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Abstract

Network coding is known to benefit the downlink retranmissioy the AP in a wireless LAN from exploiting
overhearing at the client nodes. However, designing anigffi@nd practical retranmission scheme remains a
challenge. We present an (asymptotically) optimal schés@R, for reducing the downlink retransmissions by
the AP in a wireless LAN from exploiting overhearing at thierdl nodes. The design of ECR, consisting of
three components: batch-based operations, a systemadgepbased network coding decision policy, and smooth
integration of inter-flow and intra-flow coding, is accompethby a theoretical underpinning, yet enables practical
implementation on off-the-shelf 802.11 hardware. We ditalj)y show ECR can achieve much higher reduction
in packet retransmissions than previous schemes, andatalits performance gain via simulations and testbed
implementation. To our knowledge, ECR is the first protdcat leverages both intra-flow and inter-flow network
coding to solve a real-world problem in single-hop wireles$works.

1 Introduction

Consider a typical scenario of an 802.11 WLAN. Multiple nli¢ are associated to the Access Point (AP). The
AP forwards traffic between each client and the wired Inteamal uses 802.11 unicast for packet transmissions
between itself and the clients. We focus on the downlinKitrafe., in the direction from the AP to each client, as
the downlink traffic dominates the uplink traffic in typicaPAdeployments.

To deal with packet losses due to the inherent lossy wiretesdium and due to interference and collisions
from other clients and other WLANSs in the neighborhood, tB2.81 protocol employs a simple retransmission
mechanism for unicast communication. A sender waits fonaskedgment (ACK) after each packet transmission
and retransmits the packet if the ACK is not received aftdnatsfixed amount of time. Each packet is retrans-
mitted up to a maximum number of times and is then dropped.eUhitjh loss ratese.g.,in the presence of a
large number of clients, this simple retransmission megmarcan cause significant overhead and severely limit
the throughput of the WLAN, as the AP may spend a significartiggoof the airtime retransmitting lost packets.
This motivates the need for novel, more efficient retransimisschemes.

Network coding is a novel technique that can help in desmeifficient retransmission schemes. In particular,
network coding can benefit the downlink retransmissionsxpjagting overhearing at the client nodes. Consider
an AP and two client§’;, C5. The AP has two packets;, p2, one for each client, respectively. In a lossy wireless
network, it may happen that both packets are lost and the Aldaltave to retransmit both of them. However,
due to the broadcast nature of the wireless medium, it canhalppen that’; received the packet, destined to
Cy andCs, received the packet; destined ta’;. In that case, the AP can XOR the two packets and broadcast the
combined packet; @ po. ThenC, can extract its own packet by XORingp; & po with p, and similarly,Cs can
extractps by XORingp; @ p2 with pq, thus saving one transmission. This simple idea can be @éstebeyond the
two-client example, further improving the retransmissegficiency.

The potential benefits of inter-flow coding based retransiois schemes for wireless LANs were first con-
sidered by MU-ARQ [14]. [14] first sketches the basic priteipbout how to perform inter-flow coding when
there areM > 2 clients, which we refer to as the MU-ARQ principle (or simpilJ-ARQ as shorthand). The
MU-ARQ principle then becomes the foundation of the thecattanalysis in [14] and the practical implemen-
tation in [21]. More explicitly, [14] shows that under sondealistic assumptions, the throughput benefit of a
MU-ARQ-based scheme can be quantified analytically, amtieases monotonically when the number of clients
increases. ER [21] is a practical implementation of the MRBE\principle. By addressing several practical issues,



such as feedback frequency, packet delay time-out, linknasgtry, that were previously ignored in MU-ARQ, the
practical ER protocol aims to materialize the promisedulgigout benefits of inter-flow coding.

In this paper, we first observe that the MU-ARQ principle doetrealize the full potential of inter-flow network
coding due to the fact that the protocol is overly conseveasind exploits coding opportunities in a passive way.
More explicitly, when a client receives a coded packet thatannot decode, the MU-ARQ principle simply
discards it, even though retaining such a packet may allovermomore efficienté.g.,mixing more packets into
one that can benefit more clients) coding opportunities éftiiurel The second drawback of the MU-ARQ
principle is that it was originally proposed as a pure th&oreoncept that admits simple throughput analysis
but does not take into account the practical constraintsrefnetwork environment. Therefore, converting the
MU-ARQ principle to practical implementations generalgquires complicated interplay between the feedback
frequencies, the scheduling, and coding decisions.Fanpka [21] shows that determining the optimal coding
strategy is an NP-hard problem. Therefore, several hé&sistre used in the corresponding ER protocol [21],
which further reduce the achievable throughput and makeehfermance of the ER protocol very sensitive to the
underlying network environment.

Motivated by the inefficiencies of the MU-ARQ principle, weopose ECR, a network coding based retrans-
mission protocol, designed from scratch, tkiqtrealizes the full potential of network coding and (ii) sathly
combines the throughput enhancement of inter-flow codinltlaa practical feedback-reduction benefits of intra-
flow coding.ECR is based on the concept of “batches” similar to that e&iflow coding. When the batch si2é
is sufficiently large, ECR attains the provably optimal iflew coding gain that is strictly better than that of the
MU-ARQ principle, especially when the number of clientsr@fi moderate to large. By inherently exploiting the
simplicity advantage of intra-flow coding, the operation&ER is straightforward and does not involve solving
an NP-hard problem. There is thus no need to resort to subaptieuristics and the throughput enhancement of
ECR is robust over various network environments. In sha@tREsuccessfully bridges the gap between theory and
practice of network coding in 1-hop WLANSs over the downlinkedtion.

This work makes the following contributions. (1) We prestmd design of ECR, which is guided by rigorous
theoretical analysis yet enables practical implementatio off-the-shelf 802.11 hardware. (2) We characterize
analytically the throughput advantage of ECR over the MUARInciple. (3) We compare ECR with the ER pro-
tocol, the heuristic-based implementation of the MU-AR@giple, through extensive simulations and a testbed
implementation. The empirical results show that ECR adsewbust performance and significantly outperforms
ER in a variety of scenarios.

2 Previous Theoretical Result

The contribution of [14] is two-fold: The explicit descriph of the MU-ARQ principle and the corresponding
throughput analysis under some idealistic assumptionseMxgplicitly, let us consider a WLAN witld/ clients.
The MU-ARQ principle consists of two stages. In the first stafe AP repeatedly sends out a batch of uncoded
packets for each clients. Suppose the AP is currently sgriimuncoded-th packet of the-th clientC;, which
is denoted byX; ;. The AP moves to sending the next uncoded packet only whenis received by at least one

of the clientsC; for somej € [M] 2 {1,---,M}. The AP moves to Stage 2 when all uncoded packets are heard
by at least one of thé/ clients. In Stage 2, the AP XORs the packets together acupidithe overhearing pattern
in a similar way as in COPE [12].

The analysis of the MU-ARQ principle is straightforward endeveral idealistic assumptions: (i) The feed-
back is reliable and of zero cost. Therefore, the clients samd instant feedback to the AP aftarery packet

1[14] noticed that the MU-ARQ principle could potentiallyrizit from retaining the overheard coded packet. Howevediscussion
was made in [14] on how to exploit such overheard coded padktet proposed ECR protocol explicitly specifies how to athanically
exploit the overheard coded packets.
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Figure 1. Comparison of Throughput Efficiency for MU-ARQ and the theoretically optimal ECR, M =

20 clients.

transmissiorso that the AP has the complete knowledge of the overheasttgrp; there is thus no ambiguity
when making the coding decision; (ii) Infinitely large bawshe, which ensures that on average the noisy forward
direction can be viewed as a deterministic noiseless chaiigPerfect symmetry between all clients so that
the coding opportunities can always be perfectly paired.example, the analysis of MU-ARQ assumes that the
number of packets for clierd; that are overheard only by clieat, is equal to the number of packets 105 that
are overheard only b{';. Therefore, these two groups of packets can be perfecthegavith each other.
With the above three assumptions, [14] quantifiesttineughput efficiencyf the MU-ARQ principle, which is
also known as theum-rate capacitand is defined as
MN
n= T 1)
whereM is the number of clientdy is the number of packets at the AP for each client, &nslthe overall number
of time slots required to finish the transmission of theV packets. Obviouslyy < 1 by definition as each time
slot can carry at most one packet even with perfect chanfdls. higher the throughput efficieney the larger
throughput is for the entire system. The throughput efficyeof MU-ARQ for infinitely large N is computed in
[14] by

]\}gnoo TIMU-ARQ
_ 1-(1—p"
1+ 575 (1= (1= p)™ — Mp(1 — p)M-1)
where we assume that the probability that a packet sent bjRhis received by Client; successfully i for
all i € [M], and the success events for different ClieffsandC; are independent for ail # j. Figure 1 plots
lim y—o0 MMU-ARQ N (2) over different values gf.

The idealistic assumptions (i)—(iii) turn out to be quitstrective in practice and require complicated mecha-
nisms to coordinate the coding decisions with the real nd¢wlgnamics. For example, practical protocols must

)
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be based on a short-to-moderate finite batch size and pefioedi-instant) feedback. Therefore, the randomness
of the channel will seriously impact the network dynamics #me intrinsically unreliable feedback will further
exacerbate the problem. Moreover, for a dynamic (geneeaiymmetric) environment with finite batch size, one
cannot assume all the coding opportunities could be pé&yfpaired with each other. [21] shows that in this case
the transmission order of the coded packets will affect ineughput substantially and finding the optimal coding
sequence can be a NP-hard problem.

2.1 ER

The entangled interplay between the batch size, feedbackidéncy, scheduling and the coding decision is
the main subject of [21]. [21] proposes ER, the fshctical protocol to exploit network coding to improve the
efficiency of retransmissions by the AP. Thus, ER can be wileagea practical implementation of the MU-ARQ
principle. In the following, we describe the main designiche made in ER in relaxing the idealistic assumptions
()—(iii) in [14].

Relaxing assumption (i) — perfect feedbackUnlike 802.11, where a receiver responds with an ACK evengeti

it receives a packet, clients in ER sepériodic cumulative feedbadk inform the AP of missing packets, with
the goal to minimize the impact of feedback losses while atstime time keeping the feedback overhead low.
Each cumulative feedback message includes two fields: &nénst sequence numbestér) and a 64-bit bitmap,
effectively informing the AP of the reception status of thetl64 packets.

Relaxing assumption (ii) — infinite batch size Being a practical protocol, ER tries to achieve a balancerdet

high coding efficiency and low delay. Instead of working wéltfixed batch in rounds, the AP in ER uses a
dynamic, threshold-based heuristic to determine (i) wheraeket needs a retransmission and (i) whether it
should retransmit a packet or transmit a new one every timenédium is free. Each packet in the retransmission
gueue has a timeout which is calculated based on the timalsrof cumulative ACKs in the past. If the timeout
expires, the packet is considered ready for retransmisdibe AP retransmits a packet if the number of packets
ready for retransmission reaches a threshold (retransmisgieue threshold) or the time a packet has spent in the
retransmission queue exceeds another threshold (retisgsismqueue timeout).

Relaxing assumption (iii) — perfect coding opportunities.In practice, in an asymmetric environment and with
a finite batch size, one cannot assume all the coding opptesican be perfectly paired with each other. [21]
showed that in this case, finding the optimal coding strategn NP-hard problem, and proposed two heuristics
to solve this problem: (i) a simple “sort-by-time” heurgstiin which packets awaiting for retransmission are
sorted according to their arrival time and the AP alwayststaith the packet that arrived the earliest and tries to
combine it with as many subsequent packets as possiblejipadyfeedy “maximum clique” heuristic that tries
to mix together as many packets as possible.

3 Motivation

In this section, we use a few illustrative examples to exptae fundamental limitations of MU-ARQ. These
examples will also motivate the straightforward design wfjgroposed ECR protocol in Sections 4, 5.

Take Figure 2 for example. Suppose in the initial stage, tRes Aansmits 9 native packets among whikh
to X5 are intended for client;; Y7 to Y3 are intended fotl,; andZ; to Z3 are intended for cliends, respectively.
All 9 packets are sent using wireless broadcast, and duestcatitdomness of the wireless channel, cliehtso
ds may have different overhearing patterns, as illustratdeigure 2(a).

MU-ARQ takes advantage of the “diversity” of the overhegripatterns at the clients. For example, packet
X, is heard byds but not by{d;,ds}, packetX3s is heard by bothi, andds but notd,. PacketY; is heard
only by d; and packetZs is heard only by{d;,d>}. See Figure 2(b) for the list of the 4 overheard packets that



Candidates of

e &
N HNEH
BE

B

X1|| X2l X5 = Overhearing miXing 2 flows
Y, ﬁ Iﬁ ;22| Patterns X, JFYlI X5+ v
SZIZIZ

d2 N «/ Candidates of

S

E d mixing 3 flows
77 3
=2 None
(a) The overhearing patterns (b) Coding opportunities

Figure 2. lllustration of the MU-ARQ protocol.

ol B ==
: Z X5 + 73]
Overhearing 2]
Patterns o XX XI3
YoflYs
g |X3323||X2+Y1| O iz EZZ
doN N
Y,

Xo+Y]
ds J )
(a) The overhearing patterns when the AP seldds + (b) Sending X2 + Y1 + Z3] will take advantage of the previ-
Z3] and then X> + Y1]. ously overheardX, + Y;] packet.
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may lead to potential coding opportunities. MU-ARQ thenrskes for the inter-flow coding opportunities that
combine 2 flows (or even 3 flows) together. For the example guie 2, there are three possible candidates for
mixing two flows together. For example, siné® is heard byd, andY; is heard byd;, an XOR coded packet
[X2 + Y7] combining flowsl and2 will realize the inter-flow coding benefits. SimilarlyXs + Y7] and[ X3 + Z3)
are candidates of mixing 2 flows together. Since there i§ muacket that is heard by botfil;, ds}, there is no
coded packet that can simultaneously mix 3 flows. realizéntee-flow coding benefit, for the next time slot, the
AP s has the freedom to send any one of the three candidates.

Nonetheless, MU-ARQ does not realize the full potentialhef hetwork coding due to the following reasons.

3.1 Inherent Limitation of MU-ARQ

An inherent limitation of MU-ARQ is the followingtssue 1: The protocol is overly conservative and exploits
coding opportunities in a passive way.Continue our example in Figure 2. Suppose the AP decidesn se
[X5 + Z3] and then Xs + Y7]. Due to the channel randomne§&; + Zs] and[ X, + Y;] are heard byl; and by
ds, respectively; see Figure 3(a) for the overhearing patt@fe. By hearingXs + Z3], d; can now decodes
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as illustrated in Figure 3(b).

The remaining question is thughat is the optimal choice of the next coded pachét)-ARQ answers this
question in the following conservative way. We first notibattthe coded packéXs + Y7 heard byds cannot be
used to decode any additional information, sidgéas heard neitheXs norY; in the past. As a result, MU-ARQ
discards the overheard coded pack®t + Y;] atds. Since each ofl; to ds only needs one additional packet
(more explicitly, they need,, Y7, andZ3, respectively), MU-ARQ checks whether they can be mixeetiogr.
Since X, is now heard only byl, (resp.Y; is heard only byl,) as illustrated in Figure 3(a), these three packets
will not be mixed together by MU-ARQ. As a result, MU-ARQ needt least two additional packets to complete
transmission.

We illustrate now that we can further reduce the number okgsary transmissions and send only 1 coded
packet that simultaneously serves the needg &b ds;. The main idea is taggressively exploit the coded packet
[X, + Y7] overheard byls. That is, we can broadcast a coded pa¢ket+ Y + Zs]. If d; receives such packet,
d, candecodethe desiredXs packet by subtractiny; andZ; based ori;’s existing knowledge about; andZs.

If ds receives such packefy can decode the desiréd packet by subtractingls and Z3 based only’s existing
knowledge abouf(s and Zs. Fords, ds has neither the knowledge abaokit nor the knowledge about;, which

is the reason why MU-ARQ chooses not to mix the three packegsther in the first place. However, we note
that althoughds does not know the individual packeds, andY;, ds did overhear a coded packgXs + Yi].
Therefore, Ifds receives the new coded packél, + Y; + Z3], ds can still decode the desired; by subtracting

the previously heard coded pacKkefs + Y;] from the new received packet. In this way, vezoup the benefits

of overheard coded packets that are not immediately deded@berefore, the coded packif, + Y;] not only
serves multiple destinations simultaneously (the insftoding savings) but also enables / creates new coding
opportunities ofmixing 3 flowsfor the later time slots. This is not possible for a passiveriflow scheme like
MU-ARQ that discards the overheard coded packets.

We have observed the impact of this inherent limitation of MRBQ in Figure 1. The throughput efficiency
of MU-ARQ is strictly lowercompared to our theoretically optimal ECR protocol, in jgatar for small channel
success probability. For example, withp = 0.2, the theoretically optimal throughput efficiency is 40%teg
than MU-ARQ'’s (0.7 vs 0.5).

In summary, we have learnddesson 1. Discarding overheard coded packets that are not imediately
decodable can lead to suboptimal performance. We thus need @ding scheme thatrecoups the coding
benefits of coded packets that are not immediately decodahle

3.2 Practical limitations of MU-ARQ

In their analysis, the authors in [14] assume an infinitetgdabatch size that allows the AP to always make
optimal decisions about which packets to code togetharpractice, with a finite batch size, a second important
issue arises:

Issue 2: The performance of MU-ARQ with a finite batch size is ensitive to the decision of which coded
packet to send in each time slotGo back to our example in Figure 2. In Section 3.1, we assuimediie AP
first send9 X3 + Z3] and then X, + Y;]. In Fig. 2(b) we note that there is actually one other codipgastunity
[X3 + Y1] in addition to the previous choicéX’; + Z3] and[ X + Y7]. What if the AP decides to send’s + Y]
first (instead of the previous choices)? Also suppose thifitdyoandd, receive[ X5 + Y;] and use it to decod& s
andY, respectively. After the first packet, the new overheariatiggn becomes Figure 4(a).

Now ds has received all threE packetsy; only needs to receive one more packgt ds only needs to receive
one more packeXs; but X, and Z3 cannot be coded togetheimce X5 is not overheard byl;. As a result, we
need at least two more time slots to complete transmissidie. tdtal number of necessary transmissions is thus

2In spite of that, we have seen that by discarding coded padhat are not immediately decodable, MU-ARQ cannot achigtienal
performance.
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1+ 2 = 3 when we sendlX; + Y;] first. In contrast, suppose we use the original chojéés+ Z3] and[ X5 + Yi]
and they are heard b, ds} and by{d;, d2}, respectively; see Figure 4(b) for the overhearing pattabte. In
this caseall three clientsd; to d3 can decode all the desirelf, Y, and Z packets after two transmissionshe
decision of not sendingX; + Y;] first thus saves 1 transmission.

If we assume that the underlying broadcast channel is alwaigseless, such a coding decision problem can
be cast as an NP-hard integer programming probleim.practice, the wireless channel is not perfect and each
broadcast packet is likely to be heard randomly by some butogaall destinations. This makes the coding
decision of MU-ARQ far from optimal even when using the oglrimteger programming solver, and does not let
MU-ARQ realize the full potential of inter-flow coding espaity for the scenarios with high loss ratésVe have
thus learned_esson 2: We need a coding schemasensitive to the decision of which coded packet to send
first.

Finally, one more issue with MU-ARQ in practice lssue 3: The entangled interplay between recouping
the overheard coded packets and the code design/schedulingis worth noting, as is briefly mentioned in [14]
without exploration, that it is possible to modify MU-ARQ tecoup the overheard coded packatsan attempt
to alleviate Issue 1. However, any naive modification of MB@to recoup the coding opportunities discussed in
Issue 1 will significantly exacerbate Issue 2, i.e., the mgdiecision problem (see the discussion of [20]). Thus,
we havelLesson 3: in designing a practical protocol, we need systematic method to address Issues 1 and 2
simultaneously.

4 ECR: Main ideas

Our proposed ECR protocol successfully solves the abovesssf MU-ARQ/ER in an efficient and effective
manner by introducing three novel design components: (i¢tiBaased operations, (ii) A systematic phase-based
coding decision policy, and (iii) The smooth combinationimer-flow coding and intra-flow coding. ECR not
only enables practical implementation but also admits gbbrvoptimal theoretical performance, especially when

3It is worth noting that we deliberately construct our exaenglich that there is no opportunity of mixing 3 flows togethdnich allows
us to focus on the challenges of the coding/scheduling prolih the simplest case when there are only coding oppoiggrof mixing 2
flows. In practice, when there are opportunities of mixingd & flows, the AP also needs to decide whether to send 2-flagecpackets

first or to send 3-flow-coded packets. The combinatorial lemmibecomes highly non-trivial.
“Indeed, in [21], ER with any of the two heuristics performsast as well as when using an exhaustive search strategy.



there is a sufficiently large number of clients in the systémthis section, we discuss the main ideas in the design
of ECR, and how they address the issues with MU-ARQ/ER. We ¢fiee a detailed description of the protocol
in Section 5.

In ECR, the AP transmits packets using 802.11 broadcastlemiscstore all the overheard packets for a limited
time (equal to the duration of a batch, see Section 4.1.)n@Gliperiodically send back cumulative ACKs (similar
to those used in ER) reporting to the AP which coded and urttpdekets they have received in the past.

4.1 The Batch-Based Approach

To realize the full potential of inter-flow coding, ECR (i)c®ups the overheard coded packets that are not
immediately decodable, and (ii) enables a new efficient caeduling algorithm that is throughput-optimal
under realistic channel model$hese two problems are inseparabtén one hand, different ways of recouping
benefits of the overheard coded packets lead to differentaoeling opportunities; this affects the corresponding
scheduling policy. On the other hand, the scheduling/apgtiolicy decides which packet will be sent and thus
different policies result in different overheard packetdhe system. Note that it is generally more beneficial to
wait for more coding opportunities before starting intemflcoding. However, as it is impractical to wait infinitely
for new coding opportunities, we use a batch-based desmgnctirtails the delay impact and also regulates the
associated header size for each coded packet.

Batch-based operation:Each flow:i hasN; packets to transmit in each batch. If there Afdlows to be served
by the AP, then amter-flow batchcontainstV:I1 N; packets. The protocol will intelligently decide how to mix
the Zﬁl N; packets. Our goal is to finish the transmission of egackets for each flow in the shortest amount
of time. Note that simply performing random linear netwodding on aIIZfVi1 N; packets (i.e., the approach
used in [19] for multihop wireless networks) is not efficiextt all clients need to receive aﬂl:f‘i 1 IV; packets
before decoding is possible, which takes an excessive anobtime.

4.2 Addressing Issue 1: The Novel Concept of Phases

A critical observation of recouping the benefits of overldeanded packets is that for any given packet, the
number of overhearing clients is monotonically increasikRgr example, suppose a packetintended ford; is
heard byd,, and we retransmiX for the second time. This tim& is received only byls;. Even thoughl, does not
receiveX in the second timeds still knows X from the first transmission. Therefor&, is now overheard by both
ds andds. The number of clients overhearing thus increases monotonically over time. Similar statesiaotd
for inter-flow coded packets as well. That is, if a coded packereated by mixing two flows, then the overheard
coded packet can only create new coding opportunities faingi> 2 flows.? In our example of Figure 3(b), the
coded packetXs + Y7] is created for mixing 2 flows. Ond&X, + Y1 ] is overheard byis, it can be used for mixing
3 flows as illustrated in Figure 3(b). The number of flows it Eépates thus increases monotonically.

The above observation prompts the following phase-basemjieWe define &-flow packetas a packet that
mixes exactlyk flows togetherk ranging from 1 toM . Any k-flow packet thus servésclients simultaneously. If
ak-flow packet is heard by a client other than the intenkletients, it is not immediately decodable. As discussed
previously, ECR will recoup this kind of packets and use iside information when mixing oves k& flows in the
future. Since overhearing/aflow packet may only create a new opportunity for mixim§ows with someh > k,
an optimal solution is to send oktflow packets first, and hopefully this will create new oppaities for mixing
h flows together wheré > k. Based on this reasoning, we divide an inter-flow batch Mtphases. Each batch

SIntuitively speaking, for each packet created by mixing flews, the correspondinimgredient packetare native packets overheard
by exactly one other destination. Once the ingredient agdacket is overheard by at least one more destination, tl@mnrative packet is
overheard by> 1 destinations, and can thus be used to generate packetsithat 2flows.
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goes through Phases 1 Ad in sequence. During Phage the AP only sends out-flow packets; overhearing
these packets can create new coding opportunities of mixingk flows in the future phases.

An example of phase-based operationde again use a 3-client scenario as our running example igefb.
Each inter-flow batch contains; + Ny + N3 = 9 packets. In Phase 1 (see Figure 5(a)), the AP transmits fsacke
mixing only 1 flow, i.e., no inter-flow coding is performed. A&an be seen, some Phase 1 packets successfully
reach the intended client while some do not. The latter dleccthe overheard packets, and in our example,

X3, Y7, and Z3 are overheard packets. These overheard Phase 1 packetpuialently the overheard 1-flow
packets) will later be used in Phases 2 and 3. In our examfle X3, andY; will be used in Phase 2 whil&s
will be used in Phase 3.

After spending some time in Phase 1, AP switches to Phase=d loasthe feedback from the clients. In Phase 2,
AP starts to send packets mixing exactly 2 flows, see Figunke 5 our example, based on the overhearing record,
Phase 2 sends packets l{ké; + Z3] and[ X, + Y7] that mix the overheard Phase-1 packets. It is worth notiag th
[X5 + Z3] mixes two packet§X 3] and[Zs], both of which are overheard packets transmitted in PhaSédilarly,
the Phase 2 packéX, + Y1] is constructed from overheard packets in Phase 1.

Again, after spending some time in Phase 2, AP switches teePBdased on the feedback from the clients.
In Phase 3, AP sends packets mixing exactly 3 flows. One swhp@e is the X, + Y7 + Z3| packet described
in Figure 3(b). This newXs + Y; + Z3] packet mixes 3 flows. The way we create it is by mixing two p&ke
[X2 + Y7] and[Z3]. Again, [Z3] is an overheard packet transmitted in PhasgXb. + Y] is an overheard packet
transmitted in Phase 2, which is now recouped in the ECR pob{@n contrast with being discarded in ER). The
Phase 3 packeéfX, + Y7 + Z3] is indeed constructed by overheard packets in the previbasd®:, k < 3. By
monotonically progressing from Phases 13tat is guaranteed that we create the maximum amourit-tdw
coding opportunities for each individual phase.

4.3 Addressing Issue 2: Intra-flow Coding
Within A Single Phase

The phase-based operation addresses the question whesend a packet mixing flows first or to send a
packet mixingh flows first for k& < h as we always give high priority to the-flow packet with a smallek.
However, as discussed in the example of Figure 4, even whemenanly sending packets mixing the same number
of flows, it is still critical to decide which packet to be semtrlier. We observe that the problem of deciding which
packet to send under a noisy broadcast channel model istiedigeidentical to the packet forwarding problem
in the originalopportunistic routingprotocol EXOR [4]. Motivated from the success of usiagdom intra-flow
codingto efficiently solve the packet forwarding problem (the MOR&tocol [5]), ECR uses random intra-flow
coding to simplify the packet selection decision, withagarting to complicated integer programming solvers or
simplified suboptimal heuristics.
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5 Implementation
5.1 Protocol Overview

A flow chart of the protocol operation at the AP and the clisngiven in Figure 6.

The AP maintainsM buffers B;, i = 1,--- , M (jointly shown asPayload Buffeiin Figure 6); thei-th buffer
stores the payloads of th€; packets for the current batch. To fully exploit/recoup akpible coding opportu-
nities, the AP also needs to keep track of all data packetseair. For that purpose, the AP keeps a quédg
that stores the inter-flow coding vectors (not the payloadisil the outgoing packets for the current batch. Each

inter-flow coding vectow stores the coding coefficients for tiégia 2 Efvi 1 IV; packets of thel/ flows, i.e., it
is a row vector of sizéVigg. We set the maximum allowable number of vectorgjig: to be 10 x (vail Ni).

Each coding vector is associated with@rerhearing bit ma@nd acreation bit map each of sizel/ bits, and a
unique 2-byte sequence number. The overhearing bit mapdgedich client has overheard this packet. Since
each outgoing coding vector/packet is created by mixingoaetuof)M flows, the creation bit map of an inter-flow
vector is used to indicate which flows were used to generagevéttor. The unique sequence number for each
inter-flow coding vector is to facilitate cumulative feedkaas the client can simply send back a list of sequence
numbers to acknowledge which packets it has received.

The Qo buffer is used by the phase-based operation to make thegdeéicision, which starts from Phase 1
and ends in Phas®l. When the phase-based operation is in Pltasee AP generates a codéeflow packet and
broadcasts it whenever there is a transmission opportulltyre explicitly, the phase-based operation generates
the inter-flow coding vector for the next to-be-transmitfmatket. The coding vector is then used by a separate
routine to construct the coded payload from the payload t¥@aackets stored in the payload buffer.

As discussed in Section 4, the monotonic progression froes®Hh to Phas&/ gives higher priority to coding
over a smaller number of flows. packet has the potential @itirg new coding opportunities of mixing flows
in a future Phasé with h > k. On the other hand, we also want to quickly move to higher @ha® that we
can code over a large number of flows and thus capitalize tgesaamount of coding benefits. To that end, we
need a new component: tidase Completion Status Indicators (PCSIs)As already mentioned, when the AP
receives a feedback packet from a client, the AP will updageadverhearing status 6Jou.. A separate process
then takes the updateg,,; as input to compute the PCSIs. The PCSils are then used bydke-plased operation
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to decide when to switch from Phakdo Phas€k + 1), or to decide whether we have finished the last Plidse
and are ready to move to the next inter-flow batch. When we rtwthee next inter-flow batch, we clear the buffer
of Qour and replace the payload buffer with the payloads from the inésv-flow batch.

The clientsstore all overheard packets. Throughout the transmissich) client periodically sends back ACKs
that tell the AP which coded and uncoded packets it has redeaivthe past. Since each packet is associated with
an inter-flow coding vector, one can view that the periodiedfgack tells the AP which coding vectors have been
received by which client.

Unlike the MU-ARQ and ER, ECR uséstch decodingto extract the benefits of network coding in a similar
way as the MORE protocol. More explicitly, each client cotkeall the packets it has heard and performs decoding
at the end of the current inter-flow batch. When a client rezei packet belonging to a new batch, it removes
from its memory all the overhearing packets of the previcais.

Next we describe in detail the main components of ECR.

5.2 Phase-Based Operation

In the beginning of each inter-flow batch, we allg, elementary basis vectote Qo That is, if we con-
catenate the elementary row vectors vertically, we havé&/gn) x Niotal identity matrix after initialization. All
the overhearing bit maps are set to all-zero. For an elemerte vector corresponding to thieth client, itsi-th
bit of the creation bit map is set to one and all other credbitg are set to zero. The creation map thus indicates
that this elementary coding vector contains the infornmafiom flow j. All the sequence numbers are septo
Note that the sequence number 0 is reserved only foNgg row vectors in the initialization. All other coding
vectors will have a unique sequence number that is not O.

We use[M] to denote the integer sét, 2, --- , M}. The phase-based operation maintdi2®¥ — 1) floating-
point variablesis indexed byS. Each subscript is a non-empty subset @i/]. For example, whed/ = 2, we
have (2™ — 1) = 3 different non-empty subsétg1}, {2}, and{1,2}. Therefore, we have three floating-point
variablesayyy, agy, anday; 3. We use|S| to denote the number of elementsdn The phase-based operation
also maintains a registét, which records the current phase index.

Initialization of the path-based operation: In the beginning of each inter-flow batch, let < 0 for all
non-empty sef C [M]. Let K — 1.

Normal operation in PhaseK:

Step | —Choosing the flows to be coded togeth@/henever there is a transmission opportunity and the AP
is in Phasey, the AP will mix K flows together. More explicitly, for any given non-empty sabS C [M] that
hasK = |S| elements, the AP can mix together all flows S in PhaseK. The first key question is thus how
to choose a subsét of size K for the AP to code the corresponding flows together. In ECR nlodule “Phase
completion status indicators” will output a non-negatimeegerds for each subse$. The larger theigs is for a
given S, the more important it is to code the flows$h To perform tie-breaking between differefit every time
we can transmit a packet, we use the following subroutindntmsesS:

1: Consider all non-empty subsét C [M] satisfying both (i) the size i, and (ii) the correspondings
generated from PCSIs is non-zero.
2: Among thoseS, choose th&™* with the largesig value.

3: Letag+ «— ag~ — d;*'

5The number of variables grows exponentially with respedttpand the suitable value @ depends on the modern microprocessor
capabilities. The larger th&/ value, the higher the throughput. In our implementation,onty useM = 4 (using 15 variables). Our
results show that mixing only 4 flows together in an efficiematyvalready outperforms the state-of-the-art ER protocdiictv mixes all
flows together.
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Intuition: Using the auxiliaryag variables, the frequency of selecting a subSewill be proportional to the
corresponding importance indicatdg.

Step Il —Generate a new coding vecto@nce theS* is determined, use the following subroutine to generate
a new inter-flow coding vector, which is a row vector of dimensioiVita. We need the following definition for
the subroutine.

Definition 1 An inter-flow coding vectowr in Qo is compatibleto a non-empty subseét C [M] if both the
following two conditions are satisfied: (i) In the creatioit imap ofv, all the bits outsideS are zero. (ii) For all
i € 8, itis either that thei-th bit of the creation map is 1, or that thieth bit of the overhearing map is.

In other words,v is compatible taS if the subsetS “covers” the creation bit map; and jointly the creation plus
the overhearing maps “cover” the subget The subroutine that generates an outgoing coding vegiris as
follows.

vout < 0 is initialized as a row vector of lengtN; ;.
. for all inter-flow coding vectors in Qo that arecompatibleto the chosen subsgt do

Select a coding coefficient, randomly fromGF(2%).

Vout <= Vout + Cv'V.
end for
Namely, the final output o is the random summation of all the inter-flow coding vectampatible toS*. We
use thisvqt as the inter-flow coding vector for the to-be-transmittedked. Store the new,: back intoQq.: (see
the flow chart Fig. 6). Set the overhearing map to 0. Fof all[M], set thei-th bit of the creation map to 1 or O
depending on whethére S* or not. Append tovoy @ unique 2-byte sequence number.

Intuition: In the beginning of Phase 1, eaSh must contain only one element. S8 = {1}. Then we will select
the inter-flow coding vectors i@ with the 1st bit of the creation map being 1. Note that durlmginitialization

of Qout, those initialization vectors corresponding flow 1 have 1kebit of the creation map being 1. Therefore,
during Phase 1, whefi* = {1}, the AP sends coded bits that only mix the packets from flow 1.

Continue our running example in Figure 5. At the end of Phasthd overhearing pattern is described in
Fig. 5(a) (an identical example is described in Fig. 2(b) afl)wSince thel X3] intended ford; is not heard by
dy but overheard byl, andds, this packet will have the 1st creation bit being 1 and the 213dd overheard bits
being 1. Therefore[ X 3] is compatible to the subsét= {1, 3}. Similarly, the[Z3] packet intended fod; is not
heard byds but overheard by bott; andds. Then[Zs] is compatible toS = {1, 3} as well. As a result, when we
chooseS* = {1, 3} in Phase 2, the AP will mixX3] with [Z3] as illustrated in Fig. 5(b).

At the end of Phase 2, the overhearing pattern is describ&igimre 5(b) (a similar example is described in
Figure 3(b) as well). Consider the code%,, + Y;] packet that was created for serving bdihandd,. Therefore,
both the 1st and the 2nd bits of the creation map are 1. Sinsectiled packet is also overheard dy (see
Figure 5(b)), the 3rd bit of the overhearing map is 1. Thewfthis coded packéX, + Y;] is compatible to the
subsetS = {1, 2, 3}. Similarly, a[Z3] packet intended fofls is not heard byis but overheard by both; andds.
Then this packet packet is compatiblefo= {1,2,3} as well. As a result, when we choosé = {1,2,3} in
Phase 3, the AP will mixX, + Y;] with [Z3] as illustrated in Figure 3(b)lhe overheard coded packet, + Y]
is successfully recouped by the proposed algorithm.

In addition to choosing compatible vectors to recoup thetward coded packets, another key ingredient is the
random intra-flow coding componeint this algorithm. That is, instead of deciding which conilplat packets to
be mixed together, waix all compatible packets by random network codi@pnsider the running example in
Figure 2. Suppose after sending out 9 uncoded packets, #rbaaring patterns are described in Fig. 2(a). The

akr wnR

"It is possible that both thith bits of the creation map and the overhearing map are one.
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Figure 7. The benefits of using random intra-flow coding.

discussion of Issue 2 in Section 3.2 shows that the decish@iher to sendlX; + Y7] or [ X, + Y] first will affect
the performance. We use random coding to solve this problem.

Suppose the AP, currently in Phase 2, chodses- {1, 2}, i.e., the AP decides to mix son¥¢ andY packets.
Only three packets are compatitfié = {1,2}. That is, packe{Xs], generated fot;, is heard by, and is thus
compatible taS*. Packet X3], generated fod, is heard by bothi, andds; and is thus compatible t6*. Packet
[Y1], generated fods, is heard byd; and is thus compatible t6*. Instead of deciding whether to miX, andY;
first, or to mix X3 andY; first, we simply mix all of them together by random linear netlwcoding. Namely, we
transmit|c; X2+ co X3+ c3Y7] for some randomly chosen coefficiemts Figure 7 illustrates this scenario when we
chooser; = 1, ¢co = 2, andes = 3. With the randomly generatds + 2X3 + 3Y7] (noting the intra-flow mixing
of Xy and X3), destinationds can still recovery; by its existing knowledge abow, and X 5. On the other hand,
d; can decoder neitheKs nor X3. Instead of individual packetg]; can only decode the mixtufel, + 2X3].
When the next coded packet’s + Zs] is sent,d; can decodeXs, which in turn can be used to decode from
the mixture[ X, + 2X3]. Random intra-flow coding thus achieves the optimal peréoroe without making the
difficult decision whether to send, + Y;] first or [ X3 + Y7] first.

Step Il —Construct the coded payload and send the coded paBlested on the new inter-flow coding vector
Vout = (U1, , UNw)» WE Can assemble the coded payload by summing up the nat@aga (stored in the
payload buffer) with the corresponding coefficienis- - - ,vy,,,. The final outgoing coded packet contains the
2-byte sequence number, the new inter-flow coding vecter,cttded payload, and the creation bit map. The
inclusion of the creation bit map serves two purposes: firstforms a client whether the coded packet includes a
packet intended for that client. This information is usedthi@ decoding process, describe in Section 5.4. Second,
we leverage the creation bit map to reduce the size of thegpdwader, in particular the part occupied by the
inter-flow coding vector. When sendingkaflow packet,k < M, we only include in the packet header the
segments of the inter-flow coding vector corresponding éocthoserk: flows. The clients use the creation bit map
to reconstruct the whole inter-flow coding vector by fillifgetsegments corresponding to the remairfihg — &)
flows with O’s.

Remark:The coding vector will be used for decoding as in most bat$ed network coding schemes. The 2-byte
sequence number facilitates the feedback from the destmatiote that the sequence number is defined based as
a sequence number within the same inter-flow batch, notmvitie same flow. Therefore, each client periodically
sends back a list of sequence numbers acknowledging whibdddancoded it has received without the need to
distinguish to which flows the packets belong. Upon the madithe list of ACK’ed sequence numbers, Qe
updates the corresponding overhearing map accordingly.

5.3 Phase Completion Status Indicators

An important component of ECR is the PCSI computation, whlietides whether the AP can stop the current
Phasek and move to Phasg: + 1). Note that the overhearing maps of the vector®)q, are updated only
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after receiving an ACK from the destinations. Therefore, améy need to run the following routine during the
initialization of Qo for each inter-flow batch (see Section 5.2), and when the A&ives a cumulative ACK from
a client. The computation of the PCSIs is as follows:
There is one PCSI for each non-empty sulfse&t [M], which is denoted byis. For any givenS, the compu-
tation ofdg is carried out as follows.
1: dg « 0.
2: for all i € S do
3:  Consider all vectors i)y that satisfy at least one of the following two conditio@®ond. 1: it is received
by d; (by checking thei-th overhearing bits); an€ond. 2: it is compatibleto at least one5’ C [M]
satisfying|S’| > |S|.
4:  Project all these vectors onto flaw
5. Compute the rank of the projected vectors. tetlenote the computed rank and store it for later use.
6: Consider all vectors iid)o; that satisfy at least one of the following three conditio@end. 1, Cond. 2as
defined in Line 5.3, o€ond. 3: it is compatibleto S.
7.  Project all these vectors onto flaw
8: Compute the rank of the projected vectors. tetenote the computed rank.
9 dg <« dg+ (ra —m1).
10: end for
Intuition: The PCSIs answer when we can switch to the next phase. Supgosee in Phasé and try to mixk
flows in S (|S| = k). If we know that the “benefit” of mixing flows is no different than that of mixing’ flows
for someS’ C [M] satisfying|S’| > |S], then it means that mixing flows is redundant, since the same benefit
can be achieved by mixin§’ flows. Since mixingS’ flows can servésS’| destinations simultaneously (recall that
|S’| > |S| = k) rather than serving flows as by mixingS flows, we definitely want to start mixing’ flows
rather than wasting more time on mixirtgflows only. The rank-s computed by PCSIs represents the benefits of
“staying in the current Phasé while the rankr; represents the benefits of “moving out of the current Plase
and focusing on the higher-phasé flows.” When the difference is zero, it means that it is timertove to the
next phase, or equivalently to abandon mixisigpackets in the future. Note thdg is the sum ofr, — r for all
1 € S. The reason is that mixin§ flows potentially benefits afl € S. Therefore, we compute the benefit— r;
for each individual flowi and sum them up for the computationdy.

Deciding whether to move to the next phaseAfter the computation ofis for all non-empty subsetS C [M],
the AP needs to decide whether to move to the next batch or 8appose the current batch isfor some
1<k < M-—1.Wecheck alls C [M] with |S| = k. If all thoseS haveds = 0, then it means staying in Phake
is redundant and we move to Phaée+ 1). Otherwise, stay in Phage Whenk = M, there is no next phase
to move to. We stay in Phasd until all destinations have sent feedback acknowledgiagttihe decoding of the
inter-flow batch is successful. Once all destinations hakeawledged the current inter-flow batch, we move to
the new batch.

5.3.1 Reducing Complexity

The computation of2" — 1) PCSils every time the AP receives a cumulative ACK from a tigthe computa-
tionally heaviest component of ECR. However, the compoitatian be made more efficient by noticing that there
are a lot of repeated computation. For example, any vect@Jyinthat satisfiesConds. 1and2 in Line 5.3 for
some; and.S; must also satisfiConds. 1and2 for the same and all otherS, satisfying|Sz| = |S1|. There-
fore, the computation of; for the pair(i,S;) must be identical to that for the pdit, S2). After optimizing the

8When considerings = [M], since there exists n8’ C [M] satisfying|S’| > |S| = M, Cond. 2 becomes a null condition. No
coding vector can satisf@ond. 2 Therefore Line 5.3 collapses to “considering all vect@ssfyingCond. 1”
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operations of the PCSI to remove all duplicated computatioem complexity of computing the PCSI can be made
comparable to that of ER.

Optimized PCSI Computation Algorithm. The new, optimized PCSI computation algorithm is as follows

1:
2:

3:

INPUT: s receives a list of packet sequence numbers from a destinétio

Update thei-th bit in the overhearing map of all the vectors correspogdio the list of input sequence
numbers.

OUTPUT: A list of joint coding vectors for which the correspondingeskiearing maps change.

For example, suppose a vectohas overhearing mafi, 1,0) and destinatior; ACKSs this vector one more
time. Since the overhearing map remains the same after tti&teijpwe do not output. For comparison,
suppose a vectar has overhearing mafd), 0, 1) and destinatiorl; ACKSs this vector. Then the overhearing
map changes frorf0, 0, 1) to (1,0, 1). » will thus be included in the output.

Based on the list of coding vectors generated from the pusveection, we update the following matrices. The

following routine needs to be run for all to d4 and for all the vectors in the generated list.

Before describing the subroutine, we need to define "segaletawnstream subsets 6f”
Definition: Given a subse$ C [)], the sequential downstream subset$ @& a sequence of sets such that the

first set isS, and the last set is. All the sets in the middle are a subset%fAnd the sequence follows that$f
appears beforés,, then we must havgs; | > |Sa|.

For example, ifS = {1, 3,4}, then the sequential downstream subsetS isfa sequence of eight setg, 3,4},

(1,3}, {1,4}, {3,4}, {1}, {3}, {4}, and.

Note that the choice of the sequential downstream subsets imique. For example, wheh= {1, 3,4}, then

the following sequence of sets is also the sequential doeanst subsets of: {1,3,4}, {1,4}, {3,4}, {1, 3},
{1}, {4}, {3}, and{). Our subroutine holds for any choice of the sequential déseam subsets.
The subroutine:

1:

11:
12:
13:
14:
15:
16:
17:

For each session, say session 1, for eficti [M], maintain two matrices?s; and Rs2. There are thus
totally 2 x 2™ matrices maintained for session 1. Similar to what we disedsn the original scheméis -
is always larger tha®s ;. The rank of them are the, andr; in the previous description.
Each matrixRg 1 (or Rg ) is also associated with a fldg ; (or Rgs2). There are thus totallg x 2 flags
maintained for session 1.
INPUT: A joint coding vectorv from the generated list. A target destination, gay Since we only focus on
the projection ofv ond;, we thus assume thatis the projected vector in the following discussion.
Set all the flags to O.
Suppose the overhearing map (the overhearing pattem)so$hearingand the creation map Sereation
if S containsd; (since we focus od;) then

So — [M].
else

So — ShearingU Screation
end if

: Consider the sequential downstream set§pfFor eachS in the list of sequential downstream setsSpf we

perform the following operations. (The sequential dowesstn sets decide whichito consider first.)
for eachS in the sequential downstream setsSgfdo
if bg1 = 0then
if S = Spandl € Shearingthen
Add the (projected) vectar into Rg, ; through Gaussian elimination.
if v is linear dependent to the existitft, ; then
Setbg, 2 «+ 1.
Setbgs, 1 + 1 andbg, » < 1 for all S, being a strict subset .
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18: end if
19: elseifS # Sy then

20: Consider the subsets of the for: = S U {j} such thatj ¢ S butj € Sp.

21: Letvg denote the vector that are added last tofihae, after finishing Gaussian elimination.

22: Among all vg, let vg, denote the one with the largest number of zeros in the lefigroof the
coordinates.

23: Add thevy, into R ; through Gaussian elimination.

24: if v3, is linear dependent to the existitigy ; then

25: Setbg o « 1.

26: Setbgs, 1 < 1 andbg, » « 1 for all S, being a strict subset df.

27: end if

28: end if

29: if bso = 0then

30: if §=Spandl ¢ Shearingthen

3L Add the (projected) vectar into Rg, ; through Gaussian elimination.

32: if v is linear dependent to the existity, ; then

33: Setbgmg — 1.

34: Setbg, 1 «+ 1 andbg, » < 1 for all Sy being a strict subset .

35: end if

36: else

37 Let vs denote the vector that are previously added toRRyg after finishing Gaussian elimination.

38: Add thewg into Rg 2 through Gaussian elimination.

39: if vg is linear dependent to the existidty > then

40: Setbg, 1 «+ 1 andbg, » < 1 for all S, being a strict subset df.

41 end if

42: end if

43: end if

44.  endif

45: end for

High-Level Discussion: The sequential downstream subsets define the sequencesdbdat considered.
Depending on whethef; has received the vector and on the SgtaringU Screation W€ decide where to start the
update by choosing,. After we have processefl), we update the downstream subSethrough a chain effect
(adding only a Gaussian-elimination-processed vectbgny the new vector is linearly dependent to one subset
S, then we shut down all the further update on the subSets S by setting the corresponding flags.

The chain effect says thdis » depends omRs ; and thatRs; depends on one of thg o with S" = S U {;}.

In Section 8, we measure the execution time of the optimitgalighm on our testbed and show that it remains
sufficiently low.

5.4 Batch Decoding at the Client

Each receiver uses the same batch-based decoding algoRtaimplification, we consider only receivéy.
Rx: for ¢ > 1 can be obtained by symmetry.

Initialization at d;: For each new inter-flow batch, initialize two empty queu@s; vec aNdQrx seq Each entry
in Qrx_vec CONtains anViog-dimensional inter-flow coding vector (row vector) and aedgayload. Each entry in
Qrx_seqiS @ 2-byte sequence number.

Shuffle the columns ofQx vec: AN important part of the initialization step is to shuffle t@umns ofQrx_vec.
The vectors im) iy vec form a|Qx vec| X Niotal matrix. We deliberately shuffle the columns such that themols
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corresponding to flow 1 are the ladt columns. Ex: for rx 3, we shuffle the columns of flow 3 to the a5t
columns. All our discussion is based on the shuffled columns.

When Rx 1 receives a packet(1) Put the corresponding sequence numbe&pinseq Which will be used when
sending out feedback.

(2) Let v denote the inter-flow coding vector of the received packet t@ét the linearly independence of
with respect to the&) vec Matrix by Gaussian elimination. If the vecteris linearly dependent to th€y vec
matrix, discard the received packet.vfis linearly independent to th@ vec matrix, then we add botk and the
coded payload t6)x vec. That is, perform Gaussian elimination on both the interwftimding vector and on the
coded payload. After Gaussian elimination, g vec| X Niwotal Matrix is always upper triangular. Note that this
is a two-step process. We first test the independence onpéocoding vector. Only when the coding vector is
linearly independent, then we process the payload, whidhoes the computation complexity.

Decode: Consider the rows for which the only non-zero entries coesling to flow 1. Since we shuffle the
columns of flow 1 to the laslv; columns and sincéx vec iS an upper triangular matrix, those rows must be the
last few rows. When the number of those rows\ig we perform decoding. That is, we use the |&strows and
the corresponding coded payload to decode as if we are parfgronly intra-flow decoding.

Intuition: The critical step is shuffling the flow 1 columns to the 185t columns. In this way, when we perform
Gaussian elimination, it will automatically eliminate thieterference” caused by other flows. (The only non-zero
entries in the last few rows are all in the columns of flow 1.)a®sult, when the number of rows containing only
flow 1 information (the last few rows) reach@§, we can decode the flow 1 packets from the coded payload in
the same way as we perform decoding for intra-flow codingquuis.

5.5 Client Feedback

Clients in ECR send periodic cumulative feedback to infohm AP of their reception status. We distinguish
two forms of feedback: before and after decoding a batch.of@eflecoding a batch, a client sends a reception
report similar to the ones used in ER reporting to the AP thestnnecentszi1 N sequence numbers it re-
ceived/overheard for the current batch in the form of a bgn{lus a start sequence number). When a client
decodes a batch, it sends a special ACK to inform the AP. Thads®s this special ACK as a bit map of sequence
numbers that acknowledgedl packets that have been sent during the batch. Since thimbp&K may be lost,
from that moment and until the AP moves to the next batch, (ietil all clients decode their current batch), a
client in FINISH mode (i.e., having already decoded its entbatch) resends periodically the same special ACK
to the AP.

6 Correctness Guarantee and Performance Analysis

The ECR protocol is designed with rigorous mathematicahétation. In this section, we outline the corre-
sponding proofs of the correctness and the performancgsisal

6.1 Correctness

Assume the success probability of each link is strictly éarthan zero. To show the correctness of the ECR
algorithm, we need to prove the following:

e ECR will move from Phasé to Phas€k + 1) in a finite amount of time forany < £ < M — 1.

e Once the AP is in Phas#/, all destinations will send the final acknowledgment of thére inter-flow
batch within a finite amount of time.
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Thatis, ECR proceeds normally and will not get stuck in angsas. Note that the above two statements holds for
arbitrary GF(2°) (even for binary fieldsF(2)). That is a critical part as in practical schemes, we cargigton the
“with high probability (1 — €) for sufficiently largeGF(2°)” statements commonly used in random linear network
coding [10].

Proving that AP always moves between phases is straigtafdrw\We notice that whether the AP switches
phases depends ey = ro — 1. For any givenS, the created coding vecter will have all the creation bits in
S set to 1. Therefore, if there is any destinatipboutsideS overhears the transmitted then such vector will be
considered compatible t§ = S U {j}. As a result, the rank; will increase with a non-zero probability. In the
end, the rank approachess in a finite amount of timeds becomes zero in a finite amount of time and the AP
moves to the next phase.

The proof of the completion of the inter-flow batch in Phdgds more complicated, which is built around the
following propositions.

Proposition 1 For any time instant of the AP, suppose a packet is generatearding to a flow sef. (Currently,

the AP is in PhaséS|.) Consider one receiveyp € S and fix thatiy. If theio-th destination receives that packet,
then after the Gaussian elimination performed at tfi¢h destination, the new vector will have zero elements for
all columns corresponding to floyy-for all j # ig. Note that after Gaussian elimination, the elements in the
columns corresponding to flowg-may or may not be zero.

Intuition: This proposition says that if for any destinatidp, io € .S, all the “interference” from flowj, j # i
can be canceled at destinatidy. This similar to the “immediate decodability concept” of €P. That is, for the
COPE protocol, upon the reception of ofilow packet intended foiy € S, d;, can cancel all the interference
and decode the desired packets. The difference for ECRtisitivad;, can cancel all the interference and obtain
one more linearly independent intra-flow coded packet.

For any destinationl;, we notice thatQ vec iS an upper triangular matrix. Letyo; denote the rank of the
submatrix ofQrx_vec induced by the columns of flow Let rower denote the number of the last few rows for which
all the non-zero entries are in columns of floamWe have the following theorem.

Proposition 2 For any time instantyprj = 7jower-

Intuition: This proposition further solidifies the essence of Projmmsit. That is, the “rank” of the projected space

on flow ¢ can be fully extracted by Gaussian elimination when foaysin the last few rows for decoding.
Proving that once the AP is in Phasel/, ECR moves to the next batch within a finite amount of time.

For the following, we call the projection of a space to floas the “flows space.” If the phase completion status
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indicatordg = 0, it means that the flow-space spanned by the vectors compatiblé is fully covered by the
flow-i space spanned by vectors that are compatible’bgr are received by destinatian As a result, when
we move from Phasé to (k + 1), it is guaranteed that the flowspace of the vectors that are compatible to
Phasek + 1) or higher or received by destinatierias the same rank as the flowpace of the vectors compatible
to Phasé: or higher or received by, see Fig. 8. On the other hand, all elementary vectors tleagtared inQqy;
during the initialization ofQ,; are compatible tdi}. Therefore the flow-space of vectors compatible to the
Phase 1 selectiof = {i} has full rankN;, see Fig. 8. As a result, when the AP moves to the final Phése-
the flow+ space of the vectors that are compatibld X6| or received byi, must have the full rankv; (Fig. 8).
Hence, after spending a finite amount of time in Ph&sethe destinationl; will have received vectors such that
the corresponding flow-space has full rankv;. By Proposition 2, each destinatiaiy thus can fully cancel the
interference of other flow, j # i, and recover allV; native packets. Destinatiafy will thus acknowledge the
entire inter-flow batch in a finite amount of time. The proofhiss complete.

Remarklt is worth noting that the design of ECR is started by takintpiaccount all the practical limitations
that have been puzzling the existing protocol designs (setdhs 2.1 and 3.2). Therefore, in contrast with the
existing top-down approach (from the theoretic MU-ARQ pite [14] to the practical ER protocol [21]), our
bottom-up approach (addressing practical constrainty @rsures that the resulting ECR protocol depends only
on very simple feedback-based operations without comjglitime-out mechanisms. The most intriguing feature
of ECR is that with carefully designed, feedback-based edatn at the AP, this bottom-up approaishalso
theoretically optimal.That is, under the same theoretic setting as used in MU-ARKQ Hur practice-oriented
ECR strictly outperforms the overly idealistic MU-ARQ piple and achieves the best poosible throughput for
any idealistic/practical schemes one can enviseswe prove in the following.

6.2 Performance Analysis

For the performance analysis of ECR, we denote underlyiriteffield of network coding byGF(2?). We use
the same channel model as when we describe the existingsrésiqgs. (1) and 2 of Section 2. Unlike the MU-
ARQ, we use a more realistic assumption of periodic feedliisekding feedback every > 1 time slots using a
separate channel). By generalizing fitg/sically-degraded-channel-baspmofs in [8], we obtain the following
proposition that upper bounds the best possilier any transmission scheme one can envision:

Proposition 3 For any given values a¥/ and F', the throughput efficiency of any scheme must satisfy:

M
T 3

ey e
Lk=1 T

Our ECR protocol achieves the optimal throughput efficienae following sense:

Proposition 4 For any given values af/ and F', the throughput efficiency of ECR satisfies

M
lim lim n=—F—F—-. (4)
Nosodmeo Yl TR

Namely, for sufficiently largeV and2®, ECR is throughput optimal. The superior performance of EQRinite
N and finite2? is verified by simulation and testbed implementation in Best7 and 8.
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7 Simulation Study

In this section, we compare the performance of ECR agaiastoflER and 802.11 using the Glomosim simu-
lator [24].

7.1 Methodology

We place an AP in the center of the simulation area and up tdi26te uniformly on a circle around the
AP. To evaluate the performance of the protocols under réiffeloss scenarios, the clients are placed close to
the AP and we generate link loss rates in a controlled marmeartificially dropping packets at each client
following a Bernoulli model. Following the evaluation mettology in [21], we consider both homogeneous and
heterogeneous loss rates.

Following the evaluation methodology in [21], we considetibhomogeneous and heterogeneous loss rates.
In the homogeneous case, the loss rates of all links are the,saaried between 10% and 90% in different
simulations. In the heterogeneous case, the loss rate ¢brlge is randomly selected between 0 and an upper
bound and the upper bound varies from 10% to 90%.

In every simulation, the AP transmits 1500-byte packetd @ sec. The results shown in the following sections
are averages over 10 runs. Note that the standard deviatiengery low in all cases except for the heterogeneous
loss scenarios in Section 7.3. Hence, in the interest ofespad clarity, we do not show them in the rest of the
results.

We noticed the performance of ER heavily depends on threenpeters: retransmission queue threshold, re-
transmission queue timeout, and period of cumulative ACKarther, the optimal set of values for the three
parameters depends on the number of clients. For examglee \P supports a large number of clients (more
than 20), then a retransmission queue threshold of 25 paokay be too small, limiting the coding opportunities.
As another example, when the number of clients increasesajumber of cumulative ACKs increases, resulting
in increased overhead and contention with data packetsh®ather hand, reducing the frequency of ACKs, to
keep the overhead constant, may reduce the AP’s knowlednyg #ie clients’ content, which in turn can again
reduce the coding opportunities. [21] uses a threshold gfekets and a timeout of 250ms and does not discuss
the third parameter.

Finally, note that in [21], the authors used for their sintiola evaluation a simplified simulator that did not
model timing dynamics. Hence, they did not evaluate theghd&®R implementation, but a simplified version of
the protocol, where a sender sends a constant-size batetké{s at a time and then (after instant feedback from
the clients) retransmits lost packets until all of them @&eeived by the destined clients. With this simplified (but
not practical) version, the authors were not able to studyirtterdependence of the three parameters of the actual
implementation.

To deal with this complex interdependence among the threenpeters, we decided to jointly scale all three
parameters proportionally to the number of cliehts We tried three different scaling factors;, K /2, andK /4.

We also tried different values for the base ACK period (itee, ACK period forK = 2 clients) for each scaling
factor. We do not present these results here due to spadationi. For our final evaluation and comparison with
ECR, we use a base ACK period ( of 40ms, and a scaling factar/af which gave the best performance among
different configurations.

We repeated the same procedure to choose the ACK period fgr &@ich is the only parameter that requires
scaling in our protocol. We finally chose the same scalintpfafor ECR’s ACK period, but with a base period of
20 ms. Finally, we use a batch of 48 packets for each flow and@isField GF(2*) (half byte).

Evaluation Metrics. We use the following metrics:

Aggregate ThroughputThe throughput per client is defined as the total number ofjumipackets (excluding
duplicates) received for 802.11 and ER, or the total numbdeocoded packets for ECR, multiplied by the packet
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Figure 9. Throughput and efficiency comparison for different numhsrslients under homogeneous losses.

size, and divided by the total time required to collect/dkxthose packets. The aggregate throughput is the sum
of the throughputs of all clients.

Efficiency: The ratio of the total number of packets sent by the AP (inalgidetransmissions) (original data
packets, and MAC layer retransmissions for 802.11, origilzaa packets, single retransmissions and coded re-
transmissions for ER, intra-flow and inter-flow coded pasket ECR), over the total number of data packets
effectively received for each protocol (e.g. decoded in ERGR) by all the clients. The value of this metric is
> 1, with larger values indicating lower efficiency.

7.2 Homogeneous losses

7.2.1 Varying the number of clients

Performance comparison. Figures 9(a)-9(d) plot the throughput and efficiency of EER, and 802.11 with a
varying number of clients for a loss rate of 20% and 50%. For&&plot two versions, the original one and the
version where we scale all the parameters with the numbédienits, denoted as ERcale. We make the following
observations:

First, we observe that the performance of ER drops dranigtiwéh the number of clients. 802.11 outperforms
ER in terms of both throughput and efficiency with more thariénts under a 20% loss rate and with more than
8 clients under a 50% loss rate. Note the complete ER proteaslevaluated in [21] with only up to 6 clients.

Second, ERscale substantially outperforms ER in terms of both metiws always outperforms 802.11. How-
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retransmitted uncoded. For ECR, Phaserresponds to inter-flow coded packets dffferent clients; Phase 1 include
only intra-flow coded packets for a single flow.

ever, its performance also degrades with the number oftslien

Third, ECR outperforms ERcale in terms of both throughput and efficiency (with theegiion of a small
number of clients where ERcale’s efficiency is about 3% better). The throughput gdiB@R over ERscale
is as high as 13% under a 20% loss rate and as high as 20% un@@t ss rate, with 20 clients. Compared
to original ER, ECR’s throughput gain is much higher, up t@%2and 155% under 20% and 50% loss rates,
respectively. Finally, compared to 802.11, ECR’s throughgmin is as high as 13% under a 20% loss rate (same
as against ERcale) and as high as 48% under a 50% loss rate. Moreoverdtuepl scales well with the number
of clients in spite of only allowing to encode packets frorougs of 4 flows.

Regarding the efficiency metric, note that with a loss at&02.11 (which retransmits each packet uncoded)
needs on averag«l-:{—L transmissions to deliver a packet, i.e., its eﬁiciency;—_l% This is indeed the case in
Figures 9(b), 9(d) — 802.11’s efficiency varies from 1.2271with a 20% loss rate and from 2.00-2.03 with a 50%
loss rate. In contrast, by exploiting network coding, ECRieeges a much better efficiency, in particular under
high loss rates; ECR’s efficiency is lower than 1.59 with a 3696 rate even with 20 clients. Estale’s efficiency
is also better than 802.11’s, but worse than ECR’s and, asiomexl before, it degrades with the number of clients,
especially under high losses.

Packet breakdown. To understand where the gains of ECR come from, we plot inreg@0(a)-10(f) a break-
down of coded and uncoded transmissions for ER,SE&e, and ECR, with a varying number of clients under
20% and 50% loss rates.
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Figure 11. ACK packet delivery ratio with varying number of clients wardhomogeneous losses.

In Figures 10(a), 10(d), we observe that as the number daftsli@creases beyond 4, (i) the number of retrans-
missions for ER increases; in particular, under a 50% los tiae retransmitted packets are more than the original
ones for 12 or more clients. (ii) the percentage of codedhnsimissions decreases; in the most extreme case,
under a 20% loss rate, the fraction of coded retransmissahsf the total number of transmissions is less than
1%, i.e., almost packets are sent out uncoded. This explaéneduced efficiency for ER and its low throughput.

Figures 10(b), 10(e) show that scaling helps ER; the numbet@nsmitted packets with EBcale is always
lower than the corresponding number with ER in Figures 1Q(@jd). Also, the fraction of coded packets with
ER_scale is always larger than with ER. In spite of this improeainwe observe that the fraction of retransmis-
sions for ERscale still increases and the coding gain still decreaststiie number of clients.

In contrast, Figures 10(c), 10(f) show that the fraction atkets in each phase with ECR remains unchanged
with the number of clients. This shows that ECR scales wdh wie number of clients and explains its superior
performance over ERcale.

Why does the performance of ERscale drop with the number of clients?Figures 11(a), 11(b) plot the delivery
ratio of ACK packets (i.e., the number of ACK packets recaiat the AP divided by the total number of ACK
packets sent by all the clients) for E®ale and ECR with varying number of clients for loss rate2@% and
50%. We observe that, in spite of scaling the ACK period wite humber of clients and adding jitter before
sending the ACKs, the delivery ratio of ACK packets still geses with the number of clients. The delivery ratio
is similar for the two protocols under 20% loss rate and higheER_scale under 50% loss rate. Nonetheless, the
performance of ERscale degrades with the number of clients while the perfageaf ECR remains constant.

However, the impact of ACK losses is much higher in ER (or&fRle) than in ECR, for the following reasons.
ECR uses a batch for each flow and a systematic phase-basedhigaion and coding strategy that does not
depend on any timing dynamics. In a given phaghe AP transmits linear combinations of a given set of packe
and it always mixes together packets frordifferent flows. Thus an ACK loss may delay the transitionte t
next phase, but all the extra packets transmitted in theentiphase will still combine packets fronflows, thus
wasting little bandwidth.

In contrast, ACK losses in ER may have the following consaqges: (i) they result in timeout expiration for
those packets pending acknowledgment and a burst of ratited packets instead of new packets. (ii) they
distort the RTT calculation of the next set of original paskenewly transmitted packets will typically have a
longer timeout, i.e., they will have to wait longer beforeyhare eligible for retransmission. (iii) they reduce the
AP’s knowledge of what packets have been overheard by teetslthat sent the lost ACKs. (ii) and (iii) combined
imply that many retransmitted packets are sent uncode@ sirec AP either finds no packets from other flows to
mix together (due to (ii)) or it does not know whether any pslcan be coded together (due to (iii)). This results
in reduced efficiency and throughput for ER (and_&¢&le) as the number of flows increases.
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Figure 12. Throughput comparison with varying loss rates under homegas losses.
7.2.2 Varying the loss rate

We now evaluate the performance by varying the loss rateeSiRR scale performs much better than the original
ER without scaling, we will use this version in the remainifghis section and in the next section and we will
call it ER for simplicity. Figures 12(a), 12(b) plot the aggate throughput with ECR, ER, and 802, with 4
and 12 clients, respectively, when the loss rate varies ft0f% to 90%. We observe that ECR outperforms ER
and 80211 for all loss rates and the improvement is higher with higbss rates, which also agrees with the
theoretical results. With 4 clients (Figure 12(a)), theotlghput gain of ECR over ER varies from 3% (with 10%
loss rate) up to 26% (with 90% loss rate) and the gain overl@02aries from 3.5% up to 178%. With 12 clients
(Figure 12(b)), the throughput gain of ECR over ER variesnre.5% (with 10% loss rate) up to 22% (with 90%
loss rate) and the gain over 802.11 varies from 5% up to 143%.

7.3 Heterogeneous losses

We now consider heterogeneous loss rates. This scenariosisrdo the reality, where different clients have
different loss rates either because they are located iardift distances from the AP or due to multipath fading or
because they experience different numbers of collisiors,(@hen other clients or neighboring APs act as hidden
terminals).

Figures 13(a), 13(b) plot the aggregate throughput with EER, and 80211, with 4 and 12 clients, respec-
tively, when the loss rate bound varies from 10% to 90%. AgBGR outperforms ER and 80P1 for all loss
rate bounds and the improvement is higher with higher lots aunds and higher number of clients, i.e., with
higher heterogeneity. With 4 clients (Figure 13(a)), thetighput gain of ECR over ER varies from 4% (with
10% loss rate) up to 10% (with 90% loss rate) and the gain o®2rl8 varies from 0.5% up to 15%. With 12
clients (Figure 13(b)), the throughput gain of ECR over ERegmfrom 7% (with 10% loss rate) up to 51% (with
90% loss rate) and the gain over 802.11 varies from 2% up to. 46%

8 Testbed evaluation

In this section, we present experimental results compd@& and ER on an 802.11 testbed.

NC-based wireless protocols (e.g., [5, 11, 21]) are typicahplemented as a shim between the IP and the
MAC layer, i.e., at layer 2.5. Here, for ease of debugginglagnent, and evaluation, we implemented ECR at
the application layer, using broadcast sockets. For a fairmarison, we also implemented ER at the application
layer, following all the details in [21]. Our implementatidhandles only synthetic traffic, i.e. data packets are
generated within the ER or ECR application running at the $jlar to the implementation in [26], in which
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Figure 13. Throughput comparison with varying loss rate bounds undegrogeneous losses. For clarity, the points
of the ECR and 802.11 curves are offseted horizontally.

packets are generated within Click. The application laggiementation of ECR and ER prevented us from a fair
comparison of ER and ECR against 802.11, which is implendgeintéhe driver/firmware of the wireless catd.

8.1 Experimental results

We set up a small testbed consisting of 9 low-end PCs, runviiagdrake Linux 10.1 (kernel 2.6.11-6). Each
is equipped with an Atheros 5212 based 802.11a/b/g wirelass operating in 802.11b ad hoc mode, using the
open-sourcenadwifidriver [17]. Each card is attached to a 2dBi rubber duck omneational antenna with a low
loss pigtail. The transmission power is set to 18dBm and K& is disabled, as is the default setting.

In our evaluation, we used one machine as an AP and up to 8 neagchs clients. To evaluate the performance
of the two protocols under various loss scenarios, we gégebiass rates between the AP and the clients in a
controlled manner, similar to [21] and to our simulation huetology. For each scenario (i.e., a given number of
clients and a given loss rate), the AP sends a 1.1MB file to els@ht, using 1460-byte packets. We repeat each
scenario 10 times and we report the average throughput lbeelG runs.

We first wanted to verify that the complexity of the PCSI conapion algorithm (which is executed every time
the AP receives an ACK) (Section 5.3) remains reasonablydfter removing all duplicated computations and
does not become the bottleneck in the protocol’s operafiagure 14 plots the Cumulative Distribution Function
(CDF) of the ACK process time in the caseldf = 4 clients, with varying loss rates. The median ACK process
time is equal to 203s, 139us, and 84us, for loss rates equal to 20%, 50%, and 80%, respectivelyh @/i500-
byte packet, these numbers limit the effective throughpuwtiout 59Mbps, 86Mbps, and 142Mbps, respectively,
which is higher than the maximum effective bit rate of 802a1d WLANSs (54 Mbps).

One observation made from Figure 14 is that the ACK procgssime drops as the loss rate increases. The
reason behind this behavior is the following: under higts Ieges, each ACK acknowledges only a small number
of packets, and hence the PCSI computation is repeated foak sumber of times and the total ACK process
time is low. On the other hand, under a low loss rates, theAi@ds for each batch acknowledge a large number
of packets, which results in a large ACK process time (naaé ttie 90-th percentile is considerably higher with a
20% loss rate compared to 50% or 80% loss rate). However,thfidirst ACKs, most of the packets at the AP are
already ACKed and subsequent ACKs do not cause large chémgfes overhearing bit map, resulting in a very

®The authors in [21] compared the performance of their ER émgntation against a version of ER with coding disabledchvtiiey
used as an approximation of 802.11. We followed their mathagy as a proof of concept, and confirmed that the gains ofEdRir
implementation over ER with coding disabled are similati® dnes reported in [21].
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Table 1. Testbed evaluation: Total throughput (in Kbps) with ER/E@®iEh varying numbers of clients and

varying loss rates.

ER/ECR Loss rate

# of clients 20% 50% 80%
3 652.4/648.8 454.6/484.4) 176.8/205
4 696.6/698 | 486.6/513.6| 168/208.6
8 698.4/718.8 492.2/531.6| 172.2/207.8

low process time (the 10-th percentile with a 20% loss rataush lower than with 50% or 80% loss rate). As a
result, the median process time does not grow too large evderdow loss rates.
We now move on to compare the performance of the two protoctable 1 presents the average throughput
with ER and ECR with 3, 4, and 8 clients, and for three diffétens rates: 20%, 50%, and 80%. We observe that
the two protocols perform similarly with a 20% loss rate ¢§léisan 3% difference) and ECR outperforms ER with
50% and 80% loss rates. The throughput gain of ECR is gepdrglher with the number of clients and the loss
rate, ranging from 6.5-24%. As a specific example, the galBOR over ER is 0.2%, 5.5%, and 23.7%, with a
20%, 50%, and 80% loss rate, respectively in Table 1; thelatin gains for the same scenario from Figure 12(a)
are 2.5%, 6.9%, and 24.9%, respectively, i.e., very closbddestbed gains.

9 Related work

In this section, we summarize the related work.
Theoretic Studies. The AP network corresponds to the classic “broadcast cliaprablem in the information
theory society, which has been an active research subje¢ltipast four decades. Some example related works
in this extremely rich literature include the 2-user feedbaapacity exploration for the erasure channel [8, 23],
the Gaussian channel [18], and the discrete memorylessielsf7]. The results in this work can also be viewed
as a generalization of thadex codingproblem [3] from the noiseless channels to the random vwasebroadcast

erasure channels.

Other network coding based retransmission schemeskecently, XORR [6], was proposed to address several
issues that affect the performance of ER, though compleanend the coding strategy. In particular, it consid-

26



ered the impact of different link data rates on the codinggiec and also incorporated a network coding aware
opportunistic scheduler to the AP, to provide fairness agnients of different link qualities. However, XORR'’s
coding strategy is far from optimal. Similar to MU-ARQ/ERORR also drops overheard coded packets that are
not immediately decodable. Also, the protocol only considbe head-of-line packet of each flow when making
coding decisions, which also limits the coding gain. In casi, in this paper, we focused on the fundamental
problem of designing an optimal coding strategy which i® @menable to a practical implementation, and we
left the problem of adapting ECR to consider heterogeneiolsdiata rates as part of our future work. Note that
although fairness was not a direct goal of our design, EARpstivides fairness among each groupldf clients.

More recently, [22] proposelMedusa a proxy based solution to improve media streaming perfooaaver
WLANSs. The design oMedusancludes an ER-like retransmission scheme, among othehaméms. In contrast
to ER, the threshold based scheduling algorithm of ER is ngdo used; the protocol only uses ER’s “sort-by-
time” simple heuristic to determine which packets to codgether.

Other retransmission schemesA different approach to improving performance of WLANs igpented in [16], [2].
In these works, a client close to the AP acts as a relay foeatdar from the AP, either relaying all the packets [2]
or assisting only with retransmissions [16]. This approgduires collaboration among clients and are orthogonal
to the approach ECRor ER’s approach, where clients simphg stach other’s overheard packets but only talk to
the AP.

Network coding in multihop wireless networks. Network coding has been extensively used to improve perfor-
mance of multihop wireless networks over the past few ye@he pioneering work in [1] showed that allowing
relay nodes to encode and decode traffic rather than to sifapliard, can achieve the multicast capacity. COPE
was the first practical inter-flow network coding scheme foicast in multihop wireless networks. It applies net-
work coding to initial data transmissions and relies on 802etransmissions for recovering from losses. COPE
also sacrifices optimality for simplicity, using a simplefsby-time” coding strategy and dropping packets that
are not immediately decodable, similar to ERRThe work in [20] identified two problems with COPE (poor per-
formance in lossy environments and reduced coding gaims frot recouping coding opportunities for packets
not immediately decodable) and proposed CLONE, a suite wfigtee coding algorithms to address these prob-
lems. [20] also showed that the problem of determining thamag coding strategy is NP-hard, even when only
binary coding is allowed (i.e., only packets from two flows ¢ge coded together). The authors concluded that out
of all the proposed heuristics, only one (for binary codingh be implemented on today’s hardware. In contrast,
ECR can not only achieve optimal theoretical performanagatso enables a practical implementation.

Intra-flow network coding has also drawn significant atemt{e.g., [5, 15, 13]). MORE [5] was the first
practical intra-flow network coding protocol, showing thlé use of random linear network coding can greatly
simplify the design of opportunistic routing protocolsn& nodes no longer need to know exactly what packets
have been forwarded by each neighbor. The design of MOREvatet the use of intra-flow network coding in
ECR for solving a different problem: by using intra-flow nerk coding, the AP no longer needs to determine
the order of coded packet transmissions within each ph&$e¢h¢oretically computes the expected number of
transmissions using ARQ, FEC. and network coding in the csee-based reliable multicast, and shows that
network coding is the most efficient among the three schemesntrast, our work focuses on single-hop unicast.

Finally, there have also been some attempts to combine théypes of coding [19], [25].2MIX combines the
two types of coding by simply performing random linear netkvooding on aIIZfVi1 N; packets (assuming/
flows and a batch olV; packets for flowi). As we have explained in Section 4.1, this approach is rimierfit as
all next hops need to receive @fﬁl N; packets before decoding is possible, which takes an exeeasiount
of time. InC& M [25], a node first creates a batch of inter-flow coded packegtnixing packets belonging to
different flows and then sends out linear combinations otteated coded packets until all the next hops are able
to decode their intended native packets. The paper dissumssdetails on the inter-flow coding strategy used.

PActually, the design of ER was inspired by COPE, as mentiong2i1].
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10 Conclusions

In this paper, we presented ECR, a novel network coding basethsmission protocol for WLANS. The design
of ECR is accompanied by a theoretical underpinning yetlesagiyactical implementation on off-the-shelf 802.11
hardware. We showed that, when the batch $izes sufficiently large, ECR attains thgrovably optimalinter-
flow coding gain that istrictly betterthan that of the MU-ARQ principle, especially when the numdfeclients
is from moderate to large. In addition, by inherently expia the simplicity advantage of intra-flow coding, the
operation of ECR is straightforward and does not involverisgl an NP-hard problem or resorting to suboptimal
heuristics. Our performance evaluation, through extensimulations and a testbed implementation, shows that
the performance of ECR is very robust and consistently atdpeas ER in a variety of scenarios.

In our future work we plan to address a few practical limaas of ECR that can further boost its performance,
e.g., devise intelligent client grouping algorithms to wwoclients with similar loss rates together in order to
avoid the “crying baby” problem, incorporate bitrate addijoin into ECR, and devise online batch size selection
algorithms to allow the smooth operation of the protocolemitigher layer protocols that set delay requirements
(e.g., streaming protocols or TCP).

Acknowledgment

This work was supported in part by NSF grants CCF-0845968CGi%8-0905331.

References

[1] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Reyrd&V. Yeung. Network information flowEEE
Transactions on Information Theqr6(4), July 2000.

[2] Paramvir Bahl, Ranveer Chandra, Patrick P. C. Lee, Vibtisra, Jitendra Padhye, Dan Rubenstein, and Yan
Yu. Opportunistic use of client repeaters to improve perfance of wlans. Ifroc. of ACM CoNEX;T2008.

[3] Z.Bar-Yossey, Y. Birk, T.S. Jayram, and T. Kol. Index aaglwith side information. IrProc. of IEEE FOCS
2006.

[4] Sanjit Biswas and Robert Morris. EXOR: Opportunisticlthbiop routing for wireless networks. IRroc of
ACM SIGCOMM 2005.

[5] Szymon Chachulski, Michael Jennings, Sachin Katti, Bivth Katabi. Trading structure for randomness in
wireless opportunistic routing. lIACM SIGCOMM 2007.

[6] Fang chun Kuo, Kun Tan, Xiangyang Li, Jiansong Zhang, drmbming Fu. XOR Rescue: Exploiting
Network Coding in Lossy Wireless Networks. Rroc. of IEEE SECON2009.

[7] A. El Gamal. The feedback capacity of degraded broaddaatnels.Trans. IT, 25(2), 1978.

[8] L. Georgiadis and L. Tassiulas. Broadcast erasure aianith feedback — capacity and algorithms. In
Proc. of NetCod20089.

[9] Majid Ghaderi, Don Towsley, and Jim Kurose. ReliabilBain of Network Coding in Lossy Wireless
Networks . InProc. of IEEE INFOCOM2008.

[10] T.Ho, M. Médard, R. Koetter, D.R. Karger, M. Effros Shi, and B. Leong. A random linear network coding
approach to multicasiEEE Trans. Inform. Theoryb2(10):4413-4430, October 2006.

28



[11] Sachin Katti, Shyamnath Gollakota, and Dina Katabi. bEaming wireless interference: Analog network
coding. InProc. of ACM SIGCOMM2007.

[12] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katafiyriel Medard, and Jon Crowcroft. Xors in the
air: Practical wireless network coding. Rroc. of ACM SIGCOMMAugust 2006.

[13] Dimitrios Koutsonikolas, Chih-Chun Wang, and Y. CleutHu. CCACK: Efficient Network Coding Based
Opportunistic Routing Through Cumulative Coded Acknowleents. InProc. of IEEE INFOCOMZ2010.

[14] Peter Larsoon and Niklas Johansson. Multi-User AR(R1ioc. of IEEE VTC-Spring2006.

[15] Yunfeng Lin, Baochun Li, and Ben Liang. CodeOR: Oppoistic routing in wireless mesh networks with
segmented network coding. Rroc. of IEEE ICNR 2008.

[16] Mei-Hsuan Lu, Peter Steenkiste, and Tsuhan Chen. Desigplementation and evaluation of an efficient
opportunistic retransmission protocol. Proc. of ACM Mohicom2009.

[17] madwifi. ht t p: // madwi fi . org.

[18] L.H.Ozarow and S.K. Leung-Yan-Cheong. An achievablgan and outer bound for the Gaussian broadcast
channel with feedbackTrans. IT, 30(4), 1984.

[19] Chuan Qin, Yi Xian, Chase Gray, Naveen Santhapuri, aittaB Nelakuditi. PMIX: Integration of Intra-
flow and Inter-flow Wireless Network Coding. Froc. of IEEE International Workshop on Wireless Network
Coding (WINC) 2008.

[20] Shravan Rayanchu, Sayandeep Sen, Jianming Wu, SumaaTj&a and Sudipta Sengupta. Loss-Aware
Network Coding for Unicast Wireless Sessions: Design, émm@ntation, and Performance Evaluation. In
Proc. of ACM SIGMETRICS008.

[21] Eric Rozner, Anand Padmanabha lyer, Yogita Mehta, Qili, and Mansoor Jafry. Er: Efficient retransmis-
sion scheme for wireless lans. Broc. of CONEXT2007.

[22] Sayandeep Sen, Neel Kamal Madabhushi, and Suman Ban&galable wifi media delivery through adap-
tive broadcasts. |IRProc. of USENIX NSDRO010.

[23] F. Xue and X. Yang. Network coding and packet-erasuoaticast channel. IAroc. of IEEE SECON2008.

[24] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. Glomos#vlibrary for parallel simulation of large-scale
wireless networks. IiProc. of PADS WorkshgiMay 1998.

[25] Xiaoyan Zhu, Hao Yue, Yuguang Fang, and Yumin Wang. Aheatl network coding scheme for wireless
networks.ACM Wireless Network45, 2009.

[26] More source code. http://people.csail.mit.edu/sizyore.

29



