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ABSTRACT
We conduct one of the first extensive experimental studies of the

two main link adaptation mechanisms in 60 GHz WLANs, namely

rate adaptation and beam adaptation. We first show, using a variety

of commodity 60 GHz devices, that simple heuristics, used by these

devices to determine which the two mechanisms should be trig-

gered, can lead to wrong decisions even in seemingly simple scenar-

ios. We then explore for first time the feasibility of leveraging PHY

layer information and ML to guide link adaptation, using a large

dataset collected with a 60 GHz software-define radio testbed in a

variety of indoor environments and scenarios. Finally, we design

LiBRA, a practical, standard-compliant link adaptation framework

that leverages ML and PHY layer information to determine when

to trigger link adaptation and which adaptation mechanism to use.

LiBRA strikes a balance between throughput and link recovery

delay, performing close to an oracle solution, and outperforming

significantly two simple heuristics used by off-the-shelf devices.

CCS CONCEPTS
• Networks → Link-layer protocols; Network performance
analysis; Wireless local area networks.
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1 INTRODUCTION
Rate adaptation (RA) – dynamically adjusting the modulation and

coding scheme (MCS) based on the channel quality – has been

traditionally considered as the main link adaptation mechanism

in 802.11-based WLANs. Since the introduction of the first RA

algorithm for 802.11b [36], all 802.11 standards mandate the support

for multiple rates at the PHY layer.

Millimeter-wave (mmWave) wireless is fast emerging as the

prime candidate technology for providing wireless multi-Gbps data
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rates. For example, the IEEE 802.11ad and the upcoming 802.11ay

WLAN standards [32, 33] utilize the 14 GHz of unlicensed spec-

trum around 60 GHz and provide data rates of up to 6.7 Gbps and

30 Gbps, respectively. To cope with the high propagation loss in

the mmWave frequency bands, mmWave transceivers establish

highly directional links. However, high directionality introduces

new challenges – vulnerability to blockage and beam misalignment

due to mobility. While RA continues to play a critical role in the

performance of 60 GHz WLANs, it cannot always address these

new challenges alone. Hence, 60 GHz radios are typically equipped

with electronically steerable phased antenna arrays, and employ

a second link adaptation mechanism, beam adaptation (BA), also

referred to as beamforming or beam searching, to maintain Tx-Rx

beam alignment. However, the standards do not specify when each
of the two adaptation mechanisms, RA or BA, should be used or in
what order, and 60 GHz chipset vendors resort to simple heuristics

to select the right mechanism.

In this paper, we fill this gap by conducting one of the first exten-

sive experimental studies of the two link adaptation mechanisms –

RA and BA – in 60 GHz WLANs. Our primary goal is to answer the

question: Can we provide guidelines on which of the two adaptation
mechanisms should be triggered under a variety of scenarios involving
different link impairments? It turns out that this seemingly simple

question is very hard to answer in practice. We conduct our study

in 5 steps:

• Using a variety of commercial off-the-shelf (COTS) 802.11ad de-

vices, we evaluate the effectiveness of the heuristics such devices

use to determine when to trigger each of the two adaptation

mechanisms. We find that these heuristics often make wrong deci-
sions, which in turn lead to reduced performance, even in seemingly
simple scenarios.
• We explore for first time the feasibility of utilizing PHY layer infor-
mation to guide link adaptation in 60 GHz WLANs using a large
dataset

1
collected with the X60 testbed [50] in a variety of indoor

environments and scenarios. We investigate the effectiveness

of a number of PHY layer metrics in predicting which of the

two mechanisms should be triggered at a given scenario. While

some metrics turn out to be more useful than others, our study

reveals that no metric works in all scenarios, suggesting that a

combination of metrics is required.

• We explore for first time ML-based link adaptation approaches. We

test different popular classical and deep-learning methods using

our dataset and 5-fold cross-validation and show that simple

models based on random forests can predict the right action with

98% accuracy. We further evaluate the models on a new dataset

1
The dataset is publicly available at http://bit.ly/60ghz-link-adaptation.
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collected from two different buildings showing that they retain

satisfactory accuracy.

• We design LiBRA, a practical, standard-compliant, learning-based
link adaptation framework that leverages PHY layer information

to determine (i) when to trigger link adaptation and (ii) which

of the two adaptation mechanisms to trigger, and works with a

variety of RA and BA algorithms. LiBRA strikes a balance between

two performance metrics – throughput and link recovery delay.

• We evaluate LiBRA using extensive trace-based simulations with

different sets of realistic PHY and MAC layer parameters. Our

results show that LiBRA performs closely to an oracle that al-

ways selects the right adaptation mechanism depending on the

performance metric one wants to optimize and significantly out-

performs two simple heuristics, in a variety of indoor scenarios.

2 BACKGROUND AND RELATEDWORK
Rate Adaptation. The goal of RA is to select a PHY data rate,

expressed as a combination of a modulation and a coding scheme

(MCS), that matches the Rx channel quality. Since the Rx channel

quality is not known on the Tx side without explicit feedback, the

majority of RA algorithms for legacy WiFi [2, 8, 18–22, 29, 35, 37–

39, 42, 45, 47, 51, 58, 62, 62, 63, 67] estimate the channel quality

using link layer statistics and employ simple heuristics based on

these statistics. The use of SNR and other PHY layer metrics has

also been proposed in the literature [19, 21, 25, 35, 51, 58, 67] but

has not been used by WiFi chipset vendors.

The 802.11ad standard defines 12 MCSs for data frame trans-

mission for the single-carrier (SC) PHY that is used by all COTS

devices [1, 4–7], yielding data rates from 385-4620 Mbps. In con-

trast to legacy WiFi, RA has not been extensively studied in the

context of 60 GHz WLANs. A few works [24, 27, 56, 71, 72] have

argued that 60 GHz links are more stable than legacy WiFi links,

and suggested the use of simple SNR-based RA algorithms via a

direct SNR-MCSmapping. However, in our recent work, we showed

experimentally that MCS is only weakly correlated with SNR in

60 GHz WLANs [49, 50] and SNR-based RA performs poorly in

real-world indoor settings [9]. COTS 60 GHz devices, on the other

hand, use heuristics similar to those used by legacy WiFi devices,

e.g., they lower the MCS upon frame loss [14].

Beam Adaptation. The goal of BA is to find the Tx-Rx beam (sec-

tor) pair that maximizes the SNR. A naive approach is to test all

possible pairs, but the overhead of this approach (O(N 2), where N
is the number of available beams) can be prohibitive (up to a few

seconds [56]) in the case of a large number of available beams. A

number of recent works have proposed algorithms to reduce the

overhead [11, 24, 28, 31, 43, 54, 57, 70]. The 802.11ad standard takes

a different approach having each side train their Tx and Rx beams

separately [32]. First, Tx beam training takes place where each side

performs a sector level sweep (SLS), while the other side receives

in quasi-omni mode. Rx beam training follows, where each side

transmits in quasi-omni mode while the other side performs an SLS

in receive mode. This approach reduces the complexity fromO(N 2)

down to O(N ). To further simplify the process, COTS devices only

perform Tx beam training and always receive in quasi-omni mode,

further cutting down the overhead by half.

Surprisingly, the 802.11ad/ay standards do not specify when each

of the two mechanisms should be triggered, and the problem has

been largely overlooked by the research community. COTS devices

trigger RA in the case of a missing ACK and only resort to BA if a

working MCS cannot be found [49]. In [14], it is pointed out that

this approach may often be suboptimal because of the overhead

of trying all possible MCSs. Also, even if RA eventually finds a

working MCS, that MCS may still not result in optimal throughput,

since a different beam may support a higher MCS. Hence, another

approach is proposed in [14] that first performs BA in the event of

link degradation and then RA. In practice, none of the two approaches
can always guarantee optimal performance. In certain cases (e.g., a

client turning away from the AP), BA is required to restore the link,

while in other cases (e.g., a client moving backwards facing the AP),

the optimal beam may remain the same and triggering BA may

result in unnecessary overhead. In our recent work [9], we further

showed that often none of the two mechanisms is sufficient alone

and both are required for optimal performance. However, unlike in

this work, we did not explore in [9] the problem of selecting which

of the two mechanisms to trigger first. The only other work that has

looked into the problem is [24], which proposes beam sounding –

a non-standard-compliant approach, based on a new control frame.

In contrast, in this work, we are proposing a standard-compliant
learning-based approach leveraging PHY layer information.

ML in mmWave systems. Recent works have used ML in

mmWave cellular systems for blockage prediction [10, 12, 13, 15, 59],

distinguishing blockage from mobility [65], or channel classifica-

tion [40], to guide RA [40] or BA [10, 13, 15, 59] separately, and
to trigger handoffs [12]. In our recent work [9], we also explored

for first time the use of ML to guide RA in 60 GHz WLANs. We

showed that this approach works better than SNR-based RA but

it is environment-dependent and requires online training. Differ-

ent from all these works, LiBRA leverages ML to select the right
adaptation mechanism in a variety of scenarios involving block-
age, mobility, or interference, and works with both classical and
learning-based RA and BA algorithms. Also, in contrast to the works

in [10, 12, 13, 15, 40, 59, 65] that rely on simulations, this work

performs an experimental exploration of BA and RA using both

COTS 60 GHz hardware and a software defined radio (SDR) testbed.

3 MOTIVATION
In this section, we use controlled experiments to study BA and RA

in COTS devices equipped with 802.11ad radios. Our setup consists

of a TP-Link Talon AD7200 [4] WiFi router and two different client

devices – an Acer Travelmate P446-M laptop [1] and an ASUS ROG

Phone [6]. All three devices first perform RA if no Block ACK is

received after an Aggregated Frame (AMPDU) transmission, and

trigger BA if no working MCS is found. We flashed the Talon router

with the modified LEDE firmware from [53] that supports disabling

the BA process and manual setting of a sector. We cannot control

BA on the client devices and RA on any device. We experimented

with uplink and downlink TCP iperf sessions. We found that the

laptop behaves very similarly to the AP, since both devices have

the same chipset and phased array. Hence, we only show results

for the AP-laptop links (downlink) and phone-AP links (uplink).

Static settings. This is the simplest scenario, where the client

remains static facing the AP, without any blockage or interference.
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(a) Tx sector selection on the phone. (b) Tx sector selection on the AP. (c) Throughput with/without BA.

Figure 1: Tx Sector variations in static scenarios.

(a) Tx sector selection on the phone. (b) Tx sector selection on the AP. (c) Throughput with/without BA.

Figure 2: Tx sector variations in blockage scenarios.

(a) Tx sector selection on the phone. (b) Tx sector selection on the AP. (c) Throughput with/without BA.

Figure 3: Tx sector variations in mobile scenarios.

Hence, after an initial SLS, the Tx should lock on the best beam and

never trigger BA, since any packet loss is due to transient drops in

channel quality. We experimented in a corridor placing the client at

different distances from the AP. Fig. 1a shows an example of a 60 s

timeline of the Tx sector selection on the phone, when it is placed 30

ft away from the AP. We observe that, even in this simple scenario,

the phone fails to make the right decision, triggering BA more than

100 times within a 60 s period and trying 6 different sectors. Fig. 1b

shows a similar timeline on the AP for an AP-laptop downlink flow.

Even though the sector selection on the AP is muchmore stable than

on the phone, the AP also fails to lock on a single sector and triggers

BA repeatedly, switching multiple times between two sectors over

the 60 s period. Fig. 1c compares the throughput (averaged over 5

experiments) for the AP-laptop link when BA is enabled and when

BA is disabled and the AP is locked on the best sector (manually

discovered by sequentially trying all sectors). Disabling BA results

in a 26% throughput improvement.

Blockage. We experiment with blockage scenarios in a lobby,

where a TCP session starts with a human standing on the line-

of-sight (LOS) between the AP and the client. Since the LOS is

blocked, one would expect BA to be triggered only once at the

beginning to discover a NLOS path via a reflection. Nonetheless,

Figs. 2a, 2b show that the phone and the AP trigger BA multiple

times and switch among a total of 4-5 sectors over a 50-60 s period,

while in many cases they completely fail to lock on any sector

(sector ID 255). The BA overhead results on average in 16% lower

throughput for the AP-laptop session compared to the case of using

the best static sector, as shown in Fig. 2c.

Mobility. We consider a simple mobility scenario where the client

starts in front of the AP and moves away at walking speed while

facing the AP, and a TCP iperf session runs for the duration of

the motion. Since the client-AP orientation remains fixed for the

duration of the motion, one would expect the Tx sector to remain

fixed too. Nonetheless, Figs. 3a, 3b show that both the phone and the

AP fail to lock on a single sector. However, in contrast to the static

LOS and blockage cases, Fig. 3c shows that BA results in 15% higher

throughput on average than using the best static sector. Hence, it

is not always easy to decide whether BA should be disabled or not,

even in LOS scenarios, as the imperfect beam patterns in COTS

devices may result in an indirect path via a reflection to perform

better than the direct path.

Conclusion. Selecting the right link adaptation mechanism (BA
vs. RA) in 60 GHz WLANs is very challenging in practice, even in
seemingly simple scenarios. COTS devices often fail to make the right
decision, yielding suboptimal performance.
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4 EXPERIMENTAL SETUP
4.1 X60 Testbed
COTS 802.11ad-compliant devices do not allow us to disable RA

and to access the PHY layer. Hence, in the remainder of the paper

we use the SDR-based X60 [50] testbed. X60 is the only 60 GHz

testbed that combines fully programmable PHY and MAC layers,

multi-Gbps data rates, and practical reconfigurable phased arrays.

While it is not 802.11ad-compliant, many of its features resemble
those of 802.11ad.

Each X60 node consists of a mmWave transceiver system from

NI [34] and a user-configurable phased antenna array from SiBeam.

Transmissions take place over a 2 GHz wide channel, same as in

802.11ad. The PHY reference implementation supports 9 Single

Carrier (SC) MCSs resulting in data rates from 300 Mbps to 4.75

Gbps, similar to those supported by the SC 802.11ad PHY layer. In

contrast to COTS 802.11ad radios that use CSMA, X60 uses TDMA

with 10 ms frames divided into 100 slots of 100 µs each. A slot

consists of 92 codewords, each of which has an attached CRC block.

For our study, which only includes single-link experiments and

hidden terminal scenarios, where CSMA is not useful, the use of

TDMA instead of CSMA does not affect our results. Also, note that

the structure of an X60 frame resembles an 802.11 aggregated frame

(AMPDU), consisting of multiple packets, each with its own CRC.

The in-built phased array has 24 elements; 12 each for Tx and Rx.

SiBeam’s reference codebook defines 25 beam patterns that can be

steered in real-time (electronic switching in < 1µs). The beams are

spaced roughly 5
◦
apart in their main lobe, thus spanning around

120
◦
in the azimuth, from -60

◦
to 60

◦
. The 3 dB beamwidth ranges

from 25° to 35°, hence, each beam’s main lobe overlaps with several

neighboring beams. The beam patterns feature large side lobes in

addition to the central main lobe, similar to the beam patterns in

COTS 60 GHz devices [54].

4.2 Environments and scenarios
We collected a main dataset by taking measurements in multiple

environments with different characteristics in a campus building:

an open lobby, a lab, a conference room, and three corridors of

width 1.74 m, 3.2 m, and 6.2 m. Details about each environment can

be found in Appendix A.2.1. We consider three typical scenarios

capturing all the factors that can trigger BA or RA due to a drop in

channel quality.

Linear and/or angular displacement. In each environment, we

fixed the Tx position and orientation, we selected an initial Rx

position, and then moved or rotated the Rx to cause different levels

of signal attenuation due to increased distance, Tx/Rxmisalignment,

or both. In all the rotation experiments, we rotated the Rx from 0° to -

90° and from 0° to 90° in steps of 15° (where 0° is the initial orientation

at each position) facing the Tx. Details about each environment can

be found in Appendix A.2.2.

Blockage.We hand picked a few representative positions in each

environment and repeated themeasurements by introducing human

blockage on the LOS path between the Tx and the Rx, at 3 positions:

1) in the middle between the Tx and Rx, 2) near the Tx and 3) near

the Rx.

Interference. We used a TP-Link Talon AD7200 router commu-

nicating with an Acer P446-M laptop as a hidden terminal. We

Table 1: Main/training dataset summary.
Number of Cases Number of Positions

Total BA RA Total Lobby Lab Conf. Corridors

Displacement 479 380 99 94 22 13 10 49

Blockage 81 72 9 12 4 1 2 5

Interference 108 36 72 12 4 1 2 5

Overall 668 488 180 118 30 15 14 59

placed it at different positions and tried different sectors to create

3 levels of interference: 1) High interference: the throughput of

the X60 link drops by ∼80%, 2) Low interference: throughput drops

by ∼20%, and 3) Medium interference: throughput drops by ∼50%.

We performed these measurements at the same locations as the

blockage experiments.

Table 1 provides a summary of the dataset, listing the number

of measurement positions for each type of link impairment, the

number of entries for each type of link impairment, and the number

of cases where BA outperformed RA and vice versa (details in §5).

5 DATASET AND GROUND TRUTH
5.1 Collection methodology
We use the term state to describe every position, orientation, and the
presence/absence of blockage or interference. We define the initial
state as: the Rx position closest to Tx for each displacement scenario

in the lobby, lab, and corridors; Rx position 0 for each displacement

scenario in the conference room (Fig. 14c in Appendix A.2.1); the

0° Rx orientation for each rotation scenario; and the state before

the introduction of blockage or interference for each blockage and

interference scenario. All other states, at which the Rx position, Rx

orientation, or the blockage or interference status is different from

the initial state are called new states; these are the states where RA
or BA (or both) are needed to repair the link.

At each state, we first performed a SLS to collect SNR measure-

ments for all 625 (25 × 25) beam pairs and selected the best beam

pair based on SNR. This process emulates BA using the naive O(N 2)
algorithm described in §2. Then, for the best beam pair, we collected

three 1 s PHY layer traces (SNR, Noise level, power delay profile

(PDP), codeword delivery ratio (CDR)) and MAC throughput traces

for each of the 9 supported MCSs. X60 logs all these metrics for

every frame. We also measured offline the time-of-flight (ToF) for

the chosen beam pairs at all positions. For all new states, we also

collected PHY and throughput traces and ToF values for the beam

pair that was the best at the corresponding initial state. Searching
over all the MCSs with the best current/initial beam pair and selecting
the one with the highest throughput emulates RA after/before BA at
the new state. We confirmed experimentally that the average values

of all the PHY and MAC layer metrics do not change drastically

for durations of several seconds at a given position and for a given

beam pair and MCS, since we keep the environment controlled.

Each dataset entry includes the change in the value of each PHY

metric (details in §6.1) collected at that position before and after a

link impairment, the initial best MCS, and a label specifying which

of the twomechanisms (RA or BA) should be triggered, based on the

ground truth, which we calculate using the measured throughputs

after introducing the link impairment.
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5.2 Ground truth
Selecting the best mechanism at a given scenario depends on the

specific RA/BA algorithms used, theMAC/PHY protocol parameters

that determine the overhead, as well as by the metric one wants to

optimize. Once the RA/BA algorithms and the metric of interest are

chosen, defining the ground truth for a given entry in the dataset

boils down to “simulating” BA and RA using the logged SNR and

throughput traces, and selecting as the ground truth winner for

that entry the mechanism that optimizes the metric of interest. For

example, if themetric of interest is throughput, then a first definition

of the ground truth could be: “perform RA when Th(RA) ≥ Th(BA),
and BA otherwise”, where Th(RA) is the throughput achieved with

RA, i.e., the highest throughput among all the MCSs with the beam
pair same as the highest-SNR beam pair in the initial state; and
Th(BA) is the throughput achieved with BA, i.e., the throughput
with the highest-SNR beam pair, using the same MCS as the highest-
throughput MCS in the initial state.
RA/BA subtleties. In many entries of the dataset, the throughput

after BA using the highest-throughput MCS in the initial state is

zero, but lowering theMCS by 1 level results in non-zero throughput.

It would be unrealistic to define Th(BA) = 0 in such cases, since

any real MAC protocol would perform RA right after BA, if the

first transmission with the new best beam pair failed. Following

the guidelines in [14], we assume BA is always followed by RA.

Hence, our goal essentially becomes to determine whether RA alone
is enough to optimize the metric of interest at a new state or BA should
be triggered first, followed by RA. We also assume that RA always

starts at the best initial MCS and explores all the MCSs lower than

that, sending one frame at each MCS. When RA is triggered first,

this is expected, as the goal here is to repair a link, and hence a

higher, less robust MCS is unlikely to help. When RA is triggered

after BA, this assumption again makes sense, since BA typically

discovers a longer path via reflection, which is unlikely to support

an even higher MCS than before. Based on these assumptions, we

redefineTh(BA) as the highest throughput among all the MCSs lower
than or equal to the initial MCS using the highest-SNR beam pair.
Optimization metric. Although throughput seems an obvious

choice for the optimization metric, we note that BA uses control
frames to test each beam pair. Hence, throughput is always 0 dur-
ing BA. In contrast, RA data frames to test different MCSs. Hence,

throughput is suboptimal but not necessarily 0 during RA. Conse-
quently, another metric of interest is the link recovery delay, i.e.,
the delay from the moment a link breaks until we discover the first

working MCS. Since 802.11 standards do not mandate a specific

RA algorithm, different RA algorithms in the literature define a

working MCS in different ways, e.g., as an MCS that yields a non-

zero throughput or a throughput/loss rate above/below a threshold.

Here, we define a working MCS as any MCS that satisfies two con-

ditions: (1) CDR > 10% and (2) Th > 150 Mbps (50% of the PHY

data rate of the lowest MCS).

In general, RA may be sufficient to quickly restore the link sub-

optimally (and minimize the link recovery delay D), but BA may

be required to discover the new optimal beam pair (and maximize

throughput Th). Thus, we combine the two metrics in one utility

metricU as follows:U = α · Th
Thmax

+ (1−α) · (1− D
Dmax

) (1), where

Thmax is the PHY data rate of the highest MCS. The worst-case

delay Dmax is incurred when BA is the right choice and the op-

timal MCS is MCS 0 but RA is instead triggered first probing all

the available MCSs (taking NMCS · df r time, where NMCS is the

number of available MCSs and df r is the frame duration) with-

out discovering a working MCS, then BA is performed (e.g., a SLS

taking dBA time to complete), followed by another round of RA,

which again probes all NMCS MCSs finally discovering MCS0, i.e.,

Dmax = NMCS ·df r +dBA +NMCS ·df r . The parameter α ∈ [0, 1]
allows us to change the weight we assign to each metric.

Columns “BA” and “RA” in Table 1 show the number of cases

where BA outperformed RA and vice versa, using the ground truth

definition with α = 1 for simplicity (i.e., maximizing throughput).

As we can see, RA alone should be triggered in 27% of the cases

(180/668) and BA should be triggered before RA in 73% of the cases.

However, these numbers change if we consider each type of link

impairment separately. Under displacement, RA outperforms BA

in 21% of the cases, but under blockage only in 9/81 cases. On the

other hand, under interference, RA is the preferred option in 67% of

the cases. These differences motivate us to first study the problem

separately under each link impairment type and then using the

combined dataset.

6 LINK ADAPTATION USING PHY LAYER
INFORMATION

In this section, we explore the use of PHY layer information to

guide link adaptation.

6.1 Metrics
We examine a number of PHY layer metrics and we explore whether

each of them can predict the right adaptation mechanism in case

of different link impairments. Some of these metrics are intuitively

useful, while others have been used in previous link adaptation

studies in legacy WiFi, e.g, [55]. For each metric, we plot in Figs. 4-9

the CDF of the metric values for all the cases where BA outperforms

RA (denoted as “BA”) and for all the cases where RA outperforms

BA (denoted as “RA”), separately for each of the 3 datasets corre-

sponding to the three link impairment scenarios in Table 1, and

for the combined dataset. We again assume α = 1 for simplicity.

Our goal is to investigate whether we can identify clear thresholds

for (some of) the metrics that allow us to separate the cases where

each adaptation mechanism should be triggered.

6.1.1 Displacement. We define each metric and study its behavior

using the “Displacement” dataset (the largest of the three datasets),

where in the majority of the cases (79%) BA outperforms RA.

SNR Difference.We consider the difference between the SNR at

the initial and the current state, each averaged over 1 s. As Fig. 4a

shows, when the SNR drop is more than 7 dB, BA always outper-

forms RA. The cause of a high SNR drop is an angular displacement

that results in beam misalignment; in such cases, lowering the MCS

is not enough to repair the link. Using this threshold, we can classify

73% of the BA cases in this scenario. However, when the SNR drop

is lower than 7 dB, the number of cases where each mechanism

outperforms the other one is roughly the same.

ToF Difference. We consider the difference between the ToF at

the initial and the current state. ToF increases with the distance

and hence, one can expect a non-zero ToF difference in cases where
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Figure 4: SNR Difference
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Figure 5: ToF Difference
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Figure 6: PDP Similarity
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Figure 7: CSI Similarity

linear displacement is involved (backward, lateral, or diagonal mo-

tion) and zero difference in cases involving only rotation. We also

note that X60 reports the ToF as infinity in cases of extremely weak

signal (e.g., after a 90° rotation). Fig. 5a shows that in almost all

cases where RA outperforms BA, the ToF difference is negative,

corresponding to backward motion. In such cases, where the beams

remain aligned, selecting a lower MCS is sufficient. On the other

hand, when the ToF difference is 0 or infinity, BA is always needed

to restore the link. However, for about 30% of the cases, BA outper-

forms RA even though the ToF difference is negative (and hence

only backward motion is involved). This result agrees with our

conclusion using COTS devices in §3, Fig. 3c; the LOS path is not

always the best path.

Noise Level Difference. We define the Noise Level difference

similar to SNR and ToF difference. We found that, when the noise

level difference is higher than 7 dB, BA always outperforms RA

(the figure is omitted due to space limit). However, this threshold

allows us to only classify 65% of the RA cases.

Multipath-related Metrics. Researchers have proposed the use

of Channel State Information (CSI) to guide RA in legacy OFDM-

based WiFi systems and have shown that CSI-based algorithms [25,

55] outperform traditional algorithms. CSI captures fine-grained

variations of the wireless channel due to multipath propagation,

which cannot be captured by metrics such as SNR. To our best
knowledge, the use of CSI in RA for 60 GHz WLANs has not been
explored before.

Since X60 only supports an SC PHY similar to COTS 802.11ad

devices, we cannot measure directly CSI. Instead, we log PDP, which

also captures the impact of multipath propagation, but in the time

domain instead of the frequency domain. We also perform an FFT

of the PDP to convert it from the time domain to the frequency

domain and use it as an estimate of CSI. Following [55], for each of

these metrics, we calculate the similarity between the two instances

of the metric (at the initial and current state) in the form of the

Pearson correlation coefficient.

Fig. 6a shows that PDP similarity cannot be used to predict the

type of link adaptation. Interestingly, PDP exhibits very high simi-

larity – at least 0.9 in 68% of the cases and always higher than 0.65,

owing to the sparsity of 60 GHz channels, which results in limited

multipath effects compared to sub-6 GHz frequencies [56, 57]. On

the other hand, similarity values in the frequency domain exhibit

much more diversity (Fig. 7a), ranging from 0.1 to 1. However, the

two CDFs still exhibit a very large degree of overlap, which prevents

us from defining a clear threshold to separate them.
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Figure 8: Codeword Delivery Ratio (CDR)
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Figure 9: Initial MCS

Error/Delivery Rate. State-of-the-art RA algorithms for legacy

WiFi systems are often based on the subframe error rate (SFER), the

fraction of successful MPDUs inside an AMPDU. Since the X60 PHY

does not support frame aggregation, we use CDR, the fraction of

successful codewords in a 10 ms X60 frame to approximate SFER in

WiFi. Note that the length of an X60 frame is same as the maximum

allowed AMPDU length in 802.11n/ac and the codeword size (180-

1080 bytes for different MCSs) is similar to an MPDU size. Fig. 8a

shows that CDR is 0 for about 90% of the BA cases and about 70%

of the RA cases, and hence, it cannot be used alone to predict the

correct adaptation mechanism.

Initial MCS.We also explore the use of the best initial MCS as a

potential metric. A high initial MCS suggests a very strong link. In

such cases, a small linear or angular displacement might not cause

a large drop in channel quality and dropping the MCS by 1-2 levels

might be more effective than using a new beam over a NLOS path.

In contrast, if the initial MCS is already low, there is not enough

margin for RA to repair the link and switching to a different path

via BA might be a better solution. Fig. 9a confirms our intuition.

When the initial MCS is 2, 3, or 4, BA almost always outperforms

RA. On the other hand, the initial MCS is 5 or 6 in 98% of the cases

where RA outperforms BA but also in 23% of the cases where BA

outperforms RA. Hence, initial MCS alone cannot always predict

the correct adaptation mechanism.

6.1.2 Blockage. Interestingly, Table 1 shows that, regardless of the
environment or blockage position, BA outperforms RA in all but 9

cases. This does not necessarily mean that we fully blocked the LOS

in each case. For example, Fig. 4b shows that the SNR drop spans a

range of 1-15 dB and Fig. 5b shows that we were able to measure

ToF in 73% of the cases. Nonetheless, even in partial blockage, our

results show that BA is almost always the best option. Figs. 4b-9b

show that, although the behavior of most metrics under blockage

is different from the behavior under displacement, there is still a

large overlap between the values of each metric observed when

RA outperforms BA and those observed when BA outperforms RA,

making it hard to identify appropriate thresholds.

6.1.3 Interference. Compared to displacement and blockage, inter-

ference in 60 GHz has received much less attention; there is only a

small number of experimental studies [16, 46, 56, 66] and only [66]

has briefly investigated the interplay between interference and link

adaptation. The first observation from the interference dataset is

that RA is most often the preferred mechanism, outperforming

BA in 72/108 cases. More importantly, Figs. 4c-9c show a very dif-

ferent picture for most metrics under interference compared to

displacement or blockage scenarios. However, the overall conclu-

sion remains the same; it is not possible to identify appropriate

thresholds for any metric in interference scenarios.

6.1.4 Combined Dataset. The different behavior of the metrics

under each type of link impairment makes it even harder to de-

fine generic, scenario-independent thresholds to easily separate the

cases where each of the two adaptation mechanisms outperforms

the other, as is evident from Figs. 4d-9d. While for certain metrics

one can still identify thresholds, similar to the displacement sce-

narios, these thresholds have been shifted compared to Figs. 4a-9a,

and they separate a smaller fraction of cases. For example, the SNR

difference threshold increases now to 12 dB from 7 dB in Fig. 4a

and it can only identify 30% of the cases where BA outperforms RA

(compared to 73% in Fig. 4a).

Overall, Figs. 4-8 show the fundamental reason why selecting

the right link adaptation mechanism is hard in practice. Adaptation

is triggered to repair an impaired link. All types of link impairment

(displacement, blockage, interference) manifest as a drop in the link

quality, which is reflected via a change to one or more PHY layer

metrics used to measure link quality (e.g., a drop in the SNR or the

CDR, an increase in the noise level, a drastic change to the CSI, etc.).

Our study showed that all these metrics are affected in a similar way

when either RA or BA is the preferred adaptation mechanism. The

use of phased arrays with imperfect beam patterns by today’s COTS

devices and the complexity of typical indoor environments further

exacerbate the problem, as we saw in §3. As a result, it becomes

hard to design simple heuristics relying on any of these metrics to

select the right action, even in seemingly simple scenarios.

6.2 Learning-based Adaptation
While no single metric can be used alone to guide link adaptation,

different metrics can be used to separate different subsets of the two

classes based on thresholds. Since such thresholds and the order

in which they should be applied are hard to identify by simple
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Table 2: Testing Dataset Summary.
Number of Cases Number of Positions

Total BA RA Total Building 1 Building 2

Displacement 165 129 36 34 23 11

Blockage 27 24 3 4 2 2

Interference 36 12 24 4 2 2

Overall 228 165 63 42 27 15

inspection of the dataset and the CDFs in Figs. 4d-9d, we turned

to ML-based approaches. We tried 3 popular classical ML models,

which are most suited for our 2-class classification problem – deci-

sion trees (DT), random forests (RF), and support vector machines

(SVM). In the case of DT and RF, we tried two impurity measures:

Gini index and entropy. We also limited the maximum depth of

the trees generated by both algorithms to reduce overfitting. For

SVM, we tried both linear and non-linear classification metrics and

different regularization parameters. We also tried a deep neural net-

work (DNN) model – a fully connected dense network with 4 dense

layers. Rectified linear (relu) activation was used in the first 3 layers

and sigmoid activation was used in the last layer. In order to reduce

overfitting to the data, we explored different techniques present in

the literature. Among these techniques, inclusion of Dropout [52]

after each layer gave the best results.

5-fold cross validation. We used all the metrics discussed in §6.1

as input to the ML models. We then ran a stratified 5-fold cross

validation on the entire dataset, and calculated the accuracy and

the weighted F1 score. We repeated this process 500 times with

random splits of the dataset. All four models achieved very high
average accuracy and F1 scores. The accuracy/F1 score for the best
combination of parameters with each model was 95%/95% with DT,

98%/98% with RF, 91%/91% with SVM, and 95%/90% with DNN.

Accuracy with a different dataset. Several of the metrics cap-

ture properties of the multipath channel structure, which is heavily

affected by the environment. To evaluate whether the ML mod-

els, which are trained on a dataset collected in one building, can

accurately predict the correct adaptation mechanism in different

buildings, we collected a new dataset (testing dataset in Table 2) in

two different buildings. In Building 1, we conducted measurements

in a long 2.5 m wide corridor with the Rx at several distances away

from the Tx. This building is much older than the building where

we collected our main dataset, with walls of different material, and

fewer reflective surfaces. In Building 2, we conducted measure-

ments in a wide open area, much larger than the lobby in Fig. 14a.

We trained the ML models on the main dataset and tested them on

the testing dataset. Both the accuracy and F1 score dropped but still

remained at satisfactory levels (85%/85% with DT, 88%/88% with RF

and SVM, 83%/76% with DNN).

Metric importance. We calculated the Gini importance of each

metric using the testing dataset. The results are shown in Table 3.

We observe that the initial MCS and SNR have the highest impor-

tance (above 0.2), followed by the Noise Level. On the other hand, as

expected from Fig. 6, PDP has the lowest importance. Nonetheless,

we observe that no metric has a very high value, suggesting that

all metrics are useful in our classification problem. We also want to

point out that the metric selection depends on the used hardware,

as the values of some of the metrics are hardware dependent. For

example, we found out that the noise level values span a large range

with X60 even in the absence of interference. In practice, chipset

Table 3: Gini importance.
SNR ToF Noise Level PDP CSI CDR Initial MCS

0.215 0.08 0.16 0.06 0.12 0.125 0.26

vendors might exclude some of the metrics for different types of

hardware, based on the importance of each of them.

7 LiBRA DESIGN
While the accuracy drops when the models are trained and tested

in different buildings, triggering the wrong adaptation mechanism

does not always have the same performance impact in practice. The

cost depends on two factors: the overhead of triggering the wrongly

predicted mechanism, which can delay restoring the link (e.g., the

overhead of a full SLS in the case of wrongly triggering BA or the

overhead of trying various MCSs in the case of wrongly triggering

RA) and the overhead of sending data at a suboptimal PHY data rate

after restoring the link. The impact of each of these factors depends

on the specific RA and BA algorithms used, the MAC and PHY layer

parameters (e.g., number of beam pairs, number of supported MCSs

and their data rates, frame duration, etc.), the data flow duration,

and the optimization metric.

To study the impact of triggering the wrong adaptation mecha-

nism on the overall performance under practical settings, in this sec-

tion, we design LiBRA (described in Algorithm 1 in §A.1), a practi-
cal, standard-compliant Learning-based Beam andRateAdaptation

framework. LiBRA leverages PHY layer information to determine (i)

when to trigger link adaptation and (ii) which of the two adaptation

mechanisms should be triggered. All the PHY layer metrics used

by LiBRA are available in the firmware of both legacy and 60 GHz

COTS devices; hence, 60 GHz chipset vendors can easily implement

LiBRA at the firmware and/or the driver level. LiBRA optimizes the

utility metric defined in Eqn. (1) in §5.2; the network operator can

select the value of α depending on the metric (throughput vs. delay)

they prefer to optimize. The design of a practical link adaptation

approach has to address the following three issues:

1) When to trigger link adaptation? While the ML models in

§6.2 determine which of the two mechanisms should be triggered

after a link impairment, in practice we also need a method to deter-

mine whether adaptation is needed to deal with a link impairment.

We tried again a learning based approach. We augmented our train-

ing and testing datasets in Tables 1 and 2, respectively, with new

entries, one for each new state, where we considered the first 1 s

of PHY layer and throughput traces with the best beam pair and

MCS at that state as an initial state and the second 1 s trace as the

new state. We then trained the RF ML model from §6.2 using three

classes – BA, RA, and NA (No Adaptation). Our NA entries include

static LOS, blockage, and interference scenarios. The accuracy of

the RF model using 5-fold cross validation on the training dataset

was 98% and using the testing dataset was 94%. We thus use this
3-class model in the design of LiBRA.

2) Length of observationwindow. In training and testing the ML

models until now, we used traces of length equal to 2 s (1 s before

and 1 s after a link impairment). In reality, such a long observation

window before triggering adaptation is not practical. Hence, we

retrained and tested our 3-class RF model using traces of total

duration equal to 40 ms. The accuracy dropped only by 3 percentage

points, using the test dataset. Hence, LiBRA makes decisions every
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20 ms (or 2 frames in X60), using the values of the metrics averaged

over two 20 ms observation windows. In practice, the observation

window can get shorter depending on the protocol frame duration;

e.g., in 802.11ad, where themax frame duration is 2ms, LiBRAwould

make decisions every 4 ms. The overhead of running the ML model

is negligible in modern smartphones equipped with GPUs (0.5 ms

in the ROG phone [6], the first 802.11ad-enabled smartphone).

Note that our approach of ignoring long-term history in making

adaptation decisions is consistent with state-of-the-art RA designs

for legacy WiFi [47, 63], which also use observations windows

ranging from a few ms up to a few tens of ms. However, in the case

of 60 GHz, longer observation windows may have some benefits,

e.g., they may allow the transmitter to learn blockage patterns and

make better decisions in the future. We believe that learning link

status patterns over longer periods of time is an interesting avenue

for future investigation, but is out of scope of this work.

3) Tx- orRx-initiated adaptation?While a Rx-initiated approach

appears to be the natural choice, since all the PHY layer metrics

are collected on the Rx side, we note that all legacy RA and BA

algorithms are Tx-initiated. Hence, an Rx-initiated approach would

require new control frames for the Rx to notify the Tx to trigger a

rate search or a SLS. Since we target a standard-compliant design,

we selected a Tx-initiated approach. A challenge with this approach

is to make the PHY layer metrics available on the Tx side in a

standard-compliant manner that prevents the use of new control

frames. We address this challenge by leveraging the 802.11 ACKs and
channel reciprocity, similar to [23, 55]. However, a second challenge

appears in the case of a lost frame; the Rx will not send back an

ACK and hence, the Tx will never update its PHY layer metrics.

We note that a missing ACK is a clear indication that the channel

has worsened and link adaptation is required; the challenge is in

selecting RA or BA. Using our training dataset, we observed that

when the current MCS is lower than 6, BA is the right mechanism

92% of the time. Hence, LiBRA always triggers BA in these cases.

On the other hand, with MCS 6 or higher, BA is the right choice

48% of the time and RA 52% of the time. Here, our choice depends

on the BA overhead. We trigger BA first when the BA overhead is

low (up to a few ms) and RA first otherwise.

Adaptation algorithms. LiBRA is generic and works with a vari-

ety of RA and BA algorithms from the literature. Our goal is not

to design new optimal RA/BA algorithms but to demonstrate the

benefits of triggering the right mechanism at each scenario and the

efficiency of leveraging learning-based models and PHY layer infor-

mation. In §8, we evaluate LiBRAwith different standard-compliant

BA algorithms that incur different amount of overhead.

In contrast to BA, which is only triggered to repair a link, a

practical RA algorithm also has to occasionally explore higher

working MCSs than the one in use. Here, we design a simple frame-

based RA algorithm inspired by legacy algorithms [14, 47, 62, 63].

However, we note that other algorithms could be used instead.

When RA is triggered to deal with a link impairment, it starts

at the current MCS and probes all the lower MCSs (by sending

one AMPDU at each of them) until it finds the highest-throughput

workingMCS. If noworkingMCS is found, BA is triggered, followed

by another round of RA at the new best beam, starting at the same

MCS that was in use before adaptation was triggered. To explore

higher working MCSs, LiBRA follows an approach similar to [63].

It estimates the average CDR over an interval T and probes the

immediately higher MCS if CDR > CDRORI , where CDRORI is a

threshold calculated as described in [63]. To reduce the probing

frequency to MCSs that consistently offer lower throughput, we use

an adaptive probing intervalT inspired by [47]:T = T0 ·min(2k , 25),
where k denotes the number of failed probes at the higher MCS

(yielding throughput lower than the current MCS) and T0 is the
minimum probing interval, equal to 5 frames in our implementation

(50 ms in X60 or 10 ms in 802.11ad).

MLmodel training. In §6.2, we showed that the RF model retains

satisfactory accuracy, when tested in environments with very differ-

ent characteristics compared to the environment used for training.

Hence, we expect that offline training will be sufficient for LiBRA,
as long as a comprehensive dataset, including all three types of link

impairment – linear and angular displacement, blockage, interfer-

ence – is used for training. On the other hand, as we mentioned in

§6.2, vendors might have to perform separate training for different

types of hardware (e.g., different AP models).

8 LiBRA EVALUATION
In this section, we evaluate LiBRA in diverse indoor scenarios. Al-

though the PHY layer information used by LiBRA is available at

the firmware level of COTS 60 GHz devices (§7), 60 GHz drivers

currently do not expose this information to the user. This is a com-

mon practice even with legacy WiFi chipsets, with two notable

exceptions [26, 64]. Hence, we are not able to implement LiBRA
in COTS 802.11ad hardware. On the other hand, the X60 nodes do

not support real-time bidirectional communication. Since LiBRA
relies on ACKs to extract PHY layer information, implementing

LiBRA on X60 is not feasible either. Finally, an implementation on

a different SDR-based platform, e.g., OpenMili [68] or a narrow-

band platform [24, 56], would compromise realism, as no platform

other than X60 provides performance and MAC/PHY features com-

mensurate to those of 802.11ad. Since a realistic implementation

is not feasible on any available hardware platform, we resort to

trace-based simulation with realistic PHY/MAC parameters for the

evaluation of LiBRA, which is a standard practice in the design of

mmWave systems [23, 24, 56, 57, 61, 69, 70].

We are not able to directly compare LiBRA against MOCA, the

non-standard-compliant approach from [24], for two reasons: (i)

Beam Sounding frames in MOCA are sent at MCS 0, (27.5 Mbps)

– the most robust MCS, used only for control frames in 802.11ad.

In X60, the lowest supported MCS yields a data rate of 300 Mbps,

very close to MCS 1 (385 Mbps) in 802.11ad. Sending the sounding

frames at that MCS would result in a significantly lower delivery

probability; (ii) X60 does not offer a multi level codebook with differ-

ent beamwidths, which is a key component of MOCA’s beamwidth

adaptation algorithm. However, in our recent work [9], we showed

that maintaining a failover sector, as proposed in [24], does not

work in scenarios involving angular displacement between the Tx

and Rx, which are very common in practice, and SNR-based RA

performs poorly in real-world indoor settings.

8.1 Evaluation methodology
Protocol parameters. The time to perform BA depends on the

beamwidth (which determines the number of beams to test) and the

BA algorithm. We consider four realistic values in our evaluation:
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0.5 ms, 5 ms, 150 ms, and 250 ms. For the first two values, we used

Eqn. (2) from [24], which calculates the BA overhead in case of

802.11ad COTS devices (O(N ) search algorithm with quasi-omni

reception), with a 30
◦
beamwidth – used in X60 and most commer-

cial devices today – and a 3
◦
beamwidth – the minimum allowed by

802.11ad. For the last two values, we assumed directional reception

and the O(N 2) search algorithm that trains both Tx and Rx beams

and used Fig. 11 in [56] with a 9
◦
/7
◦
beamwidth. We used α = 0.7

with the first two BA overhead values; since the link recovery de-

lay in these cases is expected to be low, we give more weight to

throughput. In contrast, when the BA overhead is high (150 or 250

ms), we use α = 0.5, increasing the delay weight.

The time to perform RA to restore a link is given by the product

of the number of MCSs traversed while searching for the highest-

throughput working MCS and the maximum frame aggregation

time (FAT) – recall that RA sends one aggregated frame at each

tested MCS. We consider 2 different FAT values: 2 ms – the maxi-

mum value allowed in 802.11ad – and 10 ms – the maximum value

allowed in 802.11ac, also used in X60.

Metrics. We compare the amount of data delivered with LiBRA
against the amount of data delivered by an oracle solution Oracle-

Data, which always triggers the right adaptation mechanism that

maximizes the total amount of bytes delivered. This metric depends

on both the throughput and the link recovery delay, as well as on

the flow duration. For a short flow duration, it might be preferable

to start sending data quickly at a suboptimal working MCS instead

of looking for the optimal beam pair/MCS configuration. We also

compare the link recovery delay alone against another oracle so-

lution Oracle-Delay, which always triggers the right adaptation

mechanism that minimizes the link recovery delay. We include two

more heuristics in our study: always performing RA first, which is

what all COTS devices do today; and always performing BA first

which is suggested in [14]. Both heuristics trigger adaptation when

the current MCS becomes non-working (§5.2). Note that for all

algorithms, we take into account the BA or RA overhead in our

calculations. The oracles always incur only one of the two over-

heads in each case, while the other three algorithms may incur

both overheads in case of misprediction. Also, note that all algo-

rithms (including the oracle solutions) use the same mechanism as

LiBRA to probe higher rates periodically. The oracles make optimal

decisions only with respect to restoring a link.

8.2 Single link impairment scenarios
We first consider simple scenarios, where there is only one link

impairment, using our combined dataset from Buildings 1 and 2.

We consider two data flow lengths: 1 s and 0.4 s.

Figs. 10a-10g plot the CDFs of the difference between the bytes

delivered by Oracle-Data and each other algorithm for all combina-

tions of the different RA/BA overheads and for the 2 flow durations.

For the 1 s flow duration, we make the following observations: (1)

LiBRA performs very close to the oracle in all cases and much better

than the two heuristics in most cases. With a FAT of 2 ms, it delivers

the same number of bytes as the oracle in about 85% of the cases.

In contrast, “BA First” delivers the same number of bytes as the

oracle in only 70-81% of the cases, and its efficiency worsens as the

BA duration increases. “RA First” performs even worse, delivering

the same number of bytes as the oracle in only 50-58% of the cases.

With a FAT of 10 ms, the amount of bytes delivered by LiBRA is

within 10 MB from the oracle in 80-84% of the cases. The same

number is only 71-81% for “BA First” and 26-35% for “RA First”. (2)

The maximum loss for LiBRA is always much lower compared to

both “RA First” and “BA First” for low BA overhead (0.5 and 5 ms)

and within 100 MB from “BA First” in the case of very long BA

duration (150 and 250 ms). (3) The FAT has a smaller impact on the

performance compared to the BA duration.

With a short flow of 0.4 s, we make similar observations with

the exception of the worst case performance with LiBRA, which is

never lower than with “BA First” or “RA First”. Overall, the flow

duration has the lowest impact on “BA First”, which triggers a

constant overhead first (the overhead of a full SLS) but always dis-

covers the optimal configuration. On the other hand, the impact of

flow duration is highest on “RA First”, which often settles down

to a working but suboptimal MCS. The impact is particularly pro-

nounced in the case of long flows, where the data loss due to the

use of a suboptimal MCS is larger.

Figs. 11a-11g plot the CDFs of the difference between the re-

covery delay with the Oracle-Delay and each other algorithm. We

observe that the recovery delay is the longest with “RA First” for

low BA duration (0.5 ms, 5 ms) and with “BA First” for high BA

duration (150 ms, 250 ms). In contrast, LiBRA strikes a balance,

achieving within 5 ms from the optimal delay in 57-98% of the cases

with all parameter combinations and long delays in a much smaller

fraction of cases compared to “BA First”. For example, with a 250

ms BA overhead, the median delay difference is 0 ms with LiBRA
but more than 200 ms for “BA First”.

Overall, these figures show that for today’s 802.11ad devices that

have only a few sectors and employ quasi-omni reception, limiting

the BA overhead to a few ms [49, 60], “BA First” is a good choice,

albeit its worst case performance is lower than LiBRA’s. The real
benefit of LiBRA will become more prominent in the future, as the

number of available sectors increases and devices start employing

directional reception to improve the range or to limit interference

in dense deployments [30, 66] or in the case of MIMO [23].

8.3 Multiple link impairment scenarios
We now evaluate LiBRA in scenarios involving multiple link impair-

ments. Each scenario consists of 10 time segments, each of varying

duration from 300 ms to 3 s. We consider 4 types of scenarios: (i)

Mobility: We emulate mobility by moving the Rx at the beginning of

each segment introducing differing degrees of linear and/or angular

displacement, (ii) Blockage: we alternate segments of human block-

age of random duration at random positions between the Tx and Rx

and segments of clear LOS, (iii) Interference: we alternate segments

of varying levels of interference and segments of clear channel,

and (iv) Mixed: a combination of the above three. We collected 10

300-s PHY layer and throughput traces for each segment involved

in each scenario. We then generated 50 random timelines of 3-30 s

duration for each type of scenario, by choosing uniformly randomly

a time between 300 ms and 3 s as the time to spend at each of the

10 segments. We only show the results for two BA overhead values

(0.5 ms and 250 ms) due to space limits.

Fig. 12 plots the percentage of bytes delivered by each algorithm

compared to the bytes delivered by Oracle-Data and Fig. 13 plots

the difference between the average link recovery delay (the sum of
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Figure 10: Single link impairment: CDFs of the difference between the bytes delivered with Oracle-Data and each of the other
three algorithms.
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Figure 11: Single link impairment: CDFs of the difference between the recovery delay with the Oracle-Delay and each of the
other three algorithms.
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(a) BA Overhead 0.5 ms, FAT 2 ms
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(d) BA Overhead 250 ms, FAT 10 ms

Figure 12: Multiple link impairments: percentage of bytes delivered by each algorithm compared to Oracle-Data.
link recovery delays for each timeline divided by the number of link

breaks) with Oracle-Delay and each of the other three algorithms.

The results are plotted in the form of boxplots for all 50 timelines

for each type of scenario separately and for all scenarios.
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(d) BA Overhead 250 ms, FAT 10 ms

Figure 13: Multiple link impairments: difference between the average link recovery delay with the Oracle-Delay and each of
the other three algorithms.

Table 4: VR stall duration (ms)/number of stalls.
BA Overhead, FAT BA First RA First LiBRA Oracle-Data Oracle-Delay

0.5 ms, 2 ms 16/46.4 16/97.5 16/0.1 0/0 16/46.5

0.5 ms, 10 ms 16.3/54.1 17.3/105.6 16.1/10.5 16/5.7 16.7/36.6

250 ms, 2 ms 49/51.4 21.7/97.3 240/6.1 236.7/6.1 21.4/97.3

250 ms, 10 ms 49.7/53.3 22.5/105.2 94.9/22.5 220.9/6.9 25/68.3

We observe that LiBRA delivers more bytes than “BA First” and

“RA First”, when we consider all four types of scenarios (“All” in

Figs. 12a-12d) for any combination of BA overhead and FAT. In

the median case, LiBRA delivers 90-95% of the bytes delivered with

Oracle-Data; the same numbers are 90-92% for “BA First” and 71-

82% for “RA First”. When we look at different types of scenarios, we

observe that, the Mixed type is, as expected, the most challenging

type for all three schemes. Overall, LiBRA outperforms the two

heuristics for the majority of scenarios and BA overhead/FAT com-

binations, delivering in the median case as high as 100% of the bytes

(Motion, Figs. 12a, 12c) and never below 70% (Mixed, Fig. 12d). The

numbers are lower for “BA First” and much lower for “RA First”

(only 55% for Mixed in Figs. 12a, 12c).

Figs. 13a-13d show that LiBRA also keeps the average link recov-

ery delay low, which is important for interactive applications that

require both Gbps data rates and low delay (e.g., VR, UHD stream-

ing, Miracast). The median recovery delay with LiBRA is at most

35 ms when considering all scenarios and it only takes excessive

values (150 ms) in the Mixed scenarios in Fig. 13b. “BA First” has a

very low link recovery delay (below 1 ms) when the BA overhead

is low, but unacceptably high when the BA overhead grows (more

than 170-250 ms in the median case), confirming again that it is a

good short-term solution for today’s 802.11ad devices but not for

future ones. On the other hand, “RA First” always recovers the link

fast, although at the cost of suboptimal performance in terms of

bytes delivered, as we saw in Fig. 12.

8.4 LiBRA with a real application
We finally evaluate LiBRA using a real high-bandwidth, latency-

sensitive application: VR at 60 FPS and 8K resolution.
2
We used a

30 s Viking Village [3] scene based on a specific trajectory. Since

the application’s bandwidth demand is no more than 1.2 Gbps, it

did not make sense to perform our evaluation using the actual

throughputs provided by X60, which achieves 4.75 Gbps at its high-

est supported MCS; all three heuristics were able to easily support

this demand. For a meaningful evaluation, we scaled down the

throughputs logged with each MCS in our traces to what one would

2
We considered 8K VR, because 4K VR does not demand throughput more than 300

Mbps, which can be supported even by legacy WiFi [41, 44].

expect from 802.11ad COTS devices (which achieve up to 2.4 Gbps

when they are placed right in front of the AP [17, 48, 49]) using the

same modulation and coding rate. Also, we used only the mobility

traces from §8.3 in our evaluation, since one would not expect any

external blockage or interference while playing a VR game.

Table 4 shows the average stall duration and average number

of stalls for the 50 timelines involving mobility. We again show

results for only 2 BA overhead values (0.5 ms, 250 ms) due to space

limits. We observe that when BA overhead is low (0.5 ms), LiBRA
has similar stall duration to “BA First” and “RA First” but a much

smaller number of stalls. When the BA overhead is high (250 ms),

LiBRA’s stall durations are longer but again the number of stalls is

much smaller, resulting overall in better user QoE.

Interestingly, none of the two oracles can achieve optimal per-

formance. Oracle-Data incurs the smallest number of stalls for all

four combinations of BA overhead and FAT, but the average stall

duration with high BA overhead is similar to or much longer than

LiBRA’s. On the other hand, Oracle-Delay keeps the average stall

duration low, but incurs a larger number of stalls. This result sug-

gests that real applications often have conflicting requirements

in terms of throughput and delay, and simultaneously optimizing

those metrics can be hard in practice. LiBRA’s design strikes a good

balance between the two metrics resulting in good user QoE.

9 CONCLUSION
We conducted one of the first extensive experimental studies of RA

and BA in 60 GHz WLANs. Using experiments with COTS devices,

we showed that selecting the right mechanism under a given sce-

nario is far from trivial and simple heuristics can lead to wrong

decisions even in seemingly simple scenarios. We then explored

for first time the feasibility of leveraging PHY layer information

and ML to guide link adaptation. Finally, we designed LiBRA, a
practical, standard-compliant link adaptation framework that lever-

ages ML and PHY layer information to determine when to trigger

link adaptation and which adaptation mechanism to use. Via ex-

tensive trace-based simulations, we showed that LiBRA strikes a

balance between throughput and link recovery delay, performing

close to an oracle solution, and outperforming significantly two

simple heuristics used by COTS devices.
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Algorithm 1 LiBRA

N , M ← Number of Tx, Rx beams

minMCS,maxMCS ← Minimum, maximum supported MCS

minTput,minCDR ← Throughput, CDR thresholds for working MCS

T ← To, k ← 0

function BA()

maxSNR ← −∞
for beamPair ID ← 0 to (N xM ) − 1 do

SNR ← measure_snr(beamPair ID)
if SNR > maxSNR then

bestBeamPair ID ← beamPair ID
maxSNR ← SNR

curr _beam_pair ← bestBeamPair ID

function RA(initMCS, initTput )
maxTput ← initTput
forMCS ← initMCS tominMCS step − 1 do

tput ← measureTput(MCS )
if tput < maxTput then

if isWorking(MCS + 1) then
curr _mcs ← MCS + 1

else
BA()

RA(initMCS, 0)
return

maxTput ← tput
if isWorking(MCSmin) then

curr _mcs ← MCSmin
else

BA()

RA(initMCS, 0)

function isWorking(MCS )
return measureTput(MCS ) ≥ minTput && CDR(MCS ) ≥ minCDR

function selectAction(f rameID)

if probeMCS then
if curr _tput < prev_tput or noACK then

k ← k + 1
curr _mcs ← curr _mcs − 1

else
k ← 0

if f rameID % 2 == 1 then
f rameID ← f rameID + 1

T ← To ·min(2k , 25)
probeMCS ← f alse
return

T ← T − 1
if noACK then

if curr _mcs < 6 or BAOverhead < BAOverheadThreshold then
BA()

RA(curr _mcs, 0)
else

RA(curr _mcs − 1, 0)
else

if f rameID % 2 == 0 then
return

metr ics ← updateMetrics(f rameID, f rameID − 1)
action ← classifyBaRaNa(metr ics, prev_metr ics)
if action == BA then

BA()

RA(curr _mcs, curr _tput )
T ← To

else if action == RA then
RA(curr _mcs − 1, curr _tput )
T ← To

prev_metr ics ←metr ics

while true do
sendFrame(f rameID)
selectAction(f rameID)
CDR(curr _mcs) ← updateCDR()

if T == 0 andCDR(curr _mcs) > CDRORI (curr _mcs) then
curr _mcs ← curr _mcs + 1
probe_mcs ← true
prev_tput ← curr _tput

f rameID ← f rameID + 1

A APPENDIX
A.1 LiBRA Algorithm
LiBRA is described in Algorithm 1.

A.2 Dataset collection: Measurement
environments and scenarios

In this section, we provide details about the environments we used

to collect the main dataset (Table 1) and the various scenarios we

considered.

A.2.1 Environments. We collected a dataset by taking measure-

ments in multiple environments within a campus building.

Lobby. This is a large open space with glass panels covering the

upper part and metallic sheets covering the lower part of one side

and a wall on the other side. It is shown in Fig. 14a along with the

various Tx and Rx positions we used for our measurements.

Lab. This is an 11.8 × 9.2 × 3.4 m
3
space with 4 rows of desks

surrounded by metallic storage cabinets and white boards (Fig. 14b).

Conference Room. This is a 10.4 × 6.8 × 3.2 m3
space with a large

white board covering one of the walls (Fig. 14c). There are metallic

cabinets, a large desk in the center of the room, and many chairs.

Corridors. We performed measurements in 3 corridors of width

1.74 m, 3.2 m, and 6.2 m. In the lobby, the conference room, and the

corridors, the Tx and Rx antennas were kept at a height of 1.4 m.

In the lab, LOS at this height was blocked by furniture, hence we

placed the Tx antenna at a height of 2.05 m and the Rx antenna at

a height of 1.25 m.

A.2.2 Linear and/or angular displacement scenario – details. Here
we provide details about the measurements involved in the displace-

ment scenario in §4.2.

Lobby: We first fixed the Tx at position Tx1 and the Rx at position

0 (Fig. 14a). We then moved the Rx while keeping the orientation

fixed along three directions – backwards, laterally, and diagonally

– and took measurements at multiple positions in each direction.

We also took measurements by rotating the Rx at positions 2 and

19. We then took a second set of measurements with the Tx fixed

at position Tx2 and the Rx at 9 positions.

Lab: The Tx was fixed and the Rx was placed at 10 different posi-

tions, starting at position 0. We also took measurements by rotating

the Rx at positions 2, 5, and 8.

Conference room: The Tx was fixed and the Rx was placed at

different positions and orientations around the table, shown in

Fig. 14c, starting at position 0. Note that for positions 4, 5, 6 and

7, the Rx is facing in the same direction as the Tx and communica-

tion is enabled through reflections. We also performed rotations at

positions 0 and 4.

Corridors: In the narrow corridor, we performed measurements

at 17 different Rx positions starting from a distance of 2.5 m away

from the Tx and moving back in steps of 1.25 m, with the Tx and Rx

always facing each other. In the 2 wider corridors, we fixed the Tx

and performed measurements at 10 different Rx positions at steps

of 1.25 m with the Tx and Rx facing each other at all times. We also

performed rotations 5 m, 10 m, and 15 m away from the Tx.
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Figure 14: Environments and measurement positions. The arrows show the Tx and initial Rx orientations.
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