigtail to provide flexibility in antenna pkment. Each mesh router runs Mandrake Linux 10.1
(kernel 2.6.8-12) and the open-souroadwifidriver [17] is used to enable the wireless cards. IP addseasse
statically assigned. The testbed deployment environnmgenbi wireless-friendly, having floor-to-ceiling office
walls, as well as laboratories with structures that limi fhropagation of wireless signals and create multipath
fading.

8Note that the source in CCACK does not have to construct an ¥&ior, and hence the cost at the source is the same as in MORE.

18

258 | 256

it ;
t !
x !
g|g
5
by

48 | 2491
B LA

-]
4 e 252)
264 249 250
268] E
240]2a0] (F9N)
= |c| 0| &2
zsal 245
""" 243
| 11
- 245
(I
2 (I
LT
]
242
1 2408,
237
-1 T

234 238

i

2™ floor D 3" floor

Figure 10. A schematic of MAP.

5.2 Implementation details

NC-based wireless protocols (e.g., [5, 13]) are typicaifyplemented as a shim between the IP and the MAC
layer, i.e., at layer 2.5. Here, for ease of debugging, depénmt, and evaluation, we implemented CCACK
at the application layer, using broadcast sockets. Forractanparison, we also implemented MORE at the
application layer, following all the details in [5]. We notleat such an implementation unavoidably results in
some performance degradation for both protocols, comparad implementation closer to the MAC layer, from
crossing the kernel-user boundary. Actually, the degradas larger for CCACK because its credit mechanism is
closely coupled with the MAC layer, as we explain later irstbection.

Our implementation handles only synthetic traffic, i.e.adadckets are generated within the MORE or CCACK
application, similarly as the implementation in [27], in iih packets are generated within Click. The layer-2.5
header of MORE or CCACK is part of the application layer pagb@yload. The source initially generatés
random payloads for the current batch and mixes them eveny iti wants to transmit a packet. It then appends
the MORE or CCACK header and delivers the resulting packétedP layer, which in turn delivers the packet
to the MAC for transmission. Packets are broadcast at the Né&€r, and every neighbor node can hear them.
When a node receives a packet, it extracts and processesotbegqd-specific header from the payload; if the node
is an FN (i.e., it finds its I in the FN list in the header), it also uses the coding coefitsi¢also included in the
header) to check for linear independence. If the receivetigids innovative, the rest of the payload is stored for
future mixing (if the node is an FN) or for decoding (if the mod a multicast receiver).

5.2.1 Removing the dependence on the MAC layer

In an ideal implementation at layer 2.5, a node running elth®RE or CCACK transmits a packet when ¢he
802.11 MAC allowsand (2)the credit counter is positivdn our application layer implementation, we cannot get
any feedback from the MAC, and hence, we had to modify thestréssion policy for the two protocols.

In our implementation of MORE, the application instead\d& packets to the IP when only the second con-
dition holds and there is enough space in the socket buffem the IP layer, the packets are delivered to the
wireless driver stored at the card’s queue for transmisatom later time. Similar to a layer 2.5 implementation,

°To reduce the header overhead, we used 1-byte IDs insteabyi&4P addresses.

19

the credit counter is incremented every time a packet isweddrom an upstream node, and decremented after
every transmission.

Unlike in MORE, the credit counter in CCACK is incrementeavtime the MAC layer signals a transmis-
sion opportunity. Since the application cannot know wheardlis a transmission opportunity without access to
the MAC layer, we approximate the number of transmissionotjpities via the following heuristic. A node
increments its credit counter every time it hears a datagtacknsmission from another node by a fractionl GV
of the actual increment determined by the rate control étyor, whereN is the number of nodes in the node’s
neighborhood. The intuition behind this is that with a faiAll layer every node in a neighborhood would roughly
get an equal number of transmission opportunities. To apossible deadlock situations, where every node in a
neighborhood is waiting for another node to transmit, we alse a timeout equal to one data packet transmission
time, after which a node always increments its credit caunte

5.2.2 Dealing with queue sizes

With a layer-2.5 implementation [5] of an NC-based protpegbre-coded packet is always available awaiting for
transmission. If another innovative packet is receivedigethe pre-coded packet is transmitted, the pre-coded
packet is updated by multiplying the newly received packigh & random number and adding it to the pre-coded
packet. This approach ensures that every transmitted pexdedes information from all the received innovative
packets, including the most recent ones.

In contrast, in our implementation, we have no control ovpaeket, once it leaves the application layer, and
we cannot update the coded packets buffered at the socKet bufiwaiting for transmission at the card’s queue,
if a new innovative packet is received. This inefficiency tave a significant impact on the performance of the
two protocols. If a packet is queued either at the IP or at t&CMayer for a long time, it may not contain
information from all the received packets so far. Even wptke downstream nodes may have already received
enough packets from the current batch, in which case theeemglipackets should not be transmitted at all. This
is true in particular at the MORE sources which may createkgiacat a rate faster than the (actual) MAC’s
transmission rate; in contrast, in CCACK the sources ae @dsed down by the rate control algorithm. To avoid
this problem, we limit the socket buffer size to one packet tine card’s queue length to three packets, in order
to minimize the time from the moment a packet is created aapgmication layer till the moment the packet is
actually transmitted.

5.2.3 Dealing with end-to-end ACKs

In both protocols, a destination sends an end-to-end ACK tmathe source every time it decodes a batch. It is
critical for the performance of the protocols that these ACife propagated to the source in a fast and reliable
way, since, otherwise, the source cannot move to the neshbat

ACK reliability. To provide reliability, the ACKs in MORE arenicastat the MAC layer. In contrast to 802.11
broadcast mode, 802.11 unicast mode provides a reliaigghanism through acknowledgments and retransmis-
sions. Unfortunately, there is an upper limit to the numtdimes a packet can be retransmitted at the MAC layer.
For our Atheros wireless cards, this limit is 11. In our expemts, we found that 11 retransmissions were not
always enough to deliver the packet to the next hop (esyedatier heavy traffic). Since this particular card does
not allow changing this limit througlwconfig we had to implement an additional ACK-retransmission swhat

the application layer.

Fast ACK propagation. Similar to in [5], ACKs are sent to the source over the shofdsX path to ensure quick
propagation. In addition, in [5], ACKs are prioritized ovdaita transmissions. In addition to ensuring fast ACK
propagation, prioritizing ACKs over data packets is catit our application layer implementation for one more

20

reason. Since we have no control over a packet once it lebeesgplication layer, we have to guarantee that an
ACK packet will never be dropped if the card’s queue is fuldata packets.

To implement ACK priority over data packets in our applioatiayer implementation, we leveraged the TOS
bits (“TOS filed”) of the IP header, which can be set usssgsockopat the application layer, and the priority
properties in Linux routing [16]. The basic queuing distiplin Linux, pfifo_fast is a three-band first-in, first-
out queue. Each band igqueuelerpackets long, as configured witftonfig In our implementation, we set
txqueuelen = 5as mentioned in 5.2.2. Packets are enqueued in the threks baised on their TOS bits. The
three bands, 0, 1, 2, have different priorities, with bancifng the highest priority and band 2 having the lowest
priority. Packets from a given band are dequeued only whiemigther priority bands are empty. By default, the
TOS bits are set t6000 and packets are enqueued in band 1. For ACKs, we set théfri@o This combination
corresponds to “minimum delay + maximum reliability” (or ffmd”) and enqueues the ACKs in the highest
priority band 0.

Another factor that caused significant delay to the ACK peckaed resulted in very low throughput was the
ARP messages. Since ACKs are unicast at the MAC layer, tliesehan ACK first sends an ARP request before
the actual transmission of the ACK packet, in order to leamMAC address that corresponds to the IP address
of the next hop. If no reply is received, the ARP request iaregmitted after a timeout (the default is 1 sec). Both
the ARP requests and the ARP replies breadcastat the MAC layer. Since 802.11 broadcast implements no
reliability mechanism for broadcast frames, ARP messagesusceptible to loss due to poor channel conditions
or collisions. Indeed, we observed in our experiments tbatetimes ARP requests were retransmitted up to
90 times, which resulted in a 1.5 min delay, before the acN@K was sent. To deal with this problem, before
each experiment, we cached permanently at each node ondahestshETX path from a receiver to the source,
the IP-MAC mapping of the next hop, using tipecommand, thus completely eliminating the exchange of ARP
messages during the experiment.

In addition to the two protocols, we also implemented an ETeasurement module, same as the one we used
in our simulations. The source code for the two protocols #edETX module together is over 7800 lines of C
code.

5.3 Experimental setup

In the implementation of the two protocols we used the samenpeters as in our simulation study in Section 4.
In all the experiments, the bitrate of the wireless cards seaso 2Mbps and the transmission power to 16dBm.
We disabled RTS/CTS for unicast frames as most operaticetalarks do. With these settings, the length of the
shortest ETX paths between different nodes is 1-5 hops gilkemnd the loss rates of the links vary from 0% to
91%, with an average value of 36%.

We experimented with 20 single-flow scenarios (i.e., rangioselected source-destination pairs), 10 2-flow
scenarios, and 6 3-flow scenarios. For each scenario, wedirshe ETX module to collect the pairwise loss rates
and ETX metric for each link of our testbed, and then we ranloeprotocols, MORE and CCACK, in sequence.
With both protocols, the source sent a 2.3MB file consisting4®0-byte packets.

As we have explained in Section 4.1, the gain of CCACK over NEd&more pronounced with flows over long
paths, where the destination is several hops away from tiresoUnfortunately, the size of our testbed limited our
choices in flow selection. Hence, in the single-flow experitaalescribed below, we also included flows where
the destination was 2 hops away from the source (unlike iti@ed.2, where the minimum source-destination
distance was 3 hops). Similarly, the small size of the testhsulted in a large fraction of the nodes being within
sensing range of each other; this prevented us from inecrgdbie total number of flows beyond three, since the
medium became congested, resulting in very poor performéordoth protocold® These two limitations, along

19As explained in [5], intra-flow NC based protocols cannotéase the capacity of the network and they can only improssutihput
as long as the total load remains below the network capacity.

21

250 100%
= MORE 90%

CCACK

200 80%
70%
150 60%
; 50%
100 40% ‘
i 30%:":

50 205§

%

1] 0%

1 3

2 -50% 0% 50% 100% 150% 200% 250% 300% 350%
Number of flows Relative Throughput Improvement (%)

Average Flow Throughput (Kbps)
Cumulative Fraction of Flows

(a) Average per-flow throughputs (bars) and standbjdCDF of relative throughput improvement of
deviations (lines). CCACK over MORE.

100% T
l MORE oot R
CCACK
80%
70%
60%
' s0% . --- 2 flows
i 3 flows
40% ¢
i 30%
zq%:
-=10%
0%
2 3

-20% -10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Number of flows Relative FI Improvement (%)

Average Fairness Index
© o o o o o o
w » w o ~N 0 ©o

o
N
Cumulative Fraction of Flows

°
b

Sk

(c) Average per scenario Fls (bars) and standarddje<CDF of relative FI improvement of CCACK
viations (lines). over MORE.

Figure 11. Testbed evaluation.

with the implementation limitations we discussed in Setdd.1, are expected to limit the gains of CCACK over
MORE, compared to the simulations results in Section 4.

5.4 Experimental results

The testbed evaluation results are shown in Figures 111é)),111(c), and 11(d).

Figures 11(a), 11(b) compare throughput with CCACK and MOR#t 1, 2, and 3 flows. In Figure 11(a),
we observe that CCACK outperforms MORE by 36% on averageérnitfiow scenarios, by 11% in the 2-flow
scenarios, and by 15% on average in the 3-flow scenariosrd=ggh) plots the CDF of per-flow relative throughput
improvement with CCACK over MORE, as defined in Section 4.@hw, 2, and 3 flows. CCACK improves per-
flow throughputs for 72% of the flows in the 1-flow scenarios¥®baf the flows in the 2-flow scenarios, and 75%
of the flows in the 3-flow scenarios. The median improvemed8&, 3%, and 28%, respectively, in the 1-, 2-,
and 3-flow scenarios. These gains are lower than the onesveldsia the simulation results in Section 4, due to
the limitations we discussed in Section 5.3. In spite ofeh@xitations though, our results still demonstrate the
benefit of CCACK over MORE in the case of challenged flows. Weeole that about 20% of the flows in 1-flow
and 2-flow scenarios, and 17% of the flows in the 3-flow sceaafmw a several-fold throughput improvement
with CCACK, up to 3x, 2.4x, and 3.2x, respectively.

Figures 11(c), 11(d) compare fairness with CCACK and MORI[are of 2, and 3 concurrent flows. Fig-
ure 11(c) plots the average Fl with the two protocols. We oleséhat the average Fl is higher with CCACK in
both the 2-flow, and 3-flow case by 5.7% and 18.9%, respeytifélese values are actually higher than the simu-

22

lation results. Due to the small size of the testbed, the oitgets more easily congested, even with 2 flows and
CCACK'’s backpressure-inspired credit mechanism is vefgctife in allocating the medium’s bandwidth fairly
among contending flows. Figure 11(d) plots the CDF of penare relative FI improvement with CCACK over
MORE. CCACK improves fairness in 60% of the 2-flow scenarag] 65% of the 3-flow scenarios and the gains
can be as high as 83% in some challenged scenarios.

6 Conclusion

The use of random linear NC has significantly simplified thsigle of opportunistic routing (OR) protocols by
removing the need of coordination among forwarding nodesoiding duplicate transmissions. However, NC-
based OR protocols face a new challengiw many coded packets should each forwarder transmé&void
the overhead of feedback exchange, most practical exisiitidpased OR protocols compute offline the expected
number of transmissions for each forwarder using heusdtised on periodic measurements of the average link
loss rates and the ETX metric. Although attractive due tar timénimal coordination overhead, these approaches
often suffer significant performance degradation in dymamireless environments with continuously changing
levels of channel gains, interference, and backgrounéidaraf

In this paper, we presented a novel approach to NC-based @Rgth the design of CCACK, a new efficient
NC-based OR protocol. Instead of avoiding feedback exahaBEACK encodes feedback messages in addition
to encoding data packets. A novel Cumulative Coded Ackndgrieent scheme allows nodes in CCACK to
acknowledge network coded traffic to their upstream nodessmple and efficient way, oblivious to loss rates,
and with practically zero overhead. The cumulative codddhewledgment scheme in CCACK also enables an
efficient credit-based, rate control algorithm. Our exgpennts on a 22-node 802.11 WMN testbed show that
compared to MORE, a state-of-the-art NC-based OR prot@0hCK improves both throughput and fairness, by
up to 3.2x and 83%, respectively, with average improvemehid-36% and 5.7-8.3%, respectively, for different
numbers of concurrent flows. Our extensive simulations sti@t the gains are actually much higher in large
networks, with longer routing paths between sources antindgiens.

References

[1] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Juddj Robert Morris. Link-level measurements from
an 802.11b mesh network. Froc. of ACM SIGCOMMAugust 2004.

[2] John Bicket, Daniel Aguayo, Sanijit Biswas, and Robertrii4o Architecture and evaluation of an unplanned
802.11b mesh network. IRAroc. of ACM MobiCom2005.

[3] Sanjit Biswas and Robert Morris. EXOR: Opportunisticltabiop routing for wireless networks. IRroc. of
ACM SIGCOMM 2005.

[4] Joseph Camp, Vincenzo Mancuso, Omer Gurewitz, and EdiWaightly. A measurement study of multi-
plicative overhead effects in wireless networksPloc. of IEEE INFOCOM2008.

[5] Szymon Chachulski, Michael Jennings, Sachin Katti, Bivth Katabi. Trading structure for randomness in
wireless opportunistic routing. IRroc. of ACM SIGCOMM2007.

[6] Douglas S. J. De Couto, Daniel Aguayo, John C. Bicket, Rntert Morris. A high-throughput path metric
for multi-hop wireless routing. IiProc. of ACM MobiCom2003.

[7] Saumitra M. Das, Himabindu Pucha, Konstantina Papagigin and Y. Charlie Hu. Studying Wireless
Routing Link Dynamics. IrProc. of ACM SIGCOMM/USENIX IMQR007.

23

[8] R. Draves, J. Padhye, and B. Zill. Routing in multi-radmoulti-hop wireless mesh networks. Rroc. of
ACM MobiCom September 2004.

[9] Christos Gkantsidis, Wenjun Hu, Peter Key, Bozidar Ramlic, Steluta Gheorghiu, and Pablo Rodriguez.
Multipath code casting for wireless mesh networksPhoc. of ACM CoNEX;T2007.

[10] Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Hawtequantitative measure of fairness and discrim-
ination for resource allocation in shared computer systé@rashnical report, Digital Equipment Corporation,
September 1984.

[11] David B. Johnson and David A. MaltzDynamic Source Routing in Ad Hoc Wireless NetworKsuwer
Academic, 1996.

[12] Ad Kamerman and Guido Aben. Net throughput with IEEE.8Q2vireless LANSs. IrProc. of IEEE WCNC
2000.

[13] Sachin Katti, Shyamnath Gollakota, and Dina Katabi. bEaning wireless interference: Analog network
coding. InProc. of ACM SIGCOMM2007.

[14] Yi Li, Lili Qiu, Yin Zhang, Ratul Mahajan, Zifei Zhong, @urav Deshpande, and Eric Rozner. Effects of
interference on throughput of wireless mesh networks: dagfies and a preliminary solution. Froc. of
HotNets-V] 2007.

[15] Yunfeng Lin, Baochun Li, and Ben Liang. CodeOR: Oppoistic routing in wireless mesh networks with
segmented network coding. Rroc. of IEEE ICNR 2008.

[16] Linux Advanced Routing and Traffic Contrdit tp: //lartc.org//lartc. htm /.
[17] madwifi.http:// madw fi.org.

[18] Joon-Sang Park, Mario Gerla, Desmond S. Lun, Yunjungavid Muriel Medard. Codecast. a network-
coding-based ad hoc multicast protockdEE Wireless Communications3(5), 2006.

[19] Charles E. Perkins and Elizabeth M. Royer. Ad hoc on-gietndistance vector routing. Froc. of IEEE
WMCSA February 1999.

[20] Bozidar Radunovic, Christos Gkantsidis, Peter Key Bablo Rodriguez. An optimization framework for
opportunistic multipath routing in wireless mesh networks Proc. of IEEE INFOCOM Minisymposiuym
2008.

[21] Leandros Tassioulas and Anthony Ephremides. Stahilibperties of constrained queing systems and
scheduling for maximum throughput in multihop radio netksor IEEE Transactions on Automatic Con-
trol, 37(12), 1992.

[22] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. Glomos#vlibrary for parallel simulation of large-scale
wireless networks. IProc. of PADS Workshoplay 1998.

[23] Xinyu Zhang and Baochun Li. Dice: a game theoretic freumk for wireless multipath network coding. In
Proc. of ACM MobiHog2008.

[24] Xinyu Zhang and Baochun Li. Optimized multipath netwaoding in lossy wireless networks. RFroc. of
IEEE ICDCS 2008.

24

[25] http://www.engineering.purdue.edu/mesh.

[26] MIT Roofnet. http://www.pdos.lcs.mit.edu/roofnet.

[27] More source code. http://people.csail.mit.edu/siyore/README.html.
[28] Seattle wireless. http://www.seattlewireless.net.

[29] Bay area wireless users group. http://www.bawug.org.

25

