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ABSTRACT 1. INTRODUCTION

With the proliferation of smartphones and tablets, mobile de-
vices are soon becoming a preferred medium of Internet ac-
cess in Wireless LANs (WLANs). Due to their smaller form
factor, these truly mobile devices allow the users to access the
wireless networks while undergoing different types of mo-
bility, posing new challenges to wireless protocols. Current
history-based protocols that maximize performance in static
settings do not work well in mobile settings where wireless
conditions change rapidly. Thus, today’s WLANs need to be
able to determine the type of the client’s mobility and em-
ploy appropriate strategies in order to sustain high perfor-
mance. While previous work tried to detect mobility using
hints from sensors available in today’s mobile devices, in this
work, we demonstrate how different mobility modes can be
distinguished by using physical layer information — Channel
State Information (CSI) and Time-of-Flight (ToF) — available
at commodity APs, with no modifications on the client side.
In addition, we demonstrate how fine-grained mobility deter-
mination can be exploited to improve performance of client
roaming, rate control, frame aggregation, and MIMO beam-
forming. Our testbed experiments show that our mobility
classification algorithm achieves more than 92% accuracy in
a variety of scenarios, and the combined throughput gain of
all four mobility-aware protocols over their mobility-oblivious
counterparts can be more than 100%.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless commu-
nication
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Wireless LANs (WLANs) were previously dominated by static
network users with devices such as laptops and notebooks.
However, with the proliferation of smartphones, tablets, and
the advent of the BYOD phenomenon, mobile devices are
soon becoming the preferred medium of Internet access. Due
to their smaller form factor, these truly mobile devices al-
low the users to access the wireless network while undergo-
ing different forms of mobility. Thus, unlike previously when
WLANS used to mainly serve static clients, today they need to
be optimized for mobile clients as well.

Client mobility poses difficult problems to the WLAN proto-
cols. In static scenarios, the wireless channel remains stable
and hence wireless protocols can refer to the past transmis-
sion history, carefully adapting themselves to avoid any fail-
ures and optimize performance. In contrast, during mobility,
wireless conditions may change frequently requiring proto-
cols to be agile and apply different strategies. Designing such
strategies is not trivial because they depend on the actual type
of mobility demonstrated by the client. E.g., the length of past
history that a wireless protocol can refer to depends on the
intensity of the mobility of the client. If the client is walking
towards her access point (AP), the wireless channel is likely
to become better and hence transmission bit-rate control can
be more aggressive. Whereas if the client is walking away
from her AP, bit-rate control needs to be conservative. The
WLAN should try to move the client to a better AP only when
the client is moving away from her AP and should not con-
sider roaming for static clients because it is unlikely that a
better AP will be discovered. Likewise, mechanisms to ob-
tain higher throughput in modern 802.11n/ac WLANSs, such
as frame aggregation, beamforming, multiuser-MIMO (MU-
MIMO), require different optimizations based on the intensity
of mobility of the client. Therefore, unless the WLAN proto-
cols can somehow determine the type of the client’s mobil-
ity and thereafter employ appropriate strategies, it is unlikely
that they will be able to sustain high performance.

Today’s WLAN protocols are unable to distinguish between
different types of client mobility that a wireless client may
undergo. They generally try to sustain performance by ap-
plying heuristics to reduce wireless errors. If the number of
errors is high, current protocols try to improve performance
by employing aggressive strategies. On the other hand, if the
number of errors is low, they try to maintain reliability by be-
ing more conservative. Such a general framework is slow to
adapt to client mobility.



Recognizing the difficulty to detect mobility using the client’s
RSSI values, recent work [1] tried to detect mobility using
the accelerometer in a mobile phone. While this technique
can broadly classify between stationary and mobile devices,
it has a few disadvantages. First, the use of client’s on-board
sensor means that mobility detection can only be performed
by the mobile client. This requires changes at both the client
and the AP because, to benefit download traffic, the protocol
is required to communicate the device’s mobility state to the
AP. Second, this technique can be implemented only on client
devices that have an accelerometer, and it requires the sensor
to be on consuming battery life. Rather than changing the
client, which is a more difficult proposition, we demonstrate
how different mobility modes can be distinguished by using
physical (PHY) layer information available at commodity APs.

In our study we identify four broad categories of client mo-
bility. If the client is stationary, it can be in the static mobility
mode when there are no significant environmental changes
affecting the channel between the AP and the client. A static
client may also be in the environmental mobility mode when
the channel changes due to external movements. Of course
the wireless client itself may be moving — a mobility mode that
we call device mobility. The wireless client may experience
different speeds under device mobility However, we iden-
tify two broad and dominant categories of device mobility in
WLANS. First, the user may slowly move the device although
she is stationary or her movement is confined within a small
area. E.g., the user may be attending a VoIP call over WiFi
and a little movement of her head may displace her smart-
phone. The user may be playing an online multi-user game
where the game controls require her to shake the phone or
tablet frequently. She may be roaming around within her of-
fice or cubicle while watching a streaming video or listening
to streaming music. We define that the client is under micro-
mobility if it is under device-mobility but its location is con-
fined within a small area. On the other hand, device mobility
may also cause the client to change its location as its user
walks from one location to another. In such scenarios, we
classify the client to be under macro-mobility.

We utilize Channel State Information (CSI) and Time-of-Flight
(ToF) values available from off-the-shelf HP MSM APs to de-
termine the client’s mobility mode. CSI captures the fine-
grained characteristics of the wireless channel. We show that
the temporal changes in the CSI can discriminate between
static, environmental, and device mobility. However the CSI
value may change similarly for micro and macro mobility sce-

narios. To distinguish between these two device mobility modes,

we find that the client’s distance from the AP changes signif-
icantly under macro-mobility, whereas under micro-mobility
her distance seldom changes. The ToF can reliably indicate
the distance between the client and the AP because it cap-
tures the round trip propagation time between the two. The
increasing vs. decreasing trend of the client’s distance can
further indicate her relative heading with respect to the AP,
whether the client is moving away from or moving towards
the AP.

In addition to mobility determination using PHY layer infor-
mation, we make the following contributions:

e Client roaming: In section 3, we demonstrate how the
knowledge of the mobile client’s relative heading can be
exploited to improve client roaming in WLANSs. By encour-
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Figure 1: CDF of standard deviation of RSSI computed
every 5 seconds, for various types of mobility.

aging the client to roam when it is moving away from its
current AP, our protocol improves performance by up to
40% in our testbed experiments.

 Rate control: In section 4, we show how mobility-awareness
can further improve an existing frame-based rate control
scheme. Mobility hints can help the rate control scheme de-
termine when it can aggressively increase rate or whether
past history should be accounted for while choosing the bit-
rate. Testbed experiments show that mobility-aware rate
control can improve performance by up to 30%.

o Frame Aggregation: In section 5, we demonstrate that the
frame aggregation size needs to be adapted depending on
the client’s mobility mode. Our testbed experimentation
shows that, when compared with schemes using default ag-
gregation size, our adaptive scheme can improve through-
put by up to 30%.

» Beamforming and MU-MIMO: Beamforming and MU-MIMO
require frequent and expensive CSI feedback from the client.
In section 6, we show that the frequency of CSI feedback
depends on the mobility mode of the client. By adapting
the CSI feedback frequency based on client’s mobility, we
demonstrate that performance can be improved by up to
70% in testbed experiments.

2. MOBILITY CLASSIFICATION

This section presents our design and algorithms for mobility
classification using PHY layer information. We begin with a
description of our experimental setting using commodity APs
and smartphones.

2.1 Experimental Setup

We use HP MSM 460 APs with Atheros AR9390 chipset and
Samsung Galaxy S5 smartphones in our experiments. We
tuned the AP at 5.805GHz using a 40MHz channel width
and the 802.11n protocol. The MSM AP is equipped with
3 transmit antennas while the Samsung smartphone has 2
antennas. We sent regular data packets from the AP and
collected CSI, ToF, and Received Signal Strength Indicator
(RSSI) information from the acknowledgment (ACK) sent by
the client. We ran four different experiments to analyze dif-
ferent classes of mobility. First, we evaluated static mobil-
ity by placing the smartphone in our lab with several people
present but not moving. Second, for environmental mobility,
we experimented in a cafeteria during lunch hours where the
smartphone was static on a table. Third, for micro-mobility,
we picked up the phone and moved it around within a meter
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Figure 2: (a) Variation of CSI similarity values over time. CDF of CSI similarity values (b) for various mobility modes, (c)

for device mobility at different CSI sampling frequencies.

of its location, using natural gestures. Lastly, for evaluating
client macro-mobility, we walked naturally with the phone in
our hand or inside the pocket. Our goal is to develop simple
classification schemes that can distinguish among the above
four scenarios.

2.2 C(Classifying Mobility using RSSI

We explore the possibility of classifying the mobility mode
of the client solely by relying on the PHY layer information
available from commodity WiFi APs. One possibility can be to
utilize the RSSI of the client. In our experiments, we found
that RSSI is quite stable in static scenarios in a quiet environ-
ment (Figure 1). However, RSSI is susceptible to any changes
in the environment [1]. Often, the RSSI variation under envi-
ronmental mobility is higher than the observed variation un-
der device mobility (Figure 1). Therefore, we conclude that
it is difficult to distinguish between environmental and device
mobility solely based on RSSI. We will show next how CSI can
conclusively classify these two types of mobility.

2.3 Classifying Mobility using CSI

Wireless is a broadcast medium. Any transmitted signal from
the client undergoes reflections and arrives along multiple
paths (multipath) at the AP. The wireless channel between
the client and the AP is expected to vary under environmen-
tal or device mobility. This is because the fine-grained multi-
path structure may change if there are moving objects in the
environment, or the device itself moves. These fine-grained
variations of the wireless channel cannot be captured by RSSI
because it only captures an aggregate indicator of all the mul-
tipath components. However, we found that the same varia-
tions can be reliably detected by CSI. CSI captures the fine-
grained multipath characteristics between the client and the
AP in the frequency domain. The Atheros 9390 chipset can
export the CSI of a received packet. On a 20 MHz channel,
CSI is reported as a matrix of complex numbers represent-
ing the channel gain for each of the 52 subcarriers and every
transmit-receive antenna pair at the AP and the client. We
track the change in the CSI values to detect any variations of
the wireless channel. We define the similarity between CSI
samples, csi; and csi,,, collected at two different time in-
stances r and ¢ +7 as:
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where 7 is the time period between the two CSI samples, and
lesill, |csz[+T| represent the channel gain for the i-th sub-
carrier at times ¢ and ¢+ 7, respectively. In static scenarios,
for small values of 7, the similarity stays close to 1 because
the CSI matches across time indicating a stable channel (Fig-
ure 2(a)). In contrast, the similarity value drops sharply un-
der environmental or device mobility due to rapid changes in
the wireless channel (Figure 2(a)). Furthermore, we found
that the similarity drops faster for device mobility than en-
vironmental mobility. This happens because environmental
mobility typically affects only a few multipath components,
whereas if the client itself is moving, all the multipath com-
ponents will be affected. Therefore, the wireless channel ex-
periences faster variation under device mobility than under
environmental mobility as evident by the larger change in CSI
values.

Figure 2(b) shows the distribution of similarity of consecutive
CSI samples collected at every 0.5 seconds. Clearly, the sim-
ilarity distribution can be used to distinguish between static,
environmental, and device-mobility scenarios. If the simi-
larity of consecutive CSI samples is greater than Thrg;q =
0.98, we declare that the client is stationary with no envi-
ronmental changes, whereas a similarity below Threy, = 0.7
indicates device-mobility. However, from Figure 2(b), it ap-
pears that it is difficult to distinguish between device micro-
mobility and macro-mobility using CSI. Figure 2(c) demon-
strates that the gap between the micro and macro-mobility
distribution increases if we sample the CSI more frequently.
However, there are still large overlapping regions. We found
that even if we sample the CSI every 50ms, the probabil-
ity of mis-classification between micro- and macro-mobility
is higher than 50%. Therefore, we conclude that even if it is
possible to use CSI to distinguish between device and envi-
ronmental mobility, it cannot be reliably used to distinguish
between different classes of device mobility.

2.4 Classifying Device Mobility using
Time-of-Flight

To classify device mobility, we utilize the intuition that the
distance between the client and the AP under macro-mobility
changes more than that under micro-mobility. Client’s dis-
tance can be estimated based on its RSSI [2] or CSI [3] mea-
surements at the AP. However, previous work has shown that
RSSI and CSI are unreliable indicators of distance [4]. In
search of a better metric for distance, we find that a PHY layer
metric called Time-of-Flight (ToF) can accurately capture the
distance between the client and the AP [4,5]. Due to space
limitation, we provide here only a high-level overview of the
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ToF estimation and refer the reader to [4] for details. ToF is
defined as the round trip propagation time of a signal trans-
mitted between the AP and the mobile device. The Atheros
chipset can precisely compute the Time-of-Departure (ToD)
of a data packet when it is sent out in the air at the PHY layer
(Figure 3). On correct reception of the packet, the client waits
for an SIFS duration (a fixed value in the 802.11 standard)
and starts responding with an ACK packet. The chipset also
reports an estimated Time-of-Arrival (ToA) of the ACK packet
at the AP as shown in Figure 3. The difference between the
ToA and ToD contains the ToF between the AP and the client.
Since ToF is proportional to the distance between the client
and the AP, it can be used to classify device-mobility.

Figure 4 plots the ToF values over time for two different de-
vice mobility scenarios. For the micro-mobility scenario, when
the user naturally moves the device only within a small area,
noisy ToF values can sometimes wrongly indicate changes
in distance values. However, the change in noisy ToF val-
ues in the micro-mobility case is quite random, while for the
macro-mobility scenario the ToF either steadily increases or
decreases. This happens due to the fact that during macro-
mobility a user typically walks a reasonable distance between
two physical turns. Within a reasonable time interval a walk-
ing user may either approach or move away from the AP,
without changing her orientation. Therefore, to detect macro-
mobility, we maintain a moving window of ToF values. Only if
all the ToF values in the moving window suggest an increas-
ing or decreasing trend, we declare that the client is under
macro-mobility, otherwise the client is under micro-mobility.
The trend of the ToF values can also suggest the general di-
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Figure 5: Mobility classification design

Detection result (%)
Ground truth Static | Environmental | Micro | Macro
Static 99.7 0.3 0 0
Environmental | 4.55 92.78 2.67 0
Micro-mobility 0 3.58 95.59 | 0.83
Macro-mobility 0 0 1.7 98.3

Table 1: Evaluation of mobility classification.

rection of the client’s motion — an increasing trend means that
the client is moving away from the AP and vice versa. Later,
we will demonstrate how the WLAN can optimize client roam-
ing by exploiting the user’s direction of motion.

2.5 Evaluation of Mobility Classification

Figure 5 shows the overall design of mobility classification us-
ing CSI and ToF. We sample the CSI of the client periodically
from existing data packet transmissions and maintain a mov-
ing average of the similarity between consecutive CSI values.
We compare the CSI similarity values with empirically cho-
sen thresholds (see Section 2.3) to distinguish between static,
environmental and device mobility. If the CSI similarity indi-
cates device mobility, we need to further consult the client’s
ToF values. To deal with measurement noise [4], we sample
the client’s ToF readings every 200ms and aggregate them ev-
ery second using a median filter. In our implementation, if
all ToF values within the past few seconds show an increas-
ing or decreasing trend, we conclude that the client is under
macro-mobility. Further, if all the ToF values show an increas-
ing trend, we conclude that the client is moving away from
the AP and vice versa.

We implemented our mobility classification algorithm using
the HP MSM APs and evaluated its accuracy by performing
experiments at more than 100 locations (different from those
we used for learning the various thresholds and parameters
of our scheme in Sections 2.3, 2.4) in two office buildings for
over 24 hours. At each location we subject the client to dif-
ferent forms of mobility. Table 1 presents our overall perfor-
mance results. We observe that the accuracy of our mobility
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Figure 6: Accuracy and false positives of (a) CSI-based
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tection window sizes.

classification is more than 92% in all scenarios.

We also found that the performance of distinguishing station-
ary vs. device mobility using CSI depends on the sampling
period of the CSI (Figure 6(a)). The accuracy is low for short
sampling period because the channel may not change very
quickly even under device-mobility. We use a CSI sampling
period of 500ms in the rest of our evaluation, yielding a me-
dian accuracy of 96%.

If the client is under device-mobility, we need to consider the
ToF values within a detection window of a few seconds and
determine if the ToF values have an increasing or decreasing
trend. Of course, the larger the detection window, the greater
will be the accuracy (Figure 6(b)), but large detection win-
dows will delay the macro-mobility detection. Nonetheless,
we find that a detection window of 4s yields a satisfactory ac-
curacy of 98%, and hence we use the same in the rest of the
paper.

In this work, we identify four broad categories of client mo-
bility. One could suggest more fine-grained mobility classifi-
cations, e.g., distinguishing among different subcategories of
macro-mobility based on the client’s speed or among different
types of micro-mobility based on whether the user is static
or moves within a small area. However, we argue that in a
WLAN environment categorizing client mobility in four broad
categories is quite sufficient and yields simplicity in protocol
design. In the following sections, we demonstrate that our
broad mobility classification already offers substantial perfor-
mance improvements to a number of wireless protocols.

3. MOBILITY-AWARE CLIENT ROAMING

Most wireless clients associate with the AP with the strongest
RSSI value. When the RSSI falls below a predefined thresh-
old, the client triggers a handoff, where it scans all the chan-
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nels and associates with the AP with the strongest RSSI. The
problem is that the client-based association control is agnos-
tic of the user’s mobility. A moving client may be close to a
stronger AP, but it does not try to discover or associate with
it, as long as the signal strength of the current AP is above a
predefined threshold [6, 7]. Of course, if the client somehow
knows that it is moving, it can scan aggressively to search
for better APs [1]. But frequent scanning is time consuming
and wastes energy (impacting battery life), consumes RF re-
sources, and prevents the client from transmitting or receiv-
ing data (impacting throughput). Therefore, under mobil-
ity the client often remains wrongly connected to a far away
AP, adversely affecting its own as well as the overall network
performance. To address this issue, rather than designing a
mobility-aware association scheme that requires changes at
the client [1], we propose a controller-based protocol that
moves the client to the appropriate AP whenever necessary.

3.1 Controller-based Roaming Protocol

Our roaming protocol is based on two main intuitions. First,
when the client is stationary or under micro-mobility, it is less
likely that a new, better AP will be discovered. Second, when
the client is under macro-mobility, roaming is required only
when the client moves away from the current AP. We vali-
date these intuitions by performing more than 100 experi-
ments at 50 different locations in our testbed. In each exper-
iment, we subjected the client to different types of mobility
and collected the RSSI values of different APs. We used the
RSSI values to compute an expected throughput from differ-
ent APs [8]. Figure 7(a) shows that in most mobility modes,
roaming to another AP only marginally improves the perfor-
mance of the client. Unless the client is walking away from
the current AP, it need not roam to improve performance and
can continue with the current AP. Environmental mobility can
cause fluctuations of the channel between the client and the
AP. However, these fluctuations are short term such that the
AP with the strongest RSSI is likely to remain optimal over
longer time-scales. Under micro-mobility, the client’s overall
physical location does not change significantly. WLAN deploy-
ments are typically well planned where each physical location
is meant to be covered by a single strong AP. Therefore, roam-
ing may be necessary only when the client’s location changes
significantly. But, even under macro-mobility, if the client is
approaching her current AP, roaming is not necessary because
the channel between the current AP and the client will only
become better. On the other hand, if the client is moving away
from the current AP, it may have a better channel quality to a
neighboring AP. In such scenarios, the controller needs to act
to move the client to the right AP.

Our controller-based protocol does not impose any changes
in the client’s association mechanism. The client initially con-
nects with the strongest AP and thereafter scans if the current
AP becomes weak. The current AP of the client continuously
determines her mobility mode and shares it with the con-
troller. If the current AP indicates that the client is moving
away from it, the controller may have to explicitly encour-
age the client to roam to a better AP. To determine a candi-
date set of better APs, the controller instructs the neighboring
APs to periodically transmit NULL data frames and compute
the client’s distance, RSSI and heading information towards
themselves. If the client is moving towards another AP whose
signal strength value is similar or higher than the current AP,
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it is likely that the same AP will improve the client’s long term
performance. Note that there can be several such candidate
APs which may be more appropriate (in terms of heading and
signal strength) for the client. If the controller finds at least
one such better AP, it instructs the current AP to disassociate
the client and asks only the APs in the candidate set to re-
spond to the client’s probe request. Consequently, the client
chooses an AP from the candidate set and roams to a better
AP, ultimately improving performance.

3.2 Performance Evaluation

We implemented our mobility-aware client roaming proto-
col in our testbed of 6 HP APs (Figure 13(a)) and used a
laptop connected to the APs over Ethernet as the controller.
We walked naturally with the phone and injected UDP traf-
fic from the controller to evaluate performance. We com-
pared our scheme with the client’s default roaming scheme as
well as the client-based association control scheme described
in [1] in which the client periodically scans for better APs if it
is mobile. Figure 7(b) shows that the client’s performance can
be improved by assisting her to roam to a better AP when it is
moving away from her current AP. Of course encouraging the
client to roam requires forced disassociation from the current
AP that triggers a scanning operation at the client. Scanning
adds overhead. We find that the client typically completes
association with a stronger AP within 200ms after being dis-
associated from the current AP. We believe this is reasonable
because after association the client will probably use the new
AP for a long duration. Nonetheless, even with the scan-

58

ning overhead, our proposal improves median performance
by nearly 30% over the default roaming scheme.

4. MOBILITY-AWARE BIT RATE
ADAPTATION

Knowledge of client’s mobility state can aid bit-rate adap-
tation because mobility affects wireless channel conditions.
The higher the intensity of motion, the faster the channel
may change and the quicker the optimal bit rate becomes
stale. We investigate how the optimal bit-rate of the client
changes under mobility. Figure 8(a) plots the time duration
for which a particular bit-rate remains optimal for different
mobility modes in our testbed. For this experiment we com-
puted the optimal rate using trace-based emulation, similar
to [9]. Clearly, the optimal bit-rate changes faster if the client
is mobile than when it is static. It is possible to track the
optimal bit-rate in static scenarios by maintaining long suc-
cess/failure history. However, under mobility, the optimal
bit-rate changes quickly and hence the rate control algorithm
should rely only on the recent transmission history.

We further found that depending on the client’s direction of
motion, i.e., moving away from or moving towards the AP,
the optimal rate typically changes either upwards or down-
wards (Figure 8(b)). Therefore, the client’s direction of mo-
tion relative to the AP can be used as a hint by the rate
control algorithm. Under environmental or micro-mobility,
the rate change does not show any pattern (Figure 8(c)),
but the optimal bit-rate stays within a small set of values.
This happens because under environmental or micro-mobility,
the frequency-selective nature of the channel may change but
the overall path-loss between the AP and the client remains
similar. These observations suggest that current rate control
schemes can improve performance by adapting according to
the client’s mobility mode. We demonstrate how this may be
feasible by incorporating mobility-awareness in the existing
Atheros MIMO rate adaptation (RA) scheme.

4.1 Atheros MIMO Rate Adaptation

Atheros MIMO Rate Adaptation (RA) is the default RA in HP
MSM 460 APs. It employs a transmitter-side frame-based
adaptation approach and does not require any training or
client feedback. The objective of the algorithm is to determine
the bit-rate that maximizes the MAC layer throughput which
is calculated as bit-rate * (1-PER) where PER is the packet er-
ror rate at the given bit-rate. After each frame transmission,
the algorithm updates the PER at the current bit-rate based on
the number of packet failures within the aggregated frame. It
applies a low pass filter on the instantaneous PER PER;¢y, as
calculated from the last transmitted frame, and maintains a
weighted moving average of the PER value (PERayg):

PERgyg = a* PERpew + (1 —a) * PERgyg (2)

where « is called the smoothing factor and has a default value
of 1/8 in the Atheros RA implementation. A larger a gives a
smaller weight on the previous PER history. This operation
smooths out the transients and takes into account past his-
tory. The algorithm further updates the PER of other bit-rates
based on the PER of the current rate. This is done by assuming
that the PER is a monotonically increasing function of rate .

IThe Atheros RA skips the MCS 5 -7 for single stream and
MCS 8-10 for double stream to maintain PER monotonicity.
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The Atheros RA starts with the highest bit-rate and sends an
aggregated frame containing several packets. If all the pack-
ets in a frame are lost such that it completely fails to get a link
layer Block ACK, it often switches to the next lower rate. On
the other hand, if the AP receives a Block ACK from the client,
it updates the PER values and thereafter decides on a lower
rate if the PER at the current rate is too high. The Atheros RA
also tries to increase bit-rate whenever possible by sampling
higher rates periodically. If the current rate has been success-
ful for more than a predefined probing interval, the algorithm
probes the next higher rate. Of course if the wireless channel
is deteriorating, excessive probing may hurt performance. We
show how Atheros RA can be improved using mobility hints.

4.2 Optimizing Atheros RA using Mobility Hints

Based on the observations from our measurements in the pre-
vious section (Figure 8), we make the following optimizations
to the Atheros rate adaptation algorithm:

1. The Atheros RA often reduces the bit-rate if it fails to get a
link layer Block ACK. This may be appropriate when the client
is moving away from the AP because the wireless channel may
be deteriorating. However, we note from Figures 8(b), 8(c)
that if the client is moving towards the AP or if it is in any
other mobility mode, this may be unnecessary because the
optimal bit-rate either improves or fluctuates within a small
band. In such scenarios, large errors can happen due to tran-
sient conditions such as fast fading or interference. We ignore
such random effects by retrying at the current rate once or
twice (Table 2) before reducing the rate, unless the client is
moving away from the AP.

2. In static scenarios, we incorporate longer PER history by
choosing a low value of the smoothing factor because bit-rate
changes only occasionally if the client is static (Figure 8(a)).
However, under mobility, the bit-rate may change quickly and
thus the protocol should only account for recent packet suc-
cesses and failures. Therefore, we choose a smoothing factor
that is commensurate to the client’s mobility mode.

3. We note that blindly probing higher rates may cause packet
losses because the protocol may be already operating at the
optimal rate. From Figure 8(b) we note that the optimal bit-
rate of the client increases rapidly only when it is moving
towards the AP. Otherwise, the optimal bit-rate seldom in-
creases or improves only gradually. To avoid packet losses
due to probing, we choose the probing interval based on the
current mobility mode of the client. If the client is moving
towards the AP, we use a short probing interval to quickly in-
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crease the rate whenever possible. In contrast, if the client is
moving away from the AP, we remain conservative by choos-
ing a long probing interval.

4.3 Rate Adaptation Evaluation

We study the benefit of augmenting mobility hints to Atheros
RA in our testbed. We modified the rate control implementa-
tion in the Atheros driver to control multiple related param-
eters depending on the mobility mode of the client. We con-
ducted more than 100 experiments on 30 different links with
both UDP and TCP traffic. In each experiment, we subjected
the client to different types of mobility and tried different val-
ues for the Atheros RA parameters. Our final chosen parame-
ters are shown in Table 2. We then evaluated the throughput
of download TCP traffic on 150 different links in two differ-
ent office buildings. At each location we subjected the client
to different forms of device mobility. Figure 9(a) shows that
by augmenting mobility hints to Atheros RA, it is possible to
improve its median performance by 23%.

We further compare the performance of our mobility-aware
rate adaptation scheme with existing state-of-the art rate con-
trol schemes. To ascertain identical channel conditions we
performed trace-based emulations using techniques similar
to [9]. Specifically, we modified the wireless driver of a HP
laptop containing Atheros 9390 chipset to extract the CSI
information from any download packet from the AP. There-
after, we walked with the laptop in random directions for
15 minutes each and collected CSI traces for 10 such walk-
ing experiments. Using the collected traces we evaluate the
throughput of Atheros RA with and without mobility hints,
RapidSample [1], SoftRate [10] and ESNR [9]. Figure 9(b)
shows that the mobility-aware Atheros RA performs better
than RapidSample which uses sensor hints to optimize rate
control. Unlike our scheme, RapidSample is unable to dis-
criminate between fine-grained device mobility modes, e.g.
micro vs. macro mobility or moving towards vs. away, and
thereafter is unable to apply specific optimizations. Both Sof-
tRate and ESNR use PHY layer information at the client to
calculate the bit-rate and report it back to the AP. We find
that the mobility-aware Atheros RA achieves almost the same
throughput as SoftRate. ESNR outperforms SoftRate because
it can indicate the bit-rate of the channel using a single ob-
servation, while SoftRate can typically only indicate whether
the rate should be increased, decreased, or unchanged [11].
Our scheme can achieve 90% of ESNR’s performance but no-
tably it does not require any modifications at the client or any
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per-client calibration to establish the ESNR vs. bit-rate rela-
tionship [9].

S. MOBILITY-AWARE FRAME
AGGREGATION

To achieve high throughput, IEEE 802.11 allows the wireless
transmitter to aggregate multiple packets in a single frame.
Aggregation achieves higher throughput because the PHY pro-
tocol overhead over multiple packets can be amortized by
packing them into a single frame. As the number of packets in
a frame (often referred to as aggregation size) increases, the
efficiency of the protocol improves resulting in greater perfor-
mance. Thus, it is generally believed that choosing a larger
aggregation size is beneficial. In fact, current implementa-
tions allow the transmitter to aggregate as many packets as
it can within an aggregation time of 10ms [12]. However,
choosing the highest aggregation size may hurt performance
under mobility as the wireless channel may vary within an
aggregated frame.

To understand the effect of channel variations on aggrega-
tion, we conducted a total of 60 experiments on 20 different
links in our office building. We injected download traffic to
the client while varying the aggregation size defined in the
driver from 2ms to 8ms for each mobility mode. We found
that in mobility scenarios, performance can actually decrease
if a large aggregation size is used (Figure 10(a)). This hap-
pens because the channel equalization procedure employed
by today’s wireless radios estimates the channel only at the
beginning of the frame. Under mobility, it is quite possible
that the wireless channel changes by the end of frame result-
ing into packet losses.

60

[00]
o

[ JAggregation time: 8ms
BAggregation time: 4ms
BAggregation time: 2ms

o
-

Throughput (Mbps)
N
o

20r ]
OfiStatic Environmental Micro Macro
1
0.8r ]
w 0.6r ]
(]
©Co.4f ]
| =Aggregation time: 8ms|
0.2 U
Aggregation time: 4ms|
0 ‘ ‘ =Adaptive aggregation
20 40 60 80 100
Throughput (Mbps)
Figure 10: (a) Mean throughput vs. frame aggregation

time in different mobility scenarios. (b) Comparison of
the adaptive mobility-aware frame aggregation scheme
against schemes that use a statically configured aggrega-
tion time.

5.1 Optimization and Performance Evaluation

To optimize the performance of frame aggregation, we note
from Figure 10(a) that the optimal aggregation time varies
across different classes of mobility. The higher the intensity
of mobility, the lower is the channel coherence time and hence
the lower is the optimal aggregation time. Therefore, we pro-
pose to tune the aggregation size at the AP based on the mo-
bility state of the client. We modified the WiFi driver at the
AP to vary the maximum allowed aggregation time based on
the mobility mode of the client — 8ms for static and environ-
mental mobility and 2ms for micro- and macro-mobility. The
actual aggregation size depends on the bit-rate used to com-
municate to the client: Aggregation size = Maximum allowed
aggregation time / Bit-rate.

We evaluated our modifications on 50 different links in two
office buildings and subjected the client to various mobility
modes, while injecting download TCP traffic from the AP. Fig-
ure 10(b) plots the performance of our aggregation scheme
on 50 different links. By selecting the aggregation size based
on mobility, it is possible to improve the median throughput
performance by 15% over the default Atheros scheme which
uses a statically configured 4ms maximum aggregation time.

6. MOBILITY-AWARE BEAMFORMING
AND MU-MIMO

MIMO beamforming can improve the performance of a wire-
less link by exploiting multiple antennas at the transmitter.
Single-user (SU) beamforming in 802.11n precodes a single
packet across multiple antennas at the AP so that the signals
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from different antennas combine coherently at the client, en-
hancing performance. Similarly, 802.11ac multi-user MIMO
(MU-MIMO) precodes packets for different clients so that they
can be transmitted simultaneously. The precoding operation

combines the outgoing packets and carefully chooses the weights

based on the CSI values between the AP (transmitter) and all
the clients (receivers). Therefore, for effective beamforming,
the AP must obtain timely CSI feedback from all the clients.
The CSI feedback packet may consist of a real and imaginary
value (quantized into up to 8 bits) for each subcarrier and
transmit-receive antenna pair. Frequent CSI feedback may be
harmful because the feedback packet is typically transmitted
at the lowest bit-rate, consuming significant channel airtime.
On the other hand, infrequent feedback may often result in
stale CSI and consequently performance loss. Hence manag-
ing the CSI feedback period is critical to the performance of
MIMO beamforming.

6.1 Effect of Mobility on SU-Beamforming

To understand the effect of CSI feedback period on SU-Beam-
forming, we conducted 150 experiments on more than 50 dif-
ferent links in our office building by allowing the AP to pe-
riodically initiate CSI feedback from the client and employ
beamforming while transmitting the data packets. We found
that none of the popular smartphones support explicit beam-
forming and hence we used an AP as the client in our beam-
forming experiments. Figure 11(a) shows that in static sce-
narios, a shorter CSI feedback period can actually hurt per-
formance. This is because the wireless channel remains sta-
ble in static scenarios. Therefore, frequent feedback only adds
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to the overhead and does not always result in better CSI esti-
mates. In contrast, if the client is mobile, the wireless channel
can change quickly, requiring frequent CSI feedback. Thus,
we need to adapt the CSI feedback period depending on the
client’s mobility mode.

6.2 Effect of Mobility on MU-MIMO

Our AP platform only supports 802.11a/b/g/n and hence is
not amenable to MU-MIMO experiments. We resort to trace-
based emulations to understand the effect of feedback period
on MU-MIMO. We emulate a scenario where the AP has 3
antennas and employs MU-MIMO techniques to concurrently
serve 3 clients — one each in environmental, micro- and macro-
mobility scenarios. For the emulation, we simultaneously col-
lected CSI traces at 3 locations using laptops containing Atheros
9390 chipset and a single receive antenna. We instrumented
the Atheros driver used in the laptop to report the CSI val-
ues for every transmitter-receiver antenna pair for each data
packet received from the AP. Thereafter we sent data packets
from the AP to each laptop every 500us. We fed the series of
CSI values to a MU-MIMO emulator written in C. The emula-
tor simulates CBR traffic between the AP and the clients and
reports the throughput for each client with and without MU-
MIMO techniques.

Figure 12(a) shows that MU-MIMO is also sensitive to stale
CSI values. Interestingly, mobility only affects the perfor-
mance of the mobile client and does not impact the static
clients noticeably. This happens because MU-MIMO precod-
ing ensures that signals from all the transmit antennas com-



bine coherently at each intended client, which is only re
lated to the channel between the AP and the respective client
Therefore it is possible to improve MU-MIMO performance by
using different CSI feedback periods that are commensurats
to the mobility modes of individual clients.

6.3 Performance Optimization & Evaluation

To optimize performance using SU-beamforming and MU-MI!

we note from figures 11(a) and 12(a) that the optimal CS

feedback period varies across different classes of mobility. The

higher the intensity of mobility, the quicker the CSI become:

stale and hence the higher is the required frequency of the CS

feedback. Therefore, we propose to tune the CSI feedback pe

riod at the AP based on the mobility state of the client. Wk

modified the WiFi driver at the AP to vary the feedback periou
based on the mobility mode of the client — 200ms for static,
50ms for environmental mobility, 10ms for micro-, and 5ms
for macro-mobility.

We evaluated SU-beamforming using adaptive CSI feedback
on 300 different mobile links in two office buildings by inject-
ing download TCP traffic from the AP. Figure 11(b) shows
that by selecting the feedback period based on mobility, it
is possible to improve the median throughput by 33% over
the default Atheros scheme which uses a statically configured
200ms feedback period.

To evaluate the benefits of adaptive CSI feedback on MU-
MIMO, we used the trace based emulation setup described
in section 6.2. In total, we collected CSI traces from 50 uni-
formly chosen locations from a busy office environment. At
each location, we kept the client stationary for approximately
5 minutes, followed by micro-mobility and macro-mobility ex-
periments for the same interval. Apart from collecting the CSI
trace at the client, we also recorded the CSI and ToF values
from the data-ACK exchange at the AP. For each trace, we es-
timate the mobility mode of the client every second using our
techniques described in section 2. Thereafter we randomly
pick 3 client locations and feed the corresponding CSI traces
and mobility estimates to our MU-MIMO emulator. To cal-
culate the precoding vector, the MU-MIMO emulator samples
the CSI traces every feedback period. For our scheme, the
feedback period is chosen on a per client basis depending
on her mobility state — 200ms for static, 50ms for environ-
mental mobility, 10ms for micro-, and 2ms for macro-mobility,
whereas the default scheme uses a 200ms CSI feedback period
for all clients. The emulator uses Atheros RA for rate control
and does not employ aggregation. We repeated the emula-
tion 200 times, each time with a different set of 3 client lo-
cations. Figure 12(b) plots the throughput gain of MU-MIMO
using adaptive CSI feedback over the static feedback period
scheme. Performance gain is evident for all varieties of mobil-
ity, with the most gains for clients under macro-mobility. On
average, our scheme improves MU-MIMO’s network through-
put by close to 40%.

7. OVERALL PROTOCOL PERFORMANCE

As explained in the preceding sections, we implement the
client’s mobility mode detection scheme at the AP. Further,
depending on the client’s mobility mode, at the AP and the
WLAN controller, we implement several actions to improve
rate control, client roaming, aggregation and beamforming
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(Table 2)2. To evaluate the combined protocol performance
for all such optimizations, we conducted iperf-based system
throughput tests in our testbed using 6 APs (Figure 13(a))
with UDP traffic. We walked naturally with the client through
different parts of the trajectory shown in Figure 13(a) and
evaluated the performance of our system as well as the de-
fault system which does not distinguish client’s mobility. As
shown in Figure 13(b), the mobility-aware scheme outper-
formed the default system in all the 90 tests we conducted
in our testbed. By taking appropriate actions based on the
client’s mobility mode, we improve overall protocol perfor-
mance by almost 100%.

8. RELATED WORK

Sensor hint-based optimization: The work closest to ours
is [1], which uses sensor hints (e.g., from GPS, accelerom-
eters, gyroscopes) from mobile devices to augment wireless
protocols. For example, the authors use mobility hints from
the accelerometer to select between two rate adaptation al-
gorithms; SampleRate [13] (in static environments) or Rapid-
Sample (in mobile environments). They further use accelerom-
eter hints to implement a hint-aware roaming protocol. Our
results in sections 3 and 4 demonstrate that due to our PHY-
based fine-grained discrimination of mobility modes, we out-
perform both RapidSample and the client-based roaming pro-
tocol from [1]. Further, while [1] only considers legacy
802.11, we show how mobility hints can help high-throughput

2We could not implement our MU-MIMO optimizations in the
testbed because of lack of 802.11ac support.



Mobility type
Protocol Parameter Static | Environment | Micro mobility . Macro mobility -
Moving away Moving towards
Client roaming Roaming preparation no no no Encourage clignt to roam no
to better AP if available.

Probe interval 50ms 50ms 50ms 100ms 20ms

Rate adaptation PER smoothing factor 1/16 1/12 1/4 1/3 1/3

Rate retries 1 1 1 0 2

Frame aggregation Aggregation limit 8ms 8ms 2ms 2ms 2ms
Beamforming CV update interval 200ms 50ms 10ms 5ms 5ms
MU-MIMO CV update interval 200ms 50ms 10ms 2ms 2ms

Table 2:

mechanisms introduced in the 802.11n/ac standards, such as
frame aggregation, beamforming and MU-MIMO. Trinity [14]
also uses accelerometer-based mobility hints to optimize dis-
tributed antenna systems and network-MIMO. Mobisteer [15]
uses location hints from GPS to find the best directional an-

tenna orientation and the AP to associate with. Breadcrumbs [16]

builds a mobility model based on GPS coordinates and uses
it to predict the best AP to associate with. CARS [17] uses
GPS readings to optimize rate control. In contrast to exist-
ing works, we exploit PHY layer information available from
off-the-shelf APs to obtain the client’s mobility information,
without relying on any external sensor and without requiring
any coordination with the client.

PHY-based mobility detection: Recently, there has been a lot
of interest in developing device-free passive motion detection
systems using radio signal dynamics. While most proposals
require hardware modifications [18-20], [21-24] use RSSI,
and FIMD [25] proposes CSI-based techniques. These sys-
tems can only identify environmental mobility and often have
higher complexity than our system. For example, FIMD uses
feature extraction and data fusion from multiple links to de-
tect environmental mobility with 90% accuracy. We can clas-
sify among static, environmental, and device mobility by only
calculating the similarity of the CSI values from a single link.

Rate control and client roaming: A large number of RA al-
gorithms have been proposed in the past. They can be clas-
sified into frame-based [13,26-31], SNR-based [9, 32-34],
and PHY-layer based [9-11]. Frame-based algorithms are of-
ten used in practice due to their simplicity but they are slow
to respond to rapidly changing channel conditions in mobile
environments. SNR-based algorithms can adapt faster but
they need “in-situ”training to overcome this sensitivity [35].
PHY-layer based approaches have been shown to outperform
SNR-based algorithms but they cannot be implemented on
commodity APs. ESNR [9] uses CSI from commodity cards
to estimate the bit-rate, but it requires careful per-client cal-
ibration to obtain the ESNR vs. bit-rate relationship. Our
mobility-aware modifications of the frame-based Atheros RA
algorithm does not require any such calibration and achieves
90% of ESNR’s performance on average. Like rate control,
client roaming has been widely studied to improve wireless
performance [36-39]. However, unlike our scheme, most
proposals either require changes at the client [37, 38] or at
both the AP and the client [39]. Like DenseAP [40], we man-
age the client’s association from the controller with no mod-
ifications at the client. We further improve controller-based
association control by incorporating mobility hints.
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802.11n/ac enhancements: Impact of channel dynamics on
802.11n frame aggregation have been studied using simula-
tion [41], modeling [42,43] and testbed experiments [30].
[42] and [43] calculate the frame aggregation limit based
on the bit error-rate (BER) and SNR respectively. While BER
and SNR can be indirect indicators, we observe that mobility-
hints can be a direct indicator of aggregation limit, improving
wireless performance. CSI feedback remains a critical issue
for high throughput 802.11n/ac mechanisms such as beam-
forming and MU-MIMO [44]. While there has been work
towards experimental evaluation of MU-MIMO [45] and its
variants [46], decreasing the overhead of CSI feedback is
mostly limited to [44]. While [44] is limited to frequent CSI
sampling, we show that by augmenting CSI with ToF, mobility
hints can reduce the overhead due to the CSI feedback period.

9. DISCUSSION AND LIMITATIONS

Uplink traffic: In this work we focused on downlink traffic
because download is still the dominant type of traffic in to-
day’s WLANs — often 20 times more than uplink traffic [47].
While some of our mobility-aware protocol modifications are
mostly limited to the AP (e.g., controller-assisted roaming,
beamforming, MU-MIMO), the others, such as bit-rate adap-
tation and frame aggregation can also be implemented on the
client side as well to benefit uplink traffic.

Roaming for real time traffic: Our roaming protocol explic-
itly encourages the client to roam whenever it detects that
the client is moving towards a better AP. While this approach
improves throughput for bulk transfer applications, as we dis-
cussed in section 3, the 200 ms required for a handoff may
increase both jitter and packet loss for real-time traffic. One
solution to this problem will be to minimize the number of
handoffs by choosing the farthest, yet reasonably strong, AP
the client is moving towards. Alternatively, we note that fast
BSS transition in 802.11r reduces the handoff overhead to
only 40ms [48]; hence, clients such as Apple devices that sup-
port 802.11r [49] can immediately benefit from our roaming
protocol without causing disruptions to real-time traffic.

Moving on a circle around the AP: If a client is moving on a
circle around the AP, our system will wrongly classify the type
of mobility as micro- instead of macro-mobility, as the ToF val-
ues will not be characterized by an increasing or decreasing
trend. Although this is not a typical mobility pattern, in our
future work, we plan to augment our system with Angle of
Arrival (AoA) information [3, 50] to address this limitation.

Other benefits of mobility-awareness: Mobility-awareness
could also guide the selection of channel width (a narrow 20
MHz channel may be more robust than the wider 40MHz,



80MHz, or 160 MHz channels, and hence, it may be pre-
ferred when the client is moving away from the AP) and the
type of MIMO mode (spatial diversity may be preferred over
spatial multiplexing when the client is moving away from the
AP). However, our preliminary experiments did not show any
significant gains for these two cases. We plan to investigate
these in more detail in our future work. We also plan to study
other protocols that could benefit from mobility-awareness,
e.g., adapting the length of cyclic prefix based on the client
speed, scheduling client traffic at an AP taking movement into
account, network monitoring, as well as distributed MIMO
techniques.

10. CONCLUSION

Today’s WLANSs have to be able to distinguish different types
of client mobility and use adaptive, motion-aware protocols in
order to sustain high performance. In this paper, we demon-
strate how different client mobility modes can be distinguished
by using physical layer information — Channel State Informa-
tion (CSI) and Time-of-Flight (ToF) — available at commodity
APs, with no modifications on the client side. Our testbed ex-
periments show that our algorithm achieves more than 90%
accuracy in a variety of scenarios. We also demonstrate how
fine-grained motion determination can improve performance
of client roaming, bit-rate control, frame aggregation, and
MIMO beamforming in 802.11n/ac WLANs. Our extensive
evaluation shows that motion-aware AP-side protocols out-
perform their motion-oblivious counterparts as well as prior
mobility-aware client-side solutions. In particular, the combi-
nation of all four mobility-aware protocols improves through-
put by almost 100% over the default AP implementation using
motion-oblivious protocols.
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