
Designing an Efficient Retransmission Scheme for Wireless LANs:
Theory and Implementation

Dimitrios Koutsonikolas
Chih-Chun Wang

Y. Charlie Hu
Ness Shroff

TR-ECE-10-5
June 30, 2010

School of Electrical and Computer Engineering
1285 Electrical Engineering Building

Purdue University
West Lafayette, IN 47907-1285

Contents

1 Introduction 1

2 Previous Theoretical Result 2
2.1 ER 4

3 Motivation 4
3.1 Inherent Limitation of MU-ARQ 5
3.2 Practical limitations of MU-ARQ 6

4 ECR: Main ideas 7
4.1 The Batch-Based Approach 8
4.2 Addressing Issue 1: The Novel Concept of Phases 8
4.3 Addressing Issue 2: Intra-flow Coding

Within A Single Phase 9

5 Implementation 10
5.1 Protocol Overview 10
5.2 Phase-Based Operation 11
5.3 Phase Completion Status Indicators 13

5.3.1 Reducing Complexity 14
5.4 Batch Decoding at the Client 16
5.5 Client Feedback 17

6 Correctness Guarantee and Performance Analysis 17
6.1 Correctness 17
6.2 Performance Analysis 19

7 Simulation Study 20
7.1 Methodology 20
7.2 Homogeneous losses 21

7.2.1 Varying the number of clients 21
7.2.2 Varying the loss rate 24

7.3 Heterogeneous losses 24

8 Testbed evaluation 24
8.1 Experimental results 25

9 Related work 26

10 Conclusions 28

ii

Abstract

Network coding is known to benefit the downlink retranmissions by the AP in a wireless LAN from exploiting

overhearing at the client nodes. However, designing an efficient andpractical retranmission scheme remains a

challenge. We present an (asymptotically) optimal scheme,ECR, for reducing the downlink retransmissions by

the AP in a wireless LAN from exploiting overhearing at the client nodes. The design of ECR, consisting of

three components: batch-based operations, a systematic phase-based network coding decision policy, and smooth

integration of inter-flow and intra-flow coding, is accompanied by a theoretical underpinning, yet enables practical

implementation on off-the-shelf 802.11 hardware. We analytically show ECR can achieve much higher reduction

in packet retransmissions than previous schemes, and validate its performance gain via simulations and testbed

implementation. To our knowledge, ECR is the first protocol that leverages both intra-flow and inter-flow network

coding to solve a real-world problem in single-hop wirelessnetworks.

1 Introduction

Consider a typical scenario of an 802.11 WLAN. Multiple clients are associated to the Access Point (AP). The
AP forwards traffic between each client and the wired Internet and uses 802.11 unicast for packet transmissions
between itself and the clients. We focus on the downlink traffic, i.e., in the direction from the AP to each client, as
the downlink traffic dominates the uplink traffic in typical AP deployments.

To deal with packet losses due to the inherent lossy wirelessmedium and due to interference and collisions
from other clients and other WLANs in the neighborhood, the 802.11 protocol employs a simple retransmission
mechanism for unicast communication. A sender waits for acknowledgment (ACK) after each packet transmission
and retransmits the packet if the ACK is not received after a short, fixed amount of time. Each packet is retrans-
mitted up to a maximum number of times and is then dropped. Under high loss rates,e.g., in the presence of a
large number of clients, this simple retransmission mechanism can cause significant overhead and severely limit
the throughput of the WLAN, as the AP may spend a significant portion of the airtime retransmitting lost packets.
This motivates the need for novel, more efficient retransmission schemes.

Network coding is a novel technique that can help in designing efficient retransmission schemes. In particular,
network coding can benefit the downlink retransmissions by exploiting overhearing at the client nodes. Consider
an AP and two clientsC1, C2. The AP has two packets,p1, p2, one for each client, respectively. In a lossy wireless
network, it may happen that both packets are lost and the AP would have to retransmit both of them. However,
due to the broadcast nature of the wireless medium, it can also happen thatC1 received the packetp2 destined to
C2 andC2 received the packetp1 destined toC1. In that case, the AP can XOR the two packets and broadcast the
combined packetp1⊕p2. ThenC1 can extract its own packetp1 by XORingp1⊕p2 with p2 and similarly,C2 can
extractp2 by XORingp1⊕ p2 with p1, thus saving one transmission. This simple idea can be extended beyond the
two-client example, further improving the retransmissionefficiency.

The potential benefits of inter-flow coding based retransmission schemes for wireless LANs were first con-
sidered by MU-ARQ [14]. [14] first sketches the basic principle about how to perform inter-flow coding when
there areM ≥ 2 clients, which we refer to as the MU-ARQ principle (or simplyMU-ARQ as shorthand). The
MU-ARQ principle then becomes the foundation of the theoretical analysis in [14] and the practical implemen-
tation in [21]. More explicitly, [14] shows that under some idealistic assumptions, the throughput benefit of a
MU-ARQ-based scheme can be quantified analytically, and it increases monotonically when the number of clients
increases. ER [21] is a practical implementation of the MU-ARQ principle. By addressing several practical issues,

1

such as feedback frequency, packet delay time-out, link asymmetry, that were previously ignored in MU-ARQ, the
practical ER protocol aims to materialize the promised throughput benefits of inter-flow coding.

In this paper, we first observe that the MU-ARQ principle doesnot realize the full potential of inter-flow network
coding due to the fact that the protocol is overly conservative and exploits coding opportunities in a passive way.
More explicitly, when a client receives a coded packet that it cannot decode, the MU-ARQ principle simply
discards it, even though retaining such a packet may allow more or more efficient (e.g.,mixing more packets into
one that can benefit more clients) coding opportunities in the future.1 The second drawback of the MU-ARQ
principle is that it was originally proposed as a pure theoretic concept that admits simple throughput analysis
but does not take into account the practical constraints of areal network environment. Therefore, converting the
MU-ARQ principle to practical implementations generally requires complicated interplay between the feedback
frequencies, the scheduling, and coding decisions.For example, [21] shows that determining the optimal coding
strategy is an NP-hard problem. Therefore, several heuristics are used in the corresponding ER protocol [21],
which further reduce the achievable throughput and make theperformance of the ER protocol very sensitive to the
underlying network environment.

Motivated by the inefficiencies of the MU-ARQ principle, we propose ECR, a network coding based retrans-
mission protocol, designed from scratch, that(i) realizes the full potential of network coding and (ii) smoothly
combines the throughput enhancement of inter-flow coding and the practical feedback-reduction benefits of intra-
flow coding.ECR is based on the concept of “batches” similar to that of intra-flow coding. When the batch sizeN
is sufficiently large, ECR attains the provably optimal inter-flow coding gain that is strictly better than that of the
MU-ARQ principle, especially when the number of clients is from moderate to large. By inherently exploiting the
simplicity advantage of intra-flow coding, the operation ofECR is straightforward and does not involve solving
an NP-hard problem. There is thus no need to resort to suboptimal heuristics and the throughput enhancement of
ECR is robust over various network environments. In short, ECR successfully bridges the gap between theory and
practice of network coding in 1-hop WLANs over the downlink direction.

This work makes the following contributions. (1) We presentthe design of ECR, which is guided by rigorous
theoretical analysis yet enables practical implementation on off-the-shelf 802.11 hardware. (2) We characterize
analytically the throughput advantage of ECR over the MU-ARQ principle. (3) We compare ECR with the ER pro-
tocol, the heuristic-based implementation of the MU-ARQ principle, through extensive simulations and a testbed
implementation. The empirical results show that ECR achieves robust performance and significantly outperforms
ER in a variety of scenarios.

2 Previous Theoretical Result

The contribution of [14] is two-fold: The explicit description of the MU-ARQ principle and the corresponding
throughput analysis under some idealistic assumptions. More explicitly, let us consider a WLAN withM clients.
The MU-ARQ principle consists of two stages. In the first stage, the AP repeatedly sends out a batch of uncoded
packets for each clients. Suppose the AP is currently sending the uncodedk-th packet of thei-th clientCi, which
is denoted byXi,k. The AP moves to sending the next uncoded packet only whenXi,k is received by at least one

of the clientsCj for somej ∈ [M]
∆
= {1, · · · ,M}. The AP moves to Stage 2 when all uncoded packets are heard

by at least one of theM clients. In Stage 2, the AP XORs the packets together according to the overhearing pattern
in a similar way as in COPE [12].

The analysis of the MU-ARQ principle is straightforward under several idealistic assumptions: (i) The feed-
back is reliable and of zero cost. Therefore, the clients cansend instant feedback to the AP afterevery packet

1[14] noticed that the MU-ARQ principle could potentially benefit from retaining the overheard coded packet. However, nodiscussion

was made in [14] on how to exploit such overheard coded packet. The proposed ECR protocol explicitly specifies how to algorithmically

exploit the overheard coded packets.

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Success prob p

T
hr

ou
gh

pu
t e

ffi
ci

en
cy

 η

Proposed
MU−ARQ
Without Coding

Figure 1. Comparison of Throughput Efficiency for MU-ARQ and the theoretically optimal ECR, M =

20 clients.

transmissionso that the AP has the complete knowledge of the overhearing pattern; there is thus no ambiguity
when making the coding decision; (ii) Infinitely large batchsize, which ensures that on average the noisy forward
direction can be viewed as a deterministic noiseless channel; (iii) Perfect symmetry between all clients so that
the coding opportunities can always be perfectly paired. For example, the analysis of MU-ARQ assumes that the
number of packets for clientC1 that are overheard only by clientC2 is equal to the number of packets forC2 that
are overheard only byC1. Therefore, these two groups of packets can be perfectly paired with each other.

With the above three assumptions, [14] quantifies thethroughput efficiencyof the MU-ARQ principle, which is
also known as thesum-rate capacityand is defined as

η =
MN

T
(1)

whereM is the number of clients,N is the number of packets at the AP for each client, andT is the overall number
of time slots required to finish the transmission of theMN packets. Obviously,η ≤ 1 by definition as each time
slot can carry at most one packet even with perfect channels.The higher the throughput efficiencyη, the larger
throughput is for the entire system. The throughput efficiency of MU-ARQ for infinitely largeN is computed in
[14] by

lim
N→∞

ηMU-ARQ

=
1− (1− p)M

1 + 1−p
Mp2 (1− (1− p)M −Mp(1− p)M−1)

(2)

where we assume that the probability that a packet sent by theAP is received by ClientCi successfully isp for
all i ∈ [M], and the success events for different ClientsCi andCj are independent for alli 6= j. Figure 1 plots
limN→∞ ηMU-ARQ in (2) over different values ofp.

The idealistic assumptions (i)–(iii) turn out to be quite restrictive in practice and require complicated mecha-
nisms to coordinate the coding decisions with the real network dynamics. For example, practical protocols must

3

be based on a short-to-moderate finite batch size and periodic (non-instant) feedback. Therefore, the randomness
of the channel will seriously impact the network dynamics and the intrinsically unreliable feedback will further
exacerbate the problem. Moreover, for a dynamic (generallyasymmetric) environment with finite batch size, one
cannot assume all the coding opportunities could be perfectly paired with each other. [21] shows that in this case
the transmission order of the coded packets will affect the throughput substantially and finding the optimal coding
sequence can be a NP-hard problem.

2.1 ER

The entangled interplay between the batch size, feedback frequency, scheduling and the coding decision is
the main subject of [21]. [21] proposes ER, the firstpractical protocol to exploit network coding to improve the
efficiency of retransmissions by the AP. Thus, ER can be viewed as a practical implementation of the MU-ARQ
principle. In the following, we describe the main design choices made in ER in relaxing the idealistic assumptions
(i)–(iii) in [14].

Relaxing assumption (i) – perfect feedback.Unlike 802.11, where a receiver responds with an ACK every time
it receives a packet, clients in ER sendperiodic cumulative feedbackto inform the AP of missing packets, with
the goal to minimize the impact of feedback losses while at the same time keeping the feedback overhead low.
Each cumulative feedback message includes two fields: the starting sequence number (start) and a 64-bit bitmap,
effectively informing the AP of the reception status of the last 64 packets.

Relaxing assumption (ii) – infinite batch size.Being a practical protocol, ER tries to achieve a balance between
high coding efficiency and low delay. Instead of working witha fixed batch in rounds, the AP in ER uses a
dynamic, threshold-based heuristic to determine (i) when apacket needs a retransmission and (ii) whether it
should retransmit a packet or transmit a new one every time the medium is free. Each packet in the retransmission
queue has a timeout which is calculated based on the time arrivals of cumulative ACKs in the past. If the timeout
expires, the packet is considered ready for retransmission. The AP retransmits a packet if the number of packets
ready for retransmission reaches a threshold (retransmission queue threshold) or the time a packet has spent in the
retransmission queue exceeds another threshold (retransmission queue timeout).

Relaxing assumption (iii) – perfect coding opportunities.In practice, in an asymmetric environment and with
a finite batch size, one cannot assume all the coding opportunities can be perfectly paired with each other. [21]
showed that in this case, finding the optimal coding strategyis an NP-hard problem, and proposed two heuristics
to solve this problem: (i) a simple “sort-by-time” heuristic, in which packets awaiting for retransmission are
sorted according to their arrival time and the AP always starts with the packet that arrived the earliest and tries to
combine it with as many subsequent packets as possible, and (ii) a greedy “maximum clique” heuristic that tries
to mix together as many packets as possible.

3 Motivation

In this section, we use a few illustrative examples to explain the fundamental limitations of MU-ARQ. These
examples will also motivate the straightforward design of our proposed ECR protocol in Sections 4, 5.

Take Figure 2 for example. Suppose in the initial stage, the AP s transmits 9 native packets among whichX1

to X3 are intended for clientd1; Y1 to Y3 are intended ford2; andZ1 to Z3 are intended for clientd3, respectively.
All 9 packets are sent using wireless broadcast, and due to the randomness of the wireless channel, clientsd1 to
d3 may have different overhearing patterns, as illustrated inFigure 2(a).

MU-ARQ takes advantage of the “diversity” of the overhearing patterns at the clients. For example, packet
X2 is heard byd2 but not by{d1, d3}, packetX3 is heard by bothd2 andd3 but notd1. PacketY1 is heard
only by d1 and packetZ3 is heard only by{d1, d2}. See Figure 2(b) for the list of the 4 overheard packets that

4

(a) The overhearing patterns (b) Coding opportunities

Figure 2. Illustration of the MU-ARQ protocol.

(a) The overhearing patterns when the AP sends[X3 +

Z3] and then[X2 + Y1].

(b) Sending[X2 + Y1 + Z3] will take advantage of the previ-

ously overheard[X2 + Y1] packet.

Figure 3. Aggressive exploitation of the overheard coded pa ckets.

may lead to potential coding opportunities. MU-ARQ then searches for the inter-flow coding opportunities that
combine 2 flows (or even 3 flows) together. For the example in Figure 2, there are three possible candidates for
mixing two flows together. For example, sinceX2 is heard byd2 andY1 is heard byd1, an XOR coded packet
[X2 + Y1] combining flows1 and2 will realize the inter-flow coding benefits. Similarly,[X3 + Y1] and[X3 + Z3]
are candidates of mixing 2 flows together. Since there is noY packet that is heard by both{d1, d3}, there is no
coded packet that can simultaneously mix 3 flows. realize theinter-flow coding benefit, for the next time slot, the
AP s has the freedom to send any one of the three candidates.

Nonetheless, MU-ARQ does not realize the full potential of the network coding due to the following reasons.

3.1 Inherent Limitation of MU-ARQ

An inherent limitation of MU-ARQ is the following:Issue 1: The protocol is overly conservative and exploits
coding opportunities in a passive way.Continue our example in Figure 2. Suppose the AP decides to send
[X3 + Z3] and then[X2 + Y1]. Due to the channel randomness,[X3 + Z3] and[X2 + Y1] are heard byd1 and by
d3, respectively; see Figure 3(a) for the overhearing patterntable. By hearing[X3 + Z3], d1 can now decodeX3

5

as illustrated in Figure 3(b).
The remaining question is thuswhat is the optimal choice of the next coded packet.MU-ARQ answers this

question in the following conservative way. We first notice that the coded packet[X2 + Y1] heard byd3 cannot be
used to decode any additional information, sinced3 has heard neitherX2 norY1 in the past. As a result, MU-ARQ
discards the overheard coded packet[X2 + Y1] at d3. Since each ofd1 to d3 only needs one additional packet
(more explicitly, they needX2, Y1, andZ3, respectively), MU-ARQ checks whether they can be mixed together.
SinceX2 is now heard only byd2 (resp.Y1 is heard only byd1) as illustrated in Figure 3(a), these three packets
will not be mixed together by MU-ARQ. As a result, MU-ARQ needs at least two additional packets to complete
transmission.

We illustrate now that we can further reduce the number of necessary transmissions and send only 1 coded
packet that simultaneously serves the needs ofd1 to d3. The main idea is toaggressively exploit the coded packet
[X2 + Y1] overheard byd3. That is, we can broadcast a coded packet[X2 + Y1 + Z3]. If d1 receives such packet,
d1 candecodethe desiredX2 packet by subtractingY1 andZ3 based ond1’s existing knowledge aboutY1 andZ3.
If d2 receives such packet,d2 can decode the desiredY1 packet by subtractingX2 andZ3 based ond2’s existing
knowledge aboutX2 andZ3. Ford3, d3 has neither the knowledge aboutX2 nor the knowledge aboutY1, which
is the reason why MU-ARQ chooses not to mix the three packets together in the first place. However, we note
that althoughd3 does not know the individual packetsX2 andY1, d3 did overhear a coded packet[X2 + Y1].
Therefore, Ifd3 receives the new coded packet[X2 + Y1 + Z3], d3 can still decode the desiredZ3 by subtracting
the previously heard coded packet[X2 + Y1] from the new received packet. In this way, werecoup the benefits
of overheard coded packets that are not immediately decodable. Therefore, the coded packet[X2 + Y1] not only
serves multiple destinations simultaneously (the inter-flow coding savings) but also enables / creates new coding
opportunities ofmixing 3 flowsfor the later time slots. This is not possible for a passive inter-flow scheme like
MU-ARQ that discards the overheard coded packets.

We have observed the impact of this inherent limitation of MU-ARQ in Figure 1. The throughput efficiency
of MU-ARQ is strictly lowercompared to our theoretically optimal ECR protocol, in particular for small channel
success probabilityp. For example, withp = 0.2, the theoretically optimal throughput efficiency is 40% higher
than MU-ARQ’s (0.7 vs 0.5).

In summary, we have learnedLesson 1: Discarding overheard coded packets that are not immediately
decodable can lead to suboptimal performance. We thus need acoding scheme thatrecoups the coding
benefits of coded packets that are not immediately decodable.

3.2 Practical limitations of MU-ARQ

In their analysis, the authors in [14] assume an infinitely large batch size that allows the AP to always make
optimal decisions about which packets to code together.2 In practice, with a finite batch size, a second important
issue arises:

Issue 2: The performance of MU-ARQ with a finite batch size is sensitive to the decision of which coded
packet to send in each time slot.Go back to our example in Figure 2. In Section 3.1, we assumed that the AP
first sends[X3 + Z3] and then[X2 + Y1]. In Fig. 2(b) we note that there is actually one other coding opportunity
[X3 + Y1] in addition to the previous choices[X3 + Z3] and[X2 + Y1]. What if the AP decides to send[X3 + Y1]
first (instead of the previous choices)? Also suppose that both d1 andd2 receive[X3 +Y1] and use it to decodeX3

andY1, respectively. After the first packet, the new overhearing pattern becomes Figure 4(a).
Now d2 has received all threeY packets;d1 only needs to receive one more packetX2; d3 only needs to receive

one more packetZ3; but X2 andZ3 cannot be coded togethersinceX2 is not overheard byd3. As a result, we
need at least two more time slots to complete transmission. The total number of necessary transmissions is thus

2In spite of that, we have seen that by discarding coded packets that are not immediately decodable, MU-ARQ cannot achieveoptimal

performance.

6

(a) MU-ARQ sending[X3 + Y1] first. (b) MU-ARQ sending[X3 + Z3] and[X2 + Y1] first.

Figure 4. The impact of different choices of coded packets.

1+ 2 = 3 when we send[X3 + Y1] first. In contrast, suppose we use the original choices[X3 + Z3] and[X2 + Y1]
and they are heard by{d1, d3} and by{d1, d2}, respectively; see Figure 4(b) for the overhearing patterntable. In
this case,all three clientsd1 to d3 can decode all the desiredX, Y , andZ packets after two transmissions.The
decision of not sending[X3 + Y1] first thus saves 1 transmission.

If we assume that the underlying broadcast channel is alwaysnoiseless, such a coding decision problem can
be cast as an NP-hard integer programming problem.3 In practice, the wireless channel is not perfect and each
broadcast packet is likely to be heard randomly by some but not by all destinations. This makes the coding
decision of MU-ARQ far from optimal even when using the optimal integer programming solver, and does not let
MU-ARQ realize the full potential of inter-flow coding especially for the scenarios with high loss rates.4 We have
thus learnedLesson 2: We need a coding schemeinsensitive to the decision of which coded packet to send
first.

Finally, one more issue with MU-ARQ in practice isIssue 3: The entangled interplay between recouping
the overheard coded packets and the code design/scheduling. It is worth noting, as is briefly mentioned in [14]
without exploration, that it is possible to modify MU-ARQ torecoup the overheard coded packetsin an attempt
to alleviate Issue 1. However, any naive modification of MU-ARQ to recoup the coding opportunities discussed in
Issue 1 will significantly exacerbate Issue 2, i.e., the coding decision problem (see the discussion of [20]). Thus,
we haveLesson 3: in designing a practical protocol, we need asystematic method to address Issues 1 and 2
simultaneously.

4 ECR: Main ideas

Our proposed ECR protocol successfully solves the above issues of MU-ARQ/ER in an efficient and effective
manner by introducing three novel design components: (i) Batch-based operations, (ii) A systematic phase-based
coding decision policy, and (iii) The smooth combination ofinter-flow coding and intra-flow coding. ECR not
only enables practical implementation but also admits provably optimal theoretical performance, especially when

3It is worth noting that we deliberately construct our example such that there is no opportunity of mixing 3 flows together,which allows

us to focus on the challenges of the coding/scheduling problem in the simplest case when there are only coding opportunities of mixing 2

flows. In practice, when there are opportunities of mixing 2 and 3 flows, the AP also needs to decide whether to send 2-flow-coded packets

first or to send 3-flow-coded packets. The combinatorial problem becomes highly non-trivial.
4Indeed, in [21], ER with any of the two heuristics performs almost as well as when using an exhaustive search strategy.

7

there is a sufficiently large number of clients in the system.In this section, we discuss the main ideas in the design
of ECR, and how they address the issues with MU-ARQ/ER. We then give a detailed description of the protocol
in Section 5.

In ECR, the AP transmits packets using 802.11 broadcast and clients store all the overheard packets for a limited
time (equal to the duration of a batch, see Section 4.1.) Clients periodically send back cumulative ACKs (similar
to those used in ER) reporting to the AP which coded and uncoded packets they have received in the past.

4.1 The Batch-Based Approach

To realize the full potential of inter-flow coding, ECR (i) recoups the overheard coded packets that are not
immediately decodable, and (ii) enables a new efficient codescheduling algorithm that is throughput-optimal
under realistic channel models.These two problems are inseparable.On one hand, different ways of recouping
benefits of the overheard coded packets lead to different newcoding opportunities; this affects the corresponding
scheduling policy. On the other hand, the scheduling/coding policy decides which packet will be sent and thus
different policies result in different overheard packets in the system. Note that it is generally more beneficial to
wait for more coding opportunities before starting inter-flow coding. However, as it is impractical to wait infinitely
for new coding opportunities, we use a batch-based design that curtails the delay impact and also regulates the
associated header size for each coded packet.

Batch-based operation:Each flowi hasNi packets to transmit in each batch. If there areM flows to be served
by the AP, then aninter-flow batchcontains

∑M
i=1 Ni packets. The protocol will intelligently decide how to mix

the
∑M

i=1 Ni packets. Our goal is to finish the transmission of theNi packets for each flow in the shortest amount
of time. Note that simply performing random linear network coding on all

∑M
i=1 Ni packets (i.e., the approach

used in [19] for multihop wireless networks) is not efficientas all clients need to receive all
∑M

i=1 Ni packets
before decoding is possible, which takes an excessive amount of time.

4.2 Addressing Issue 1: The Novel Concept of Phases

A critical observation of recouping the benefits of overheard coded packets is that for any given packet, the
number of overhearing clients is monotonically increasing. For example, suppose a packetX intended ford1 is
heard byd2, and we retransmitX for the second time. This timeX is received only byd3. Even thoughd2 does not
receiveX in the second time,d2 still knowsX from the first transmission. Therefore,X is now overheard by both
d2 andd3. The number of clients overhearingX thus increases monotonically over time. Similar statements hold
for inter-flow coded packets as well. That is, if a coded packet is created by mixing two flows, then the overheard
coded packet can only create new coding opportunities for mixing > 2 flows.5 In our example of Figure 3(b), the
coded packet[X2 +Y1] is created for mixing 2 flows. Once[X2 +Y1] is overheard byd3, it can be used for mixing
3 flows as illustrated in Figure 3(b). The number of flows it participates thus increases monotonically.

The above observation prompts the following phase-based design. We define ak-flow packetas a packet that
mixes exactlyk flows together,k ranging from 1 toM . Any k-flow packet thus servesk clients simultaneously. If
ak-flow packet is heard by a client other than the intendedk clients, it is not immediately decodable. As discussed
previously, ECR will recoup this kind of packets and use it asside information when mixing over> k flows in the
future. Since overhearing ak-flow packet may only create a new opportunity for mixingh flows with someh > k,
an optimal solution is to send outk-flow packets first, and hopefully this will create new opportunities for mixing
h flows together whereh > k. Based on this reasoning, we divide an inter-flow batch intoM phases. Each batch

5Intuitively speaking, for each packet created by mixing twoflows, the correspondingingredient packetsare native packets overheard

by exactly one other destination. Once the ingredient native packet is overheard by at least one more destination, then such native packet is

overheard by> 1 destinations, and can thus be used to generate packets that mix > 2 flows.

8

(a) The Phase 1 Operation (b) The Phase 2 operation

Figure 5. Phased-based operation of the proposed algorithm .

goes through Phases 1 toM in sequence. During Phasek, the AP only sends outk-flow packets; overhearing
these packets can create new coding opportunities of mixingh > k flows in the future phases.

An example of phase-based operations:We again use a 3-client scenario as our running example, see Figure 5.
Each inter-flow batch containsN1 + N2 + N3 = 9 packets. In Phase 1 (see Figure 5(a)), the AP transmits packets
mixing only 1 flow, i.e., no inter-flow coding is performed. Ascan be seen, some Phase 1 packets successfully
reach the intended client while some do not. The latter are called the overheard packets, and in our example,X2,
X3, Y1, andZ3 are overheard packets. These overheard Phase 1 packets (or equivalently the overheard 1-flow
packets) will later be used in Phases 2 and 3. In our example,X2, X3, andY1 will be used in Phase 2 whileZ3

will be used in Phase 3.
After spending some time in Phase 1, AP switches to Phase 2 based on the feedback from the clients. In Phase 2,

AP starts to send packets mixing exactly 2 flows, see Figure 5(b). In our example, based on the overhearing record,
Phase 2 sends packets like[X3 +Z3] and[X2 +Y1] that mix the overheard Phase-1 packets. It is worth noting that
[X3 +Z3] mixes two packets[X3] and[Z3], both of which are overheard packets transmitted in Phase 1.Similarly,
the Phase 2 packet[X2 + Y1] is constructed from overheard packets in Phase 1.

Again, after spending some time in Phase 2, AP switches to Phase 3 based on the feedback from the clients.
In Phase 3, AP sends packets mixing exactly 3 flows. One such example is the[X2 + Y1 + Z3] packet described
in Figure 3(b). This new[X2 + Y1 + Z3] packet mixes 3 flows. The way we create it is by mixing two packets
[X2 + Y1] and[Z3]. Again, [Z3] is an overheard packet transmitted in Phase 1.[X2 + Y1] is an overheard packet
transmitted in Phase 2, which is now recouped in the ECR protocol (in contrast with being discarded in ER). The
Phase 3 packet[X2 + Y1 + Z3] is indeed constructed by overheard packets in the previous Phasesk, k < 3. By
monotonically progressing from Phases 1 to3, it is guaranteed that we create the maximum amount ofk-flow
coding opportunities for each individual phase.

4.3 Addressing Issue 2: Intra-flow Coding

Within A Single Phase

The phase-based operation addresses the question whether to send a packet mixingk flows first or to send a
packet mixingh flows first for k < h as we always give high priority to thek-flow packet with a smallerk.
However, as discussed in the example of Figure 4, even when weare only sending packets mixing the same number
of flows, it is still critical to decide which packet to be sentearlier. We observe that the problem of deciding which
packet to send under a noisy broadcast channel model is essentially identical to the packet forwarding problem
in the originalopportunistic routingprotocol ExOR [4]. Motivated from the success of usingrandom intra-flow
codingto efficiently solve the packet forwarding problem (the MOREprotocol [5]), ECR uses random intra-flow
coding to simplify the packet selection decision, without resorting to complicated integer programming solvers or
simplified suboptimal heuristics.

9

Figure 6. ECR flow chart.

5 Implementation

5.1 Protocol Overview

A flow chart of the protocol operation at the AP and the client is given in Figure 6.
The AP maintainsM buffersBi, i = 1, · · · ,M (jointly shown asPayload Bufferin Figure 6); thei-th buffer

stores the payloads of theNi packets for the current batch. To fully exploit/recoup all possible coding opportu-
nities, the AP also needs to keep track of all data packets in the air. For that purpose, the AP keeps a queueQout

that stores the inter-flow coding vectors (not the payloads)of all the outgoing packets for the current batch. Each

inter-flow coding vectorv stores the coding coefficients for theNtotal
∆
=

∑M
i=1 Ni packets of theM flows, i.e., it

is a row vector of sizeNtotal. We set the maximum allowable number of vectors inQout to be10 ×
(

∑M
i=1 Ni

)

.

Each coding vector is associated with anoverhearing bit mapand acreation bit map, each of sizeM bits, and a
unique 2-byte sequence number. The overhearing bit map records which client has overheard this packet. Since
each outgoing coding vector/packet is created by mixing a subset ofM flows, the creation bit map of an inter-flow
vector is used to indicate which flows were used to generate this vector. The unique sequence number for each
inter-flow coding vector is to facilitate cumulative feedback as the client can simply send back a list of sequence
numbers to acknowledge which packets it has received.

TheQout buffer is used by the phase-based operation to make the coding decision, which starts from Phase 1
and ends in PhaseM . When the phase-based operation is in Phasek, the AP generates a codedk-flow packet and
broadcasts it whenever there is a transmission opportunity. More explicitly, the phase-based operation generates
the inter-flow coding vector for the next to-be-transmittedpacket. The coding vector is then used by a separate
routine to construct the coded payload from the payload of native packets stored in the payload buffer.

As discussed in Section 4, the monotonic progression from Phase 1 to PhaseM gives higher priority to coding
over a smaller number of flows. packet has the potential of creating new coding opportunities of mixingh flows
in a future Phaseh with h > k. On the other hand, we also want to quickly move to higher phases so that we
can code over a large number of flows and thus capitalize the largest amount of coding benefits. To that end, we
need a new component: thePhase Completion Status Indicators (PCSIs). As already mentioned, when the AP
receives a feedback packet from a client, the AP will update the overhearing status ofQout. A separate process
then takes the updatedQout as input to compute the PCSIs. The PCSIs are then used by the phase-based operation

10

to decide when to switch from Phasek to Phase(k + 1), or to decide whether we have finished the last PhaseM
and are ready to move to the next inter-flow batch. When we moveto the next inter-flow batch, we clear the buffer
of Qout and replace the payload buffer with the payloads from the newinter-flow batch.

The clientsstore all overheard packets. Throughout the transmission,each client periodically sends back ACKs
that tell the AP which coded and uncoded packets it has received in the past. Since each packet is associated with
an inter-flow coding vector, one can view that the periodic feedback tells the AP which coding vectors have been
received by which client.

Unlike the MU-ARQ and ER, ECR usesbatch decodingto extract the benefits of network coding in a similar
way as the MORE protocol. More explicitly, each client collects all the packets it has heard and performs decoding
at the end of the current inter-flow batch. When a client receives a packet belonging to a new batch, it removes
from its memory all the overhearing packets of the previous batch.

Next we describe in detail the main components of ECR.

5.2 Phase-Based Operation

In the beginning of each inter-flow batch, we addNtotal elementary basis vectorsto Qout. That is, if we con-
catenate the elementary row vectors vertically, we have anNtotal × Ntotal identity matrix after initialization. All
the overhearing bit maps are set to all-zero. For an elementary row vector corresponding to thei-th client, itsi-th
bit of the creation bit map is set to one and all other creationbits are set to zero. The creation map thus indicates
that this elementary coding vector contains the information from flow j. All the sequence numbers are set to0.
Note that the sequence number 0 is reserved only for theNtotal row vectors in the initialization. All other coding
vectors will have a unique sequence number that is not 0.

We use[M] to denote the integer set{1, 2, · · · ,M}. The phase-based operation maintains(2M − 1) floating-
point variablesaS indexed byS. Each subscriptS is a non-empty subset of[M]. For example, whenM = 2, we
have(2M − 1) = 3 different non-empty subsets6 {1}, {2}, and{1, 2}. Therefore, we have three floating-point
variablesa{1}, a{2}, anda{1,2}. We use|S| to denote the number of elements inS. The phase-based operation
also maintains a registerK, which records the current phase index.

Initialization of the path-based operation: In the beginning of each inter-flow batch, letaS ← 0 for all
non-empty setS ⊆ [M]. Let K ← 1.

Normal operation in PhaseK:
Step I —Choosing the flows to be coded together:Whenever there is a transmission opportunity and the AP

is in PhaseK, the AP will mix K flows together. More explicitly, for any given non-empty subsetS ⊆ [M] that
hasK = |S| elements, the AP can mix together all flowsi ∈ S in PhaseK. The first key question is thus how
to choose a subsetS of sizeK for the AP to code the corresponding flows together. In ECR, the module “Phase
completion status indicators” will output a non-negative integerdS for each subsetS. The larger thedS is for a
givenS, the more important it is to code the flows inS. To perform tie-breaking between differentS, every time
we can transmit a packet, we use the following subroutine to chooseS:

1: Consider all non-empty subsetS ⊆ [M] satisfying both (i) the size isK, and (ii) the correspondingdS

generated from PCSIs is non-zero.
2: Among thoseS, choose theS∗ with the largestaS value.
3: Let aS∗ ← aS∗ − 1

dS∗
.

6The number of variables grows exponentially with respect toM , and the suitable value ofM depends on the modern microprocessor

capabilities. The larger theM value, the higher the throughput. In our implementation, weonly useM = 4 (using 15 variables). Our

results show that mixing only 4 flows together in an efficient way already outperforms the state-of-the-art ER protocol, which mixes all

flows together.

11

Intuition: Using the auxiliaryaS variables, the frequency of selecting a subsetS will be proportional to the
corresponding importance indicatordS .

Step II —Generate a new coding vector:Once theS∗ is determined, use the following subroutine to generate
a new inter-flow coding vectorv, which is a row vector of dimensionNtotal. We need the following definition for
the subroutine.

Definition 1 An inter-flow coding vectorv in Qout is compatibleto a non-empty subsetS ⊆ [M] if both the

following two conditions are satisfied: (i) In the creation bit map ofv, all the bits outsideS are zero. (ii) For all

i ∈ S, it is either that thei-th bit of the creation map is 1, or that thei-th bit of the overhearing map is 1.7

In other words,v is compatible toS if the subsetS “covers” the creation bit map; and jointly the creation plus
the overhearing maps “cover” the subsetS. The subroutine that generates an outgoing coding vectorvout is as
follows.

1: vout← 0 is initialized as a row vector of lengthNtotal.
2: for all inter-flow coding vectorsv in Qout that arecompatibleto the chosen subsetS∗ do
3: Select a coding coefficientcv randomly fromGF(24).
4: vout← vout + cvv.
5: end for

Namely, the final outputvout is the random summation of all the inter-flow coding vectors compatible toS∗. We
use thisvout as the inter-flow coding vector for the to-be-transmitted packet. Store the newvout back intoQout (see
the flow chart Fig. 6). Set the overhearing map to 0. For alli ∈ [M], set thei-th bit of the creation map to 1 or 0
depending on whetheri ∈ S∗ or not. Append tovout a unique 2-byte sequence number.
Intuition: In the beginning of Phase 1, eachS∗ must contain only one element. SayS∗ = {1}. Then we will select
the inter-flow coding vectors inQout with the 1st bit of the creation map being 1. Note that during the initialization
of Qout, those initialization vectors corresponding flow 1 have the1st bit of the creation map being 1. Therefore,
during Phase 1, whenS∗ = {1}, the AP sends coded bits that only mix the packets from flow 1.

Continue our running example in Figure 5. At the end of Phase 1, the overhearing pattern is described in
Fig. 5(a) (an identical example is described in Fig. 2(b) as well). Since the[X3] intended ford1 is not heard by
d1 but overheard byd2 andd3, this packet will have the 1st creation bit being 1 and the 2nd+ 3rd overheard bits
being 1. Therefore,[X3] is compatible to the subsetS = {1, 3}. Similarly, the[Z3] packet intended ford3 is not
heard byd3 but overheard by bothd1 andd2. Then[Z3] is compatible toS = {1, 3} as well. As a result, when we
chooseS∗ = {1, 3} in Phase 2, the AP will mix[X3] with [Z3] as illustrated in Fig. 5(b).

At the end of Phase 2, the overhearing pattern is described inFigure 5(b) (a similar example is described in
Figure 3(b) as well). Consider the coded[X2 + Y1] packet that was created for serving bothd1 andd2. Therefore,
both the 1st and the 2nd bits of the creation map are 1. Since this coded packet is also overheard byd3 (see
Figure 5(b)), the 3rd bit of the overhearing map is 1. Therefore, this coded packet[X2 + Y1] is compatible to the
subsetS = {1, 2, 3}. Similarly, a[Z3] packet intended ford3 is not heard byd3 but overheard by bothd1 andd2.
Then this packet packet is compatible toS = {1, 2, 3} as well. As a result, when we chooseS∗ = {1, 2, 3} in
Phase 3, the AP will mix[X2 + Y1] with [Z3] as illustrated in Figure 3(b).The overheard coded packet[X2 + Y1]
is successfully recouped by the proposed algorithm.

In addition to choosing compatible vectors to recoup the overheard coded packets, another key ingredient is the
random intra-flow coding componentin this algorithm. That is, instead of deciding which compatible packets to
be mixed together, wemix all compatible packets by random network coding. Consider the running example in
Figure 2. Suppose after sending out 9 uncoded packets, the overhearing patterns are described in Fig. 2(a). The

7It is possible that both thei-th bits of the creation map and the overhearing map are one.

12

Figure 7. The benefits of using random intra-flow coding.

discussion of Issue 2 in Section 3.2 shows that the decision whether to send[X3 +Y1] or [X2 +Y1] first will affect
the performance. We use random coding to solve this problem.

Suppose the AP, currently in Phase 2, choosesS∗ = {1, 2}, i.e., the AP decides to mix someX andY packets.
Only three packets are compatibleS∗ = {1, 2}. That is, packet[X2], generated ford1, is heard byd2 and is thus
compatible toS∗. Packet[X3], generated ford1, is heard by bothd2 andd3 and is thus compatible toS∗. Packet
[Y1], generated ford2, is heard byd1 and is thus compatible toS∗. Instead of deciding whether to mixX2 andY1

first, or to mixX3 andY1 first, we simply mix all of them together by random linear network coding. Namely, we
transmit[c1X2+c2X3+c3Y1] for some randomly chosen coefficientsci. Figure 7 illustrates this scenario when we
choosec1 = 1, c2 = 2, andc3 = 3. With the randomly generated[X2 + 2X3 + 3Y1] (noting the intra-flow mixing
of X2 andX3), destinationd2 can still recoverY1 by its existing knowledge aboutX2 andX3. On the other hand,
d1 can decoder neitherX2 nor X3. Instead of individual packets,d1 can only decode the mixture[X2 + 2X3].
When the next coded packet[X3 + Z3] is sent,d1 can decodeX3, which in turn can be used to decodeX2 from
the mixture[X2 + 2X3]. Random intra-flow coding thus achieves the optimal performance without making the
difficult decision whether to send[X2 + Y1] first or [X3 + Y1] first.

Step III —Construct the coded payload and send the coded packet:Based on the new inter-flow coding vector
vout = (v1, · · · , vNtotal), we can assemble the coded payload by summing up the native payloads (stored in the
payload buffer) with the corresponding coefficientsv1, · · · , vNtotal. The final outgoing coded packet contains the
2-byte sequence number, the new inter-flow coding vector, the coded payload, and the creation bit map. The
inclusion of the creation bit map serves two purposes: first,it informs a client whether the coded packet includes a
packet intended for that client. This information is used inthe decoding process, describe in Section 5.4. Second,
we leverage the creation bit map to reduce the size of the packet header, in particular the part occupied by the
inter-flow coding vector. When sending ak-flow packet,k < M , we only include in the packet header the
segments of the inter-flow coding vector corresponding to the chosenk flows. The clients use the creation bit map
to reconstruct the whole inter-flow coding vector by filling the segments corresponding to the remaining(M − k)
flows with 0’s.
Remark:The coding vector will be used for decoding as in most batch-based network coding schemes. The 2-byte
sequence number facilitates the feedback from the destination. Note that the sequence number is defined based as
a sequence number within the same inter-flow batch, not within the same flow. Therefore, each client periodically
sends back a list of sequence numbers acknowledging which coded/uncoded it has received without the need to
distinguish to which flows the packets belong. Upon the receipt of the list of ACK’ed sequence numbers, theQout

updates the corresponding overhearing map accordingly.

5.3 Phase Completion Status Indicators

An important component of ECR is the PCSI computation, whichdecides whether the AP can stop the current
Phasek and move to Phase(k + 1). Note that the overhearing maps of the vectors inQout are updated only

13

after receiving an ACK from the destinations. Therefore, weonly need to run the following routine during the
initialization ofQout for each inter-flow batch (see Section 5.2), and when the AP receives a cumulative ACK from
a client. The computation of the PCSIs is as follows:

There is one PCSI for each non-empty subsetS ⊆ [M], which is denoted bydS . For any givenS, the compu-
tation ofdS is carried out as follows.

1: dS ← 0.
2: for all i ∈ S do
3: Consider all vectors inQout that satisfy at least one of the following two conditions:Cond. 1: it is received

by di (by checking thei-th overhearing bits); andCond. 2: it is compatibleto at least oneS′ ⊆ [M]
satisfying|S′| > |S|. 8

4: Project all these vectors onto flowi.
5: Compute the rank of the projected vectors. Letr1 denote the computed rank and store it for later use.
6: Consider all vectors inQout that satisfy at least one of the following three conditions:Cond. 1, Cond. 2as

defined in Line 5.3, orCond. 3: it is compatibleto S.
7: Project all these vectors onto flowi.
8: Compute the rank of the projected vectors. Letr2 denote the computed rank.
9: dS ← dS + (r2 − r1).

10: end for
Intuition: The PCSIs answer when we can switch to the next phase. Supposewe are in Phasek and try to mixk
flows in S (|S| = k). If we know that the “benefit” of mixingS flows is no different than that of mixingS′ flows
for someS′ ⊆ [M] satisfying|S′| > |S|, then it means that mixingS flows is redundant, since the same benefit
can be achieved by mixingS′ flows. Since mixingS′ flows can serve|S′| destinations simultaneously (recall that
|S′| > |S| = k) rather than servingk flows as by mixingS flows, we definitely want to start mixingS′ flows
rather than wasting more time on mixingS flows only. The rankr2 computed by PCSIs represents the benefits of
“staying in the current Phasek” while the rankr1 represents the benefits of “moving out of the current Phasek
and focusing on the higher-phaseS′ flows.” When the difference is zero, it means that it is time tomove to the
next phase, or equivalently to abandon mixingS packets in the future. Note thatdS is the sum ofr2 − r1 for all
i ∈ S. The reason is that mixingS flows potentially benefits alli ∈ S. Therefore, we compute the benefitr2 − r1

for each individual flowi and sum them up for the computation ofdS .
Deciding whether to move to the next phase:After the computation ofdS for all non-empty subsetsS ⊆ [M],

the AP needs to decide whether to move to the next batch or not.Suppose the current batch isk for some
1 ≤ k ≤M −1. We check allS ⊆ [M] with |S| = k. If all thoseS havedS = 0, then it means staying in Phasek
is redundant and we move to Phase(k + 1). Otherwise, stay in Phasek. Whenk = M , there is no next phase
to move to. We stay in PhaseM until all destinations have sent feedback acknowledging that the decoding of the
inter-flow batch is successful. Once all destinations have acknowledged the current inter-flow batch, we move to
the new batch.

5.3.1 Reducing Complexity

The computation of(2M − 1) PCSIs every time the AP receives a cumulative ACK from a client is the computa-
tionally heaviest component of ECR. However, the computation can be made more efficient by noticing that there
are a lot of repeated computation. For example, any vector inQout that satisfiesConds. 1and2 in Line 5.3 for
somei andS1 must also satisfyConds. 1and2 for the samei and all otherS2 satisfying|S2| = |S1|. There-
fore, the computation ofr1 for the pair(i, S1) must be identical to that for the pair(i, S2). After optimizing the

8When consideringS = [M], since there exists noS′ ⊆ [M] satisfying|S′| > |S| = M , Cond. 2 becomes a null condition. No

coding vector can satisfyCond. 2. Therefore Line 5.3 collapses to “considering all vectors satisfyingCond. 1.”

14

operations of the PCSI to remove all duplicated computation, the complexity of computing the PCSI can be made
comparable to that of ER.

Optimized PCSI Computation Algorithm. The new, optimized PCSI computation algorithm is as follows.

1: INPUT: s receives a list of packet sequence numbers from a destination di.
2: Update thei-th bit in the overhearing map of all the vectors corresponding to the list of input sequence

numbers.
3: OUTPUT: A list of joint coding vectors for which the corresponding overhearing maps change.

For example, suppose a vectorv has overhearing map(1, 1, 0) and destinationd1 ACKs this vector one more
time. Since the overhearing map remains the same after the update, we do not outputv. For comparison,
suppose a vectoru has overhearing map(0, 0, 1) and destinationd1 ACKs this vector. Then the overhearing
map changes from(0, 0, 1) to (1, 0, 1). u will thus be included in the output.

Based on the list of coding vectors generated from the previous section, we update the following matrices. The
following routine needs to be run for alld1 to d4 and for all the vectors in the generated list.

Before describing the subroutine, we need to define ”sequential downstream subsets ofS.”
Definition: Given a subsetS ⊂ [M], the sequential downstream subsets ofS is a sequence of sets such that the

first set isS, and the last set is∅. All the sets in the middle are a subset ofS. And the sequence follows that ifS1

appears beforeS2, then we must have|S1| ≥ |S2|.
For example, ifS = {1, 3, 4}, then the sequential downstream subsets ofS is a sequence of eight sets:{1, 3, 4},

{1, 3}, {1, 4}, {3, 4}, {1}, {3}, {4}, and∅.
Note that the choice of the sequential downstream subsets isnot unique. For example, whenS = {1, 3, 4}, then

the following sequence of sets is also the sequential downstream subsets ofS: {1, 3, 4}, {1, 4}, {3, 4}, {1, 3},
{1}, {4}, {3}, and∅. Our subroutine holds for any choice of the sequential downstream subsets.

The subroutine:
1: For each session, say session 1, for eachS ⊂ [M], maintain two matricesRS,1 andRS,2. There are thus

totally 2 × 2M matrices maintained for session 1. Similar to what we discussed in the original scheme,RS,2

is always larger thanRS,1. The rank of them are ther2 andr1 in the previous description.
Each matrixRS,1 (or RS,2) is also associated with a flagbS,1 (or RS,2). There are thus totally2 × 2M flags
maintained for session 1.

2: INPUT: A joint coding vectorv from the generated list. A target destination, sayd1. Since we only focus on
the projection ofv ond1, we thus assume thatv is the projected vector in the following discussion.

3: Set all the flags to 0.
4: Suppose the overhearing map (the overhearing pattern) ofv is Shearingand the creation map isScreation.
5: if S containsd1 (since we focus ond1) then
6: S0 ← [M].
7: else
8: S0 ← Shearing∪ Screation.
9: end if

10: Consider the sequential downstream sets ofS0. For eachS in the list of sequential downstream sets ofS0, we
perform the following operations. (The sequential downstream sets decide whichS to consider first.)

11: for eachS in the sequential downstream sets ofS0 do
12: if bS,1 = 0 then
13: if S = S0 and1 ∈ Shearingthen
14: Add the (projected) vectorv into RS0,1 through Gaussian elimination.
15: if v is linear dependent to the existingRS0,1 then
16: SetbS0,2 ← 1.
17: SetbS2,1 ← 1 andbS2,2 ← 1 for all S2 being a strict subset ofS0.

15

18: end if
19: else ifS 6= S0 then
20: Consider the subsets of the form:S′ = S ∪ {j} such thatj /∈ S but j ∈ S0.
21: Let vS′ denote the vector that are added last to theRS′,2 after finishing Gaussian elimination.
22: Among all vS′ , let v∗S′ denote the one with the largest number of zeros in the left portion of the

coordinates.
23: Add thev∗S′ into RS,1 through Gaussian elimination.
24: if v∗S′ is linear dependent to the existingRS,1 then
25: SetbS,2 ← 1.
26: SetbS2,1 ← 1 andbS2,2 ← 1 for all S2 being a strict subset ofS.
27: end if
28: end if
29: if bS,2 = 0 then
30: if S = S0 and1 /∈ Shearingthen
31: Add the (projected) vectorv into RS0,1 through Gaussian elimination.
32: if v is linear dependent to the existingRS0,1 then
33: SetbS0,2 ← 1.
34: SetbS2,1 ← 1 andbS2,2 ← 1 for all S2 being a strict subset ofS0.
35: end if
36: else
37: Let vS denote the vector that are previously added to theRS,1 after finishing Gaussian elimination.
38: Add thevS into RS,2 through Gaussian elimination.
39: if vS is linear dependent to the existingRS,2 then
40: SetbS2,1 ← 1 andbS2,2 ← 1 for all S2 being a strict subset ofS.
41: end if
42: end if
43: end if
44: end if
45: end for

High-Level Discussion: The sequential downstream subsets define the sequence of sets to be considered.
Depending on whetherd1 has received the vector and on the setShearing∪ Screation, we decide where to start the
update by choosingS0. After we have processedS0, we update the downstream subsetS through a chain effect
(adding only a Gaussian-elimination-processed vector). If any the new vector is linearly dependent to one subset
S, then we shut down all the further update on the subsetsS2 ⊆ S by setting the corresponding flags.

The chain effect says thatRS,2 depends onRS,1 and thatRS,1 depends on one of theRS′,2 with S′ = S ∪ {j}.
In Section 8, we measure the execution time of the optimized algorithm on our testbed and show that it remains

sufficiently low.

5.4 Batch Decoding at the Client

Each receiver uses the same batch-based decoding algorithm. For simplification, we consider only receiverd1.
Rx i for i > 1 can be obtained by symmetry.

Initialization at d1: For each new inter-flow batch, initialize two empty queues:Qrx vec andQrx seq. Each entry
in Qrx vec contains anNtotal-dimensional inter-flow coding vector (row vector) and a coded payload. Each entry in
Qrx seq is a 2-byte sequence number.

Shuffle the columns ofQrx vec: An important part of the initialization step is to shuffle thecolumns ofQrx vec.
The vectors inQrx vec form a |Qrx vec| ×Ntotal matrix. We deliberately shuffle the columns such that the columns

16

corresponding to flow 1 are the lastN1 columns. Ex: for rx 3, we shuffle the columns of flow 3 to the lastN3

columns. All our discussion is based on the shuffled columns.
When Rx 1 receives a packet:(1) Put the corresponding sequence number inQrx seq, which will be used when

sending out feedback.
(2) Let v denote the inter-flow coding vector of the received packet. We test the linearly independence ofv

with respect to theQrx vec matrix by Gaussian elimination. If the vectorv is linearly dependent to theQrx vec

matrix, discard the received packet. Ifv is linearly independent to theQrx vec matrix, then we add bothv and the
coded payload toQrx vec. That is, perform Gaussian elimination on both the inter-flow coding vector and on the
coded payload. After Gaussian elimination, the|Qrx vec| ×Ntotal matrix is always upper triangular. Note that this
is a two-step process. We first test the independence only forthe coding vector. Only when the coding vector is
linearly independent, then we process the payload, which reduces the computation complexity.

Decode:Consider the rows for which the only non-zero entries corresponding to flow 1. Since we shuffle the
columns of flow 1 to the lastN1 columns and sinceQrx vec is an upper triangular matrix, those rows must be the
last few rows. When the number of those rows isN1, we perform decoding. That is, we use the lastN1 rows and
the corresponding coded payload to decode as if we are performing only intra-flow decoding.
Intuition: The critical step is shuffling the flow 1 columns to the lastN1 columns. In this way, when we perform
Gaussian elimination, it will automatically eliminate the“interference” caused by other flows. (The only non-zero
entries in the last few rows are all in the columns of flow 1.) Asa result, when the number of rows containing only
flow 1 information (the last few rows) reachesN1, we can decode the flow 1 packets from the coded payload in
the same way as we perform decoding for intra-flow coding protocols.

5.5 Client Feedback

Clients in ECR send periodic cumulative feedback to inform the AP of their reception status. We distinguish
two forms of feedback: before and after decoding a batch. Before decoding a batch, a client sends a reception
report similar to the ones used in ER reporting to the AP the most recent

∑M
k=1 Nk sequence numbers it re-

ceived/overheard for the current batch in the form of a bitmap (plus a start sequence number). When a client
decodes a batch, it sends a special ACK to inform the AP. The APtreats this special ACK as a bit map of sequence
numbers that acknowledgesall packets that have been sent during the batch. Since this special ACK may be lost,
from that moment and until the AP moves to the next batch (i.e., until all clients decode their current batch), a
client in FINISH mode (i.e., having already decoded its current batch) resends periodically the same special ACK
to the AP.

6 Correctness Guarantee and Performance Analysis

The ECR protocol is designed with rigorous mathematical foundation. In this section, we outline the corre-
sponding proofs of the correctness and the performance analysis.

6.1 Correctness

Assume the success probability of each link is strictly larger than zero. To show the correctness of the ECR
algorithm, we need to prove the following:

• ECR will move from Phasek to Phase(k + 1) in a finite amount of time for any1 ≤ k ≤M − 1.

• Once the AP is in PhaseM , all destinations will send the final acknowledgment of the entire inter-flow
batch within a finite amount of time.

17

Figure 8. Illustration of the intuition of Phase Completion Status Indicators

That is, ECR proceeds normally and will not get stuck in any phases. Note that the above two statements holds for
arbitraryGF(2b) (even for binary fieldGF(2)). That is a critical part as in practical schemes, we cannot rely on the
“with high probability (1− ǫ) for sufficiently largeGF(2b)” statements commonly used in random linear network
coding [10].

Proving that AP always moves between phases is straightforward. We notice that whether the AP switches
phases depends ondS = r2 − r1. For any givenS, the created coding vectorv will have all the creation bits in
S set to 1. Therefore, if there is any destinationj outsideS overhears the transmittedv, then such vector will be
considered compatible toS′ = S ∪ {j}. As a result, the rankr1 will increase with a non-zero probability. In the
end, the rankr1 approachesr2 in a finite amount of time.dS becomes zero in a finite amount of time and the AP
moves to the next phase.

The proof of the completion of the inter-flow batch in PhaseM is more complicated, which is built around the
following propositions.

Proposition 1 For any time instant of the AP, suppose a packet is generated according to a flow setS. (Currently,

the AP is in Phase|S|.) Consider one receiveri0 ∈ S and fix thati0. If the i0-th destination receives that packet,

then after the Gaussian elimination performed at thei0-th destination, the new vector will have zero elements for

all columns corresponding to flow-j, for all j 6= i0. Note that after Gaussian elimination, the elements in the

columns corresponding to flow-i0 may or may not be zero.

Intuition: This proposition says that if for any destinationdi0 , i0 ∈ S, all the “interference” from flowj, j 6= i0
can be canceled at destinationdi0 . This similar to the “immediate decodability concept” of COPE. That is, for the
COPE protocol, upon the reception of oneS-flow packet intended fori0 ∈ S, di0 can cancel all the interference
and decode the desired packets. The difference for ECR is that now di0 can cancel all the interference and obtain
one more linearly independent intra-flow coded packet.

For any destinationdi, we notice thatQrx vec is an upper triangular matrix. Letrproj denote the rank of the
submatrix ofQrx vec induced by the columns of flowi. Let rlower denote the number of the last few rows for which
all the non-zero entries are in columns of flowi. We have the following theorem.

Proposition 2 For any time instant,rproj = rlower.

Intuition: This proposition further solidifies the essence of Proposition 1. That is, the “rank” of the projected space
on flow i can be fully extracted by Gaussian elimination when focusing on the last few rows for decoding.

Proving that once the AP is in PhaseM , ECR moves to the next batch within a finite amount of time.
For the following, we call the projection of a space to flowi as the “flow-i space.” If the phase completion status

18

indicatordS = 0, it means that the flow-i space spanned by the vectors compatible toS is fully covered by the
flow-i space spanned by vectors that are compatible byS′ or are received by destinationi. As a result, when
we move from Phasek to (k + 1), it is guaranteed that the flow-i space of the vectors that are compatible to
Phase(k+1) or higher or received by destinationi has the same rank as the flow-i space of the vectors compatible
to Phasek or higher or received byi, see Fig. 8. On the other hand, all elementary vectors that are stored inQout

during the initialization ofQout are compatible to{i}. Therefore the flow-i space of vectors compatible to the
Phase 1 selectionS = {i} has full rankNi, see Fig. 8. As a result, when the AP moves to the final Phase-M ,
the flow-i space of the vectors that are compatible to[M] or received byi, must have the full rankNi (Fig. 8).
Hence, after spending a finite amount of time in PhaseM , the destinationdi will have received vectors such that
the corresponding flow-i space has full rankNi. By Proposition 2, each destinationdi thus can fully cancel the
interference of other flowj, j 6= i, and recover allNi native packets. Destinationdi will thus acknowledge the
entire inter-flow batch in a finite amount of time. The proof isthus complete.
Remark:It is worth noting that the design of ECR is started by taking into account all the practical limitations
that have been puzzling the existing protocol designs (see Sections 2.1 and 3.2). Therefore, in contrast with the
existing top-down approach (from the theoretic MU-ARQ principle [14] to the practical ER protocol [21]), our
bottom-up approach (addressing practical constraints first) ensures that the resulting ECR protocol depends only
on very simple feedback-based operations without complicated time-out mechanisms. The most intriguing feature
of ECR is that with carefully designed, feedback-based computation at the AP, this bottom-up approachis also
theoretically optimal.That is, under the same theoretic setting as used in MU-ARQ [14], our practice-oriented
ECR strictly outperforms the overly idealistic MU-ARQ principle and achieves the best poosible throughput for
any idealistic/practical schemes one can envision, as we prove in the following.

6.2 Performance Analysis

For the performance analysis of ECR, we denote underlying finite field of network coding byGF(2b). We use
the same channel model as when we describe the existing results in Eqs. (1) and 2 of Section 2. Unlike the MU-
ARQ, we use a more realistic assumption of periodic feedback(sending feedback everyF > 1 time slots using a
separate channel). By generalizing thephysically-degraded-channel-basedproofs in [8], we obtain the following
proposition that upper bounds the best possibleη for any transmission scheme one can envision:

Proposition 3 For any given values ofM andF , the throughput efficiency of any scheme must satisfy:

η ≤
M

∑M
k=1

1
1−(1−p)k

. (3)

Our ECR protocol achieves the optimal throughput efficiencyin the following sense:

Proposition 4 For any given values ofM andF , the throughput efficiency of ECR satisfies

lim
N→∞

lim
2b→∞

η =
M

∑M
k=1

1
1−(1−p)k

. (4)

Namely, for sufficiently largeN and2b, ECR is throughput optimal. The superior performance of ECRfor finite
N and finite2b is verified by simulation and testbed implementation in Sections 7 and 8.

19

7 Simulation Study

In this section, we compare the performance of ECR against that of ER and 802.11 using the Glomosim simu-
lator [24].

7.1 Methodology

We place an AP in the center of the simulation area and up to 20 clients uniformly on a circle around the
AP. To evaluate the performance of the protocols under different loss scenarios, the clients are placed close to
the AP and we generate link loss rates in a controlled manner,by artificially dropping packets at each client
following a Bernoulli model. Following the evaluation methodology in [21], we consider both homogeneous and
heterogeneous loss rates.

Following the evaluation methodology in [21], we consider both homogeneous and heterogeneous loss rates.
In the homogeneous case, the loss rates of all links are the same, varied between 10% and 90% in different
simulations. In the heterogeneous case, the loss rate for each link is randomly selected between 0 and an upper
bound and the upper bound varies from 10% to 90%.

In every simulation, the AP transmits 1500-byte packets for100 sec. The results shown in the following sections
are averages over 10 runs. Note that the standard deviationsare very low in all cases except for the heterogeneous
loss scenarios in Section 7.3. Hence, in the interest of space and clarity, we do not show them in the rest of the
results.

We noticed the performance of ER heavily depends on three parameters: retransmission queue threshold, re-
transmission queue timeout, and period of cumulative ACKs.Further, the optimal set of values for the three
parameters depends on the number of clients. For example, ifthe AP supports a large number of clients (more
than 20), then a retransmission queue threshold of 25 packets may be too small, limiting the coding opportunities.
As another example, when the number of clients increases, the number of cumulative ACKs increases, resulting
in increased overhead and contention with data packets. On the other hand, reducing the frequency of ACKs, to
keep the overhead constant, may reduce the AP’s knowledge about the clients’ content, which in turn can again
reduce the coding opportunities. [21] uses a threshold of 25packets and a timeout of 250ms and does not discuss
the third parameter.

Finally, note that in [21], the authors used for their simulation evaluation a simplified simulator that did not
model timing dynamics. Hence, they did not evaluate the actual ER implementation, but a simplified version of
the protocol, where a sender sends a constant-size batch of packets at a time and then (after instant feedback from
the clients) retransmits lost packets until all of them are received by the destined clients. With this simplified (but
not practical) version, the authors were not able to study the interdependence of the three parameters of the actual
implementation.

To deal with this complex interdependence among the three parameters, we decided to jointly scale all three
parameters proportionally to the number of clientsK. We tried three different scaling factors,K, K/2, andK/4.
We also tried different values for the base ACK period (i.e.,the ACK period forK = 2 clients) for each scaling
factor. We do not present these results here due to space limitation. For our final evaluation and comparison with
ECR, we use a base ACK period (of 40ms, and a scaling factor ofK/2, which gave the best performance among
different configurations.

We repeated the same procedure to choose the ACK period for ECR, which is the only parameter that requires
scaling in our protocol. We finally chose the same scaling factor for ECR’s ACK period, but with a base period of
20 ms. Finally, we use a batch of 48 packets for each flow and a Galois FieldGF(24) (half byte).

Evaluation Metrics. We use the following metrics:

Aggregate Throughput:The throughput per client is defined as the total number of unique packets (excluding
duplicates) received for 802.11 and ER, or the total number of decoded packets for ECR, multiplied by the packet

20

(a) Throughput comparison, 20%

loss.

(b) Efficiency comparison, 20%

loss.

(c) Throughput comparison, 50%

loss.

(d) Efficiency comparison, 50%

loss.

Figure 9. Throughput and efficiency comparison for different numbersof clients under homogeneous losses.

size, and divided by the total time required to collect/decode those packets. The aggregate throughput is the sum
of the throughputs of all clients.

Efficiency: The ratio of the total number of packets sent by the AP (including retransmissions) (original data
packets, and MAC layer retransmissions for 802.11, original data packets, single retransmissions and coded re-
transmissions for ER, intra-flow and inter-flow coded packets for ECR), over the total number of data packets
effectively received for each protocol (e.g. decoded in ER or ECR) by all the clients. The value of this metric is
≥ 1, with larger values indicating lower efficiency.

7.2 Homogeneous losses

7.2.1 Varying the number of clients

Performance comparison.Figures 9(a)-9(d) plot the throughput and efficiency of ECR,ER, and 802.11 with a
varying number of clients for a loss rate of 20% and 50%. For ER, we plot two versions, the original one and the
version where we scale all the parameters with the number of clients, denoted as ERscale. We make the following
observations:

First, we observe that the performance of ER drops dramatically with the number of clients. 802.11 outperforms
ER in terms of both throughput and efficiency with more than 4 clients under a 20% loss rate and with more than
8 clients under a 50% loss rate. Note the complete ER protocolwas evaluated in [21] with only up to 6 clients.

Second, ERscale substantially outperforms ER in terms of both metricsand always outperforms 802.11. How-

21

(a) Packet breakdown for

ER, 20% loss.

(b) Packet breakdown for

ER scale, 20% loss.

(c) Packet breakdown for

ECR , 20% loss.

(d) Packet breakdown for

ER, 50% loss.

(e) Packet breakdown for

ER scale, 50% loss.

(f) Packet breakdown for

ECR , 50% loss.

Figure 10. Packet breakdown for different coding schemes under homogeneous losses. For ER and ERscale,i-

Retx corresponds to transmissions mixing togetheri packets (fori different clients);1-Retx corresponds to packets

retransmitted uncoded. For ECR, Phasei corresponds to inter-flow coded packets ofi different clients; Phase 1 include

only intra-flow coded packets for a single flow.

ever, its performance also degrades with the number of clients.
Third, ECR outperforms ERscale in terms of both throughput and efficiency (with the exception of a small

number of clients where ERscale’s efficiency is about 3% better). The throughput gain of ECR over ERscale
is as high as 13% under a 20% loss rate and as high as 20% under a 50% loss rate, with 20 clients. Compared
to original ER, ECR’s throughput gain is much higher, up to 122% and 155% under 20% and 50% loss rates,
respectively. Finally, compared to 802.11, ECR’s throughput gain is as high as 13% under a 20% loss rate (same
as against ERscale) and as high as 48% under a 50% loss rate. Moreover, the protocol scales well with the number
of clients in spite of only allowing to encode packets from groups of 4 flows.

Regarding the efficiency metric, note that with a loss rateL, 802.11 (which retransmits each packet uncoded)
needs on average1

1−L
transmissions to deliver a packet, i.e., its efficiency is11−L

. This is indeed the case in
Figures 9(b), 9(d) – 802.11’s efficiency varies from 1.22-1.27 with a 20% loss rate and from 2.00-2.03 with a 50%
loss rate. In contrast, by exploiting network coding, ECR achieves a much better efficiency, in particular under
high loss rates; ECR’s efficiency is lower than 1.59 with a 50%loss rate even with 20 clients. ERscale’s efficiency
is also better than 802.11’s, but worse than ECR’s and, as mentioned before, it degrades with the number of clients,
especially under high losses.

Packet breakdown. To understand where the gains of ECR come from, we plot in Figures 10(a)-10(f) a break-
down of coded and uncoded transmissions for ER, ERscale, and ECR, with a varying number of clients under
20% and 50% loss rates.

22

(a) 20% loss rate. (b) 50% loss rate.

Figure 11. ACK packet delivery ratio with varying number of clients under homogeneous losses.

In Figures 10(a), 10(d), we observe that as the number of clients increases beyond 4, (i) the number of retrans-
missions for ER increases; in particular, under a 50% loss rate, the retransmitted packets are more than the original
ones for 12 or more clients. (ii) the percentage of coded retransmissions decreases; in the most extreme case,
under a 20% loss rate, the fraction of coded retransmissionsout of the total number of transmissions is less than
1%, i.e., almost packets are sent out uncoded. This explainsthe reduced efficiency for ER and its low throughput.

Figures 10(b), 10(e) show that scaling helps ER; the number of retransmitted packets with ERscale is always
lower than the corresponding number with ER in Figures 10(a), 10(d). Also, the fraction of coded packets with
ER scale is always larger than with ER. In spite of this improvement, we observe that the fraction of retransmis-
sions for ERscale still increases and the coding gain still decreases with the number of clients.

In contrast, Figures 10(c), 10(f) show that the fraction of packets in each phase with ECR remains unchanged
with the number of clients. This shows that ECR scales well with the number of clients and explains its superior
performance over ERscale.

Why does the performance of ERscale drop with the number of clients?Figures 11(a), 11(b) plot the delivery
ratio of ACK packets (i.e., the number of ACK packets received at the AP divided by the total number of ACK
packets sent by all the clients) for ERscale and ECR with varying number of clients for loss rates of20% and
50%. We observe that, in spite of scaling the ACK period with the number of clients and adding jitter before
sending the ACKs, the delivery ratio of ACK packets still decreases with the number of clients. The delivery ratio
is similar for the two protocols under 20% loss rate and higher for ER scale under 50% loss rate. Nonetheless, the
performance of ERscale degrades with the number of clients while the performance of ECR remains constant.

However, the impact of ACK losses is much higher in ER (or ERscale) than in ECR, for the following reasons.
ECR uses a batch for each flow and a systematic phase-based transmission and coding strategy that does not
depend on any timing dynamics. In a given phasei, the AP transmits linear combinations of a given set of packets
and it always mixes together packets fromi different flows. Thus an ACK loss may delay the transition to the
next phase, but all the extra packets transmitted in the current phase will still combine packets fromi flows, thus
wasting little bandwidth.

In contrast, ACK losses in ER may have the following consequences: (i) they result in timeout expiration for
those packets pending acknowledgment and a burst of retransmitted packets instead of new packets. (ii) they
distort the RTT calculation of the next set of original packets; newly transmitted packets will typically have a
longer timeout, i.e., they will have to wait longer before they are eligible for retransmission. (iii) they reduce the
AP’s knowledge of what packets have been overheard by the clients that sent the lost ACKs. (ii) and (iii) combined
imply that many retransmitted packets are sent uncoded since the AP either finds no packets from other flows to
mix together (due to (ii)) or it does not know whether any packets can be coded together (due to (iii)). This results
in reduced efficiency and throughput for ER (and ERscale) as the number of flows increases.

23

(a) 4 clients (b) 12 clients.

Figure 12. Throughput comparison with varying loss rates under homogeneous losses.

7.2.2 Varying the loss rate

We now evaluate the performance by varying the loss rate. Since ERscale performs much better than the original
ER without scaling, we will use this version in the remainingof this section and in the next section and we will
call it ER for simplicity. Figures 12(a), 12(b) plot the aggregate throughput with ECR, ER, and 80211, with 4
and 12 clients, respectively, when the loss rate varies from10% to 90%. We observe that ECR outperforms ER
and 80211 for all loss rates and the improvement is higher with higher loss rates, which also agrees with the
theoretical results. With 4 clients (Figure 12(a)), the throughput gain of ECR over ER varies from 3% (with 10%
loss rate) up to 26% (with 90% loss rate) and the gain over 802.11 varies from 3.5% up to 178%. With 12 clients
(Figure 12(b)), the throughput gain of ECR over ER varies from 7.5% (with 10% loss rate) up to 22% (with 90%
loss rate) and the gain over 802.11 varies from 5% up to 143%.

7.3 Heterogeneous losses

We now consider heterogeneous loss rates. This scenario is closer to the reality, where different clients have
different loss rates either because they are located in different distances from the AP or due to multipath fading or
because they experience different numbers of collisions (e.g., when other clients or neighboring APs act as hidden
terminals).

Figures 13(a), 13(b) plot the aggregate throughput with ECR, ER, and 80211, with 4 and 12 clients, respec-
tively, when the loss rate bound varies from 10% to 90%. Again, ECR outperforms ER and 80211 for all loss
rate bounds and the improvement is higher with higher loss rate bounds and higher number of clients, i.e., with
higher heterogeneity. With 4 clients (Figure 13(a)), the throughput gain of ECR over ER varies from 4% (with
10% loss rate) up to 10% (with 90% loss rate) and the gain over 802.11 varies from 0.5% up to 15%. With 12
clients (Figure 13(b)), the throughput gain of ECR over ER varies from 7% (with 10% loss rate) up to 51% (with
90% loss rate) and the gain over 802.11 varies from 2% up to 46%.

8 Testbed evaluation

In this section, we present experimental results comparingECR and ER on an 802.11 testbed.
NC-based wireless protocols (e.g., [5, 11, 21]) are typically implemented as a shim between the IP and the

MAC layer, i.e., at layer 2.5. Here, for ease of debugging, deployment, and evaluation, we implemented ECR at
the application layer, using broadcast sockets. For a fair comparison, we also implemented ER at the application
layer, following all the details in [21]. Our implementation handles only synthetic traffic, i.e. data packets are
generated within the ER or ECR application running at the AP,similar to the implementation in [26], in which

24

(a) 4 clients (b) 12 clients.

Figure 13. Throughput comparison with varying loss rate bounds under heterogeneous losses. For clarity, the points

of the ECR and 802.11 curves are offseted horizontally.

packets are generated within Click. The application layer implementation of ECR and ER prevented us from a fair
comparison of ER and ECR against 802.11, which is implemented in the driver/firmware of the wireless card.9

8.1 Experimental results

We set up a small testbed consisting of 9 low-end PCs, runningMandrake Linux 10.1 (kernel 2.6.11-6). Each
is equipped with an Atheros 5212 based 802.11a/b/g wirelesscard operating in 802.11b ad hoc mode, using the
open-sourcemadwifidriver [17]. Each card is attached to a 2dBi rubber duck omnidirectional antenna with a low
loss pigtail. The transmission power is set to 18dBm and RTC/CTS is disabled, as is the default setting.

In our evaluation, we used one machine as an AP and up to 8 machines as clients. To evaluate the performance
of the two protocols under various loss scenarios, we generated loss rates between the AP and the clients in a
controlled manner, similar to [21] and to our simulation methodology. For each scenario (i.e., a given number of
clients and a given loss rate), the AP sends a 1.1MB file to eachclient, using 1460-byte packets. We repeat each
scenario 10 times and we report the average throughput over the 10 runs.

We first wanted to verify that the complexity of the PCSI computation algorithm (which is executed every time
the AP receives an ACK) (Section 5.3) remains reasonably lowafter removing all duplicated computations and
does not become the bottleneck in the protocol’s operation.Figure 14 plots the Cumulative Distribution Function
(CDF) of the ACK process time in the case ofM = 4 clients, with varying loss rates. The median ACK process
time is equal to 203µs, 139µs, and 84µs, for loss rates equal to 20%, 50%, and 80%, respectively. With a 1500-
byte packet, these numbers limit the effective throughput to about 59Mbps, 86Mbps, and 142Mbps, respectively,
which is higher than the maximum effective bit rate of 802.11a/g WLANs (54 Mbps).

One observation made from Figure 14 is that the ACK processing time drops as the loss rate increases. The
reason behind this behavior is the following: under high loss rates, each ACK acknowledges only a small number
of packets, and hence the PCSI computation is repeated for a small number of times and the total ACK process
time is low. On the other hand, under a low loss rates, the firstACKs for each batch acknowledge a large number
of packets, which results in a large ACK process time (note that the 90-th percentile is considerably higher with a
20% loss rate compared to 50% or 80% loss rate). However, after the first ACKs, most of the packets at the AP are
already ACKed and subsequent ACKs do not cause large changesto the overhearing bit map, resulting in a very

9The authors in [21] compared the performance of their ER implementation against a version of ER with coding disabled, which they

used as an approximation of 802.11. We followed their methodology as a proof of concept, and confirmed that the gains of ourER

implementation over ER with coding disabled are similar to the ones reported in [21].

25

Figure 14. CDF of the ECR ACK processing time at the AP with var ying loss rates.

Table 1. Testbed evaluation: Total throughput (in Kbps) with ER/ECRwith varying numbers of clients and

varying loss rates.

ER/ECR Loss rate

of clients 20% 50% 80%

3 652.4/648.8 454.6/484.4 176.8/205

4 696.6/698 486.6/513.6 168/208.6

8 698.4/718.8 492.2/531.6 172.2/207.8

low process time (the 10-th percentile with a 20% loss rate ismuch lower than with 50% or 80% loss rate). As a
result, the median process time does not grow too large even under low loss rates.

We now move on to compare the performance of the two protocols. Table 1 presents the average throughput
with ER and ECR with 3, 4, and 8 clients, and for three different loss rates: 20%, 50%, and 80%. We observe that
the two protocols perform similarly with a 20% loss rate (less than 3% difference) and ECR outperforms ER with
50% and 80% loss rates. The throughput gain of ECR is generally higher with the number of clients and the loss
rate, ranging from 6.5-24%. As a specific example, the gain ofECR over ER is 0.2%, 5.5%, and 23.7%, with a
20%, 50%, and 80% loss rate, respectively in Table 1; the simulation gains for the same scenario from Figure 12(a)
are 2.5%, 6.9%, and 24.9%, respectively, i.e., very close tothe testbed gains.

9 Related work

In this section, we summarize the related work.

Theoretic Studies. The AP network corresponds to the classic “broadcast channel” problem in the information
theory society, which has been an active research subject inthe past four decades. Some example related works
in this extremely rich literature include the 2-user feedback capacity exploration for the erasure channel [8, 23],
the Gaussian channel [18], and the discrete memoryless channels [7]. The results in this work can also be viewed
as a generalization of theindex codingproblem [3] from the noiseless channels to the random wireless broadcast
erasure channels.

Other network coding based retransmission schemes.Recently, XORR [6], was proposed to address several
issues that affect the performance of ER, though complementary to the coding strategy. In particular, it consid-

26

ered the impact of different link data rates on the coding decision and also incorporated a network coding aware
opportunistic scheduler to the AP, to provide fairness among clients of different link qualities. However, XORR’s
coding strategy is far from optimal. Similar to MU-ARQ/ER, XORR also drops overheard coded packets that are
not immediately decodable. Also, the protocol only considers the head-of-line packet of each flow when making
coding decisions, which also limits the coding gain. In contrast, in this paper, we focused on the fundamental
problem of designing an optimal coding strategy which is also amenable to a practical implementation, and we
left the problem of adapting ECR to consider heterogeneous link data rates as part of our future work. Note that
although fairness was not a direct goal of our design, ECR still provides fairness among each group ofM clients.

More recently, [22] proposedMedusa, a proxy based solution to improve media streaming performance over
WLANs. The design ofMedusaincludes an ER-like retransmission scheme, among other mechanisms. In contrast
to ER, the threshold based scheduling algorithm of ER is no longer used; the protocol only uses ER’s “sort-by-
time” simple heuristic to determine which packets to code together.

Other retransmission schemes.A different approach to improving performance of WLANs is presented in [16], [2].
In these works, a client close to the AP acts as a relay for a client far from the AP, either relaying all the packets [2]
or assisting only with retransmissions [16]. This approachrequires collaboration among clients and are orthogonal
to the approach ECRor ER’s approach, where clients simply store each other’s overheard packets but only talk to
the AP.

Network coding in multihop wireless networks. Network coding has been extensively used to improve perfor-
mance of multihop wireless networks over the past few years.The pioneering work in [1] showed that allowing
relay nodes to encode and decode traffic rather than to simplyforward, can achieve the multicast capacity. COPE
was the first practical inter-flow network coding scheme for unicast in multihop wireless networks. It applies net-
work coding to initial data transmissions and relies on 802.11 retransmissions for recovering from losses. COPE
also sacrifices optimality for simplicity, using a simple “sort-by-time” coding strategy and dropping packets that
are not immediately decodable, similar to ER.10 The work in [20] identified two problems with COPE (poor per-
formance in lossy environments and reduced coding gains from not recouping coding opportunities for packets
not immediately decodable) and proposed CLONE, a suite of heuristic coding algorithms to address these prob-
lems. [20] also showed that the problem of determining the optimal coding strategy is NP-hard, even when only
binary coding is allowed (i.e., only packets from two flows can be coded together). The authors concluded that out
of all the proposed heuristics, only one (for binary coding)can be implemented on today’s hardware. In contrast,
ECR can not only achieve optimal theoretical performance, but also enables a practical implementation.

Intra-flow network coding has also drawn significant attention (e.g., [5, 15, 13]). MORE [5] was the first
practical intra-flow network coding protocol, showing thatthe use of random linear network coding can greatly
simplify the design of opportunistic routing protocols, since nodes no longer need to know exactly what packets
have been forwarded by each neighbor. The design of MORE motivated the use of intra-flow network coding in
ECR for solving a different problem: by using intra-flow network coding, the AP no longer needs to determine
the order of coded packet transmissions within each phase. [9] theoretically computes the expected number of
transmissions using ARQ, FEC. and network coding in the caseof tree-based reliable multicast, and shows that
network coding is the most efficient among the three schemes.In contrast, our work focuses on single-hop unicast.

Finally, there have also been some attempts to combine the two types of coding [19], [25]. I2MIX combines the
two types of coding by simply performing random linear network coding on all

∑M
i=1 Ni packets (assumingM

flows and a batch ofNi packets for flowi). As we have explained in Section 4.1, this approach is not efficient as
all next hops need to receive all

∑M
i=1 Ni packets before decoding is possible, which takes an excessive amount

of time. In C&M [25], a node first creates a batch of inter-flow coded packets by mixing packets belonging to
different flows and then sends out linear combinations of thecreated coded packets until all the next hops are able
to decode their intended native packets. The paper discusses no details on the inter-flow coding strategy used.

10Actually, the design of ER was inspired by COPE, as mentionedin [21].

27

10 Conclusions

In this paper, we presented ECR, a novel network coding basedretransmission protocol for WLANs. The design
of ECR is accompanied by a theoretical underpinning yet enables practical implementation on off-the-shelf 802.11
hardware. We showed that, when the batch sizeN is sufficiently large, ECR attains theprovably optimalinter-
flow coding gain that isstrictly betterthan that of the MU-ARQ principle, especially when the number of clients
is from moderate to large. In addition, by inherently exploiting the simplicity advantage of intra-flow coding, the
operation of ECR is straightforward and does not involve solving an NP-hard problem or resorting to suboptimal
heuristics. Our performance evaluation, through extensive simulations and a testbed implementation, shows that
the performance of ECR is very robust and consistently outperforms ER in a variety of scenarios.

In our future work we plan to address a few practical limitations of ECR that can further boost its performance,
e.g., devise intelligent client grouping algorithms to group clients with similar loss rates together in order to
avoid the “crying baby” problem, incorporate bitrate adaptation into ECR, and devise online batch size selection
algorithms to allow the smooth operation of the protocol under higher layer protocols that set delay requirements
(e.g., streaming protocols or TCP).

Acknowledgment

This work was supported in part by NSF grants CCF-0845968 andCNS-0905331.

References

[1] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Reymond W. Yeung. Network information flow.IEEE
Transactions on Information Theory, 46(4), July 2000.

[2] Paramvir Bahl, Ranveer Chandra, Patrick P. C. Lee, Vishal Misra, Jitendra Padhye, Dan Rubenstein, and Yan
Yu. Opportunistic use of client repeaters to improve performance of wlans. InProc. of ACM CoNEXT, 2008.

[3] Z. Bar-Yossev, Y. Birk, T.S. Jayram, and T. Kol. Index coding with side information. InProc. of IEEE FOCS,
2006.

[4] Sanjit Biswas and Robert Morris. ExOR: Opportunistic multi-hop routing for wireless networks. InProc of
ACM SIGCOMM, 2005.

[5] Szymon Chachulski, Michael Jennings, Sachin Katti, andDina Katabi. Trading structure for randomness in
wireless opportunistic routing. InACM SIGCOMM, 2007.

[6] Fang chun Kuo, Kun Tan, Xiangyang Li, Jiansong Zhang, andXiaoming Fu. XOR Rescue: Exploiting
Network Coding in Lossy Wireless Networks. InProc. of IEEE SECON, 2009.

[7] A. El Gamal. The feedback capacity of degraded broadcastchannels.Trans. IT, 25(2), 1978.

[8] L. Georgiadis and L. Tassiulas. Broadcast erasure channel with feedback — capacity and algorithms. In
Proc. of NetCod, 2009.

[9] Majid Ghaderi, Don Towsley, and Jim Kurose. ReliabilityGain of Network Coding in Lossy Wireless
Networks . InProc. of IEEE INFOCOM, 2008.

[10] T. Ho, M. Médard, R. Koetter, D.R. Karger, M. Effros, J.Shi, and B. Leong. A random linear network coding
approach to multicast.IEEE Trans. Inform. Theory, 52(10):4413–4430, October 2006.

28

[11] Sachin Katti, Shyamnath Gollakota, and Dina Katabi. Embracing wireless interference: Analog network
coding. InProc. of ACM SIGCOMM, 2007.

[12] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi,Muriel Medard, and Jon Crowcroft. Xors in the
air: Practical wireless network coding. InProc. of ACM SIGCOMM, August 2006.

[13] Dimitrios Koutsonikolas, Chih-Chun Wang, and Y. Charlie Hu. CCACK: Efficient Network Coding Based
Opportunistic Routing Through Cumulative Coded Acknowledgments. InProc. of IEEE INFOCOM, 2010.

[14] Peter Larsoon and Niklas Johansson. Multi-User ARQ. InProc. of IEEE VTC-Spring, 2006.

[15] Yunfeng Lin, Baochun Li, and Ben Liang. CodeOR: Opportunistic routing in wireless mesh networks with
segmented network coding. InProc. of IEEE ICNP, 2008.

[16] Mei-Hsuan Lu, Peter Steenkiste, and Tsuhan Chen. Design, implementation and evaluation of an efficient
opportunistic retransmission protocol. InProc. of ACM Mobicom, 2009.

[17] madwifi. http://madwifi.org.

[18] L.H. Ozarow and S.K. Leung-Yan-Cheong. An achievable region and outer bound for the Gaussian broadcast
channel with feedback.Trans. IT, 30(4), 1984.

[19] Chuan Qin, Yi Xian, Chase Gray, Naveen Santhapuri, and Srihari Nelakuditi. I2MIX: Integration of Intra-
flow and Inter-flow Wireless Network Coding. InProc. of IEEE International Workshop on Wireless Network
Coding (WiNC), 2008.

[20] Shravan Rayanchu, Sayandeep Sen, Jianming Wu, Suman Banerjee, and Sudipta Sengupta. Loss-Aware
Network Coding for Unicast Wireless Sessions: Design, Implementation, and Performance Evaluation. In
Proc. of ACM SIGMETRICS, 2008.

[21] Eric Rozner, Anand Padmanabha Iyer, Yogita Mehta, LiliQiu, and Mansoor Jafry. Er: Efficient retransmis-
sion scheme for wireless lans. InProc. of CoNEXT, 2007.

[22] Sayandeep Sen, Neel Kamal Madabhushi, and Suman Banerjee. Scalable wifi media delivery through adap-
tive broadcasts. InProc. of USENIX NSDI, 2010.

[23] F. Xue and X. Yang. Network coding and packet-erasure broadcast channel. InProc. of IEEE SECON, 2008.

[24] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. Glomosim: A library for parallel simulation of large-scale
wireless networks. InProc. of PADS Workshop, May 1998.

[25] Xiaoyan Zhu, Hao Yue, Yuguang Fang, and Yumin Wang. A batched network coding scheme for wireless
networks.ACM Wireless Networks, 15, 2009.

[26] More source code. http://people.csail.mit.edu/szym/more.

29

