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Abstract—During the one minute it takes to read this abstract,
two billion smartphones worldwide will perform billions of Wifi
channel scans recording the signal strength of nearby Wifi Access
Points (APs). Yet despite this ongoing planetary-scale wireless
network measurement, few systematic efforts are made today to
recover this potentially valuable data.

In this paper we ask the question: “Are the smartphone
channel scans useful in monitoring enterprise Wifi networks?”
More specifically, can these client-side measurements provide new
insights compared to the AP-side measurements that enterprise
Wifi networks already perform? Beginning with two Wifi scan
datasets collected on two large scale smartphone testbeds, we
conduct case studies that show how smartphone channel scans
can be used to (1) improve AP spectrum management, and (2)
predict the impact of AP failure or overload. In each case,
a walk on the client side yields valuable insights for network
operators that are otherwise impossible to gain from AP-side
measurements, and together our results demonstrate the value
of smartphone channel scans.

I. INTRODUCTION

As mobile wireless devices proliferate and the demands they
place on wireless networks continue to grow, monitoring the
health and performance of large scale wireless networks is
both essential and increasingly challenging. While site surveys
and infrastructure-side data collection both play important
roles in network monitoring, neither of these approaches
can fully and continuously reflect actual network conditions
experienced by the clients the network is intended to serve—
particularly the mobile devices that generate most wireless
traffic. Site surveys are snapshots that are neither spatially
nor temporally representative, while AP-side data collection
can only measure wireless conditions at AP fixed locations,
not at the changing locations of mobile clients. As a re-
sult, multiple previous research studies have demonstrated
the value of client-side measurements to improve network
performance [13], [14]. Similarly the 802.11k amendment [1]
provides a mechanism to allow APs to collect this information
from clients to improve radio resource management.

Given the established interest in and emerging support for
client-side wireless network measurement, it is surprising that
today we are discarding a potentially valuable source of client-
side information: the large number of channel scans generated
continuously by mobile devices such as smartphones. These
devices naturally perform frequent channel scans to cope with
rapidly-fluctuating network environments caused by mobility.
For example, Android smartphones scan every 15 seconds

when unassociated to search for APs [25], and continue to
scan every 60 seconds even when already associated in order
to identify better APs as wireless conditions change caused by
client mobility, network interference, or other factors.

When considered as network measurements, channel scans
share all the typical benefits of client-side measurements—
such as capturing the real conditions experienced by end users,
providing data that is impossible to gather using APs alone,
and being simpler and more representative than site surveys.
In addition, channel scans have several other unique benefits.
First, note that clients spontaneously perform these channel
scans in order to effectively use wireless networks. As a result,
the client overhead required to collect them for monitoring
purposes is limited to the costs of temporary storage (which
is minimal) and telemetry (which can be minimized through
delay tolerant and energy neutral data collection). Second,
in many cases channel scans remain useful even after being
stripped of information such as timestamps or device identi-
fiers that could threaten client privacy and potentially limit the
willingness of users to share this information.

While all Wifi clients perform channel scans, smartphones
have several advantages that make them uniquely suited to
collecting and providing measurements for monitoring enter-
prise wireless networks. First, unlike laptops, smartphones are
always powered on, thus scan continuously both during and
between periods of interactive use, providing better temporal
resolution than devices that are regularly powered down or
put to sleep. Second, being highly portable, users are likely to
carry smartphones most of the time, giving these devices the
ability to observe more of the network than would be seen by
stationary or less-portable devices, making their measurements
more representative of all locations where mobile users might
utilize the wireless network. Finally, smartphone platforms
already provide interfaces allowing apps (with appropriate
permissions) to access channel scans, and app marketplaces
provide an easy way to deploy the simple monitoring software
required to collect them from billions of mobile devices. Com-
pared to other mobile devices, smartphones make it easy to
collect an enormous number of channel scans from everywhere
that users might use the wireless networks.

But are these measurements actually useful? Can channel
scans contribute valuable insights in monitoring enterprise
wireless networks that would otherwise be impossible to gain
from existing infrastructure-based approaches? That is the



question that we set out to answer in this paper. Our goal
is to determine whether the billions of discarded smartphone
channel scans represent a missed opportunity or redundant
information that we can continue to safely ignore.

To do so, we take a walk on the client side. We utilize two
Wifi channel scan datasets collected on two large scale smart-
phone testbeds (PHONELAB: 5,373,682 scans, 254 devices,
5 months; and NETSENSE: 32,564,809 scans, 125 devices,
32 months), described in more detail in Section II. To examine
the case for client-side measurement, we ignore analyses that
could be performed using measurements from APs, including
APs that utilize extra radio hardware to continuously perform
measurements in parallel with normal client traffic. We also
focus our studies on aspects of network performance and
behavior of interest to network operators, not just scientists,
since we anticipate that large-scale collection of channel scans
will only take place if the measurements are able to provide
meaningful operational insights.

Our paper presents two case studies in Section III using one
or both of our channel scan datasets:

• Section III-A looks at how the channel conflict graph
differs from the client perspective, helping operators
assess the effectiveness of infrastructure-only channel
assignment algorithms at utilizing available spectrum.

• Section III-B investigates how load can be shifted among
neighbor APs when a particular AP is not available,
both for load balancing purpose and to evaluate network
redundancy, allowing network operators to make better
spatial planning decisions.

Section IV discusses related work before we present and
discuss our conclusions in Section V. We believe that our case
studies demonstrate the value of smartphone channel scans,
and will publish the datasets so that others can extend our
analyses or reevaluate our conclusion.

II. THE DATASETS

To examine the usefulness of Wifi scan results collected
by smartphones, we analyze two large scan datasets1 col-
lected from two smartphone testbeds deployed in University
at Buffalo (UB) and University of Notre Dame (ND): 5.3M
scans from PHONELAB [15] at UB, and 32M scans from
NETSENSE [23] at ND. Throughout the paper we refer to these
datasets as UB-Scan and ND-Scan, respectively. Statistics
summarizing both datasets are shown in Table I. Pending
publication of this study, the UB-Scan and ND-Scan datasets
will be made available to researchers for further study.

In addition, to compare the client- versus AP-side perspec-
tives, we both (1) obtained the logs generated by the man-
agement software operating the Wifi network of UB and (2)
performed additional data collection to address the limitations
of that management tool. We refer to these two datasets as
UB-AP and UB-AP-Scans, and describe them in more detail
in Section II-D.

1Full IRB approval was obtained for the acquisition of both datasets.

PHONELAB NETSENSE

Description §II-A §II-B
Identifier UB-Scan ND-Scan
Start 11/7/2014 5/1/2012
End 4/3/2015 3/31/2015
Duration (Days) 147 974

Participants 254 100–125
Device Type Nexus 5 Mixed

Scans 5,374,406 32,564,809
Observed APs 30,604 72,001
Used APs 2742 2495

Wifi Sessions 160,886 149,863
Total Connection Time (Days) 23,322 50,969

TABLE I: Dataset Summary. Only Wifi scans and sessions observ-
ing the campus network are counted. Used APs refers to the subset
of total APs that were used by the devices participating in the study.
Total connection time includes only Wifi sessions with campus APs.

A. UB-Scan: PHONELAB Wifi Scan Dataset

PHONELAB is a large scale smartphone platform testbed
at UB. Several hundred students, faculty, and staff carry
instrumented LG Nexus 5 smartphones as their primary de-
vice, and receive discounted service in return for providing
data to smartphone experiments. PHONELAB participants are
distributed across university departments, making the results
representative of the broader campus wireless network users.

The PHONELAB Android platform was instrumented to log
the Wifi scan results and Wifi connection events naturally gen-
erated by the system. Note that the platform modifications are
not necessarily required to collect such measurements: equiva-
lent data can be collected by apps with the right permissions—
as demonstrated by the ND-Scan dataset described next.

Each scan result contains multiple entries, one for each
nearby Wifi AP observed by the smartphone. One entry
includes the (1) scan timestamp, (2) AP SSID and BSSID, (3)
RSSI and (4) AP channel. For this paper, we are only interested
in scans that observe the UB campus network, therefore we
remove scans that do not contain any UB campus APs.

B. ND-Scan: NETSENSE Wifi Scan Dataset

The ND-Scan dataset uses data from the NETSENSE study
conducted at ND. NETSENSE participants were spatially con-
centrated in six undergraduate dormitories, with demographics
(gender, major, and income) verified to be representative of the
larger undergraduate population.

During the first two years of the study, NETSENSE par-
ticipants were provided Nexus S devices flashed with the
Cyanogenmod fork of the Android Open Source Project and
running a user-level data collection app. In August 2013,
participants were given the option to continue the study by
purchasing their own replacement handset but continuing to
receive free service, and fifty additional participants were
recruited to replace those that chose to quit. From this point
onward, NETSENSE relied only on the user-level data collec-
tion app.

The NETSENSE data collection app recorded scan results
every three minutes including the (1) scan timestamp, (2) AP



SSID and BSSID, and (3) RSSI. Unlike UB-Scan, channel
information was not recorded. Beginning in May 2012, Wifi
connection events were also logged. For this paper, we utilize
only the data collected from 5/1/2012 to 3/31/2015.

C. Differences Between the Scan Datasets

Compared to the UB-Scan dataset, NETSENSE devices
recorded fewer sessions per participant day (1.5) than PHONE-
LAB devices (4.3), despite logging similar numbers of session
hours per participant day: 12.5 for ND-Scan v. 15.0 for UB-
Scan. We believe that this is largely due to the difference
between the Nexus S used by NETSENSE participants during
the first two years of the ND-Scan dataset and the Nexus 5
used by PHONELAB participants during the entire UB-Scan
dataset. In particular, the Nexus S is known to have poor
Wifi sensitivity and is reluctant to connect to APs with low
signal strengths. In addition, NETSENSE participants are all
undergraduate students and spent various amounts of time on-
campus during the three-year study period, leaving regularly
for the summer or study-abroad programs. In contrast, PHONE-
LAB participants are mostly faculty and staff and would have
been mostly on campus during the six-month study.

D. UB Wifi Logs and AP Scans

To compare the client- and AP-side perspectives, we first
obtained access to the system logs generated by the Cisco
Prime system used to manage the campus Wifi network of
UB. This dataset contains 8,041,604 Wifi sessions from 38,067
UB campus network users for 44 days from Mar 12 to
Apr 25, 2015. Each record contains the following pieces of
information: 1) the client’s MAC address, 2) the AP’s SSID
and BSSID, 3) when the Wifi session began and ended, and
4) statistics such as bytes received and transmitted by the AP
during the session. We also obtained an inventory of all UB
campus APs, including their BSSIDs and course-grain location
(campus, building and floor). Collectively we refer to this
dataset as UB-AP.

Unfortunately, the Cisco Prime interface does not expose
all information collected by the infrastructure network. For
example, despite the fact that UB campus APs clearly perform
periodic channel scans for purposes such as optimizing chan-
nel assignment and detecting rogue APs, we were unable to
access the raw scan information—which is either not collected
or hidden behind a proprietary database and not exposed to
network administrators.

To address this limitation of the UB-AP dataset, we augment
it with a more detailed dataset for the 14 APs on the 3rd floor
of the CSE department building at UB. To reconstruct scan
results from these APs, we colocated Nexus 5 smartphones
on top of each AP and configured them to perform channel
scans every second for 30 minutes, resulting in 1574 scans per
AP on average. We configured a high scanning rate to try to
compensate for the fact that smartphones typically have less
sensitive radio hardware than commodity APs, but there is no
way to perfectly account for these hardware differences, so
our dataset should be seen as an approximation of the scans

that could have been collected by the colocated APs. We refer
to this dataset as UB-AP-Scans.

III. CASE STUDIES

To see whether smartphone scans can generate new insights
beyond what are already possible to gain from infrastructure
side measurements, we conduct two extensive case studies to
show how smartphone measurements can: (1) improve network
spectrum management (§III-A), (2) help network operators
make better spatial planning decisions (§III-B).

A. Spectrum Management

Channel assignment plays an important role in wireless
network performance, and is typically modeled as a graph
coloring problem on conflict graph G = (V,E), where V is
the set of APs, and 〈APi, APj〉 ∈ E if APi and APj interfere
with each other when they are in the same channel. Previous
works [13], [14] have shown that conflict graph constructed
with only AP side measurement fails to capture all types of
interference due to the hidden terminal problems. For instance,
suppose APi and APj are beyond each other’s communication
range, with only AP’s measurements, 〈APi, APj〉 /∈ E. How-
ever, a client that is associated with APi may still experience
interference from APj .

In this section, we first show how the smartphone mea-
surements can help build a more representative conflict graph
that captures the interference experienced by clients. Then we
demonstrate how to use this conflict graph to reduce client-
perceived conflicts.

1) Client-Assisted Conflict Graph Construction: The con-
flict graph can be constructed with only infrastructure side
measurements: each AP performs a Wifi scan and inserts
an edge between itself and each of its neighbors. We refer
to a graph constructed in this manner as the Infrastructure-
perceived conflict graph, or GI = (V,EI), where V is the
set of APs, and 〈APi, APj〉 ∈ EI if APi can overhear APj’s
beacon frame, or vice versa.

To construct GI , we need the AP-side scan results. Due to
the limitation aforementioned in Section II-D, we are only able
to construct GI for the 14 APs in our department building, as
shown in Figure 1. With the UB-AP-Scans dataset, for each
APi, we add 〈APj , APi〉 to EI if APj shows up in APi’s scan
results. Note that in UB-AP-Scans dataset, we did not find any
asymmetric AP pairs, effectively making GI undirected.

However, from the Wifi client’s perspective, any AP (other
than its currently associated AP) within its carrier sensing
range has potential conflict with itself, causing either extra
backoff delay for uplink packets, or collisions for downlink
packets. Therefore, a more representative conflict graph should
also include edges between the client’s associated AP and
all other APs that appear in the client’s scan results during
the Wifi session. We refer to such graph as client-perceived
conflict graph, or GC = (V,EC), where V is the set of APs,
and 〈APi, APj〉 ∈ EC if any of APi’s clients can overhear
beacon frames from APj , or vice versa.
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Fig. 3: Client-perceived Conflict Graph.

We use the UB-Scan dataset to construct GC as follows.
Given a scan result from a smartphone that was associated with
APi, we add 〈APj , APi〉 to EC if APj appears in the result.
We also count the number of unique 〈device, timestamp〉2
tuples for each conflict edge as its weight, to quantify the
impact of the conflict: a large weight means the conflict is
experienced by many devices and/or for a long period of time.

Figure 2 and Figure 3 show the constructed infrastructure-
perceived and client-perceived conflict graphs respectively,
where APs are positioned by their physical coordinates in
Figure 1. First, we observe that GC contains many edges
that do not exist in GI , which implies that clients experience
more conflicts than the infrastructure can identify. Second, in
this particular AP placement, we notice that EI is a proper
subset of EC , which means our dataset not only reveals hidden
conflicts, but also detects all conflicts that the APs already see.

We then take a closer look at each node’s degree in both
conflict graphs. The median node degree in GI is 7, which is
not surprising given the dense AP deployment in this floor. In
GC , the min degree is 10 and the median degree is 13. In real-
ity, however, not all the conflict edges exist all the time: while
GI is stable, GC may vary over time due to client mobility or
association behavior. Therefore, such temporal fluctuations of
GC must be captured to effectively assign channels without
wasting temporal channel reuse opportunities.

We seek ways to learn such temporal fluctuation patterns
using our dataset. Specifically, we investigate hourly patterns.
For each edge in GC , we first obtain the set of unique
〈device, timestamp〉 tuples that we used to calculate edge
weight, then we bin the tuples by the timestamp’s hour field,
and thus get the number of tuples in each hour of day.

Figure 4 shows the hourly tuple count distribution for all
client-only conflict edges (EC −EI ). As expected, all conflict
edges are mostly seen during school hours (10 AM to 6 PM).
Furthermore, different edges are mostly seen at various hours
indicated by the darkest tile of each conflict edge. With such
temporal fluctuation information, we can now construct the

2Timestamps are binned by hour—multiple scan results within an hour
from the same device are only counted once towards the edge weight—so the
weight is not biased by certain busy devices.

time-variant GC(h) = (V,EC(h)), where h is a given hour
of day, and E(h) contains all the stable edges plus the edges
that are reported at time h.

2) Channel Assignment: We then look at the effects of
hidden conflict edges to the channel assignment of campus
APs. According to UB IT staff, all campus APs are connected
to central controllers, which collect the interference informa-
tion from the APs and adjust each APs’ channel to reduce
conflicts. However, the measurement process and the channel
assignment algorithm are all handled behind the scene, and
little details were revealed or documented. Therefore, we again
focus on the campus APs in our department building.

To monitor the APs’ operating channels, we placed three
smartphones in locations marked as triangles in Figure 1, and
verified that the smartphones together can see all 14 APs in
this floor. We configure the smartphones to perform a Wifi
scan periodically. The experiment lasted for 6 days from Apr
23 to Apr 28, 2015. We fused the data from all devices and
obtain each AP’s channel history during the experiment period.
In total, we detected no channel switch events in the 2.4 GHz
band and 157 switch events in the 5 GHz band, which suggests
the campus controllers only try to adapt channels in the 5 GHz
band. Therefore, we hereby focus on the 5 GHz band only.

There are 9 orthogonal channels in the 5 GHz band in
United States. We verified that the conflict graph GI for the
14 APs is at least 7-colorable using the largest first strategy
described in [10]. However, we still observed channel conflicts
among the 14 APs during the experiment period. This is
probably because those APs also have conflicts with campus
APs in other floors, thus the actual conflict graph is larger than
GI we constructed.

We compare three channel assignment schemes: the ob-
served channel assignment by campus AP controllers (OB-
SERVED), optimal channel assignment on GI (AP-OPT)
alone, and optimal channel assignment on GC(h) (CLIENT-
OPT). For each scheme, we calculate the number of conflicts
on GC(h) for each school hour (8 AM–6 PM) during our
experiment period. This metric captures the actual number of
conflicts experienced by the clients.

Figure 5a shows the CDF of number of conflicts of all 60
school-hours (10 hours/day×6 days). We can see that when
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Fig. 5: Channel Assignment on Client- and Infrastructure-Perceived Conflict Graph.

considering only GI , both the controller (OBSERVED) and
even the optimal channel assignment (AP-OPT) cause many
conflicts from client’s perspective. With client’s feedback,
however, an optimal channel assignment on GC (CLIENT-
OPT) can be conflict free 50% of the time, and no more than
3 conflict edges at any time.

In practice, controllers may not be able to reassign channels
as frequently as once per hour. Therefore, we extend the
analysis to longer intervals. For a time window of W (W > 1)
hours, we obtain the conflict graph by combining the conflict
edges from each hour in the time window. We then compare
the number of conflicts of AP-OPT and CLIENT-OPT scheme.
Figure 5b shows the results for W = 2, 5, and 10 respectively.
As expected, both coloring schemes incur more conflicts than
single hour case, since there are more edges in the graph to
be colored. However, CLIENT-OPT can achieve significantly
fewer conflicts than AP-OPT.

3) Campus Network Conflict Graph: We now examine the
entire campus wireless network. The goal is to understand
the complexity of large scale production wireless network
deployments. We first construct campus wide GC using the
method described in Section III-A1. Figure 6a shows the
CDF of edge weight for both UB and ND. Most conflict
edges are seen rarely for both campuses, as both testbeds’
participants only constitute a tiny portion of the entire campus
population—0.5% for ND, and 0.6% for UB. To obtain more
meaningful insights, we hereafter filter out conflict edges that
are seen less than 10 times.

Figure 6b shows the CDF of node degree after filtering.
The median degrees are 3 for ND and 5 for UB, thus the AP
deployments at most of the campus areas seem not as dense
as our department building, where the median conflict degree
is 13. Again, these results may be biased by our small sample.
We expect more conflict edges to be discovered with increased
user coverage.

Even with such small user samples, however, there are
certain APs with high conflict degrees in both campuses. For
instance, at UB, 5% of APs (∼90) have degrees larger than

20, posing challenges to spectrum management in such dense
environments. Temporal patterns can be learned for such APs
to discover channel reuse opportunities.

4) Discussion: Using the datasets, we demonstrate that
the measurements from smartphones can help build a more
representative conflict graph and do better channel assign-
ment. Furthermore, patterns can be learned from longitudinal
measurements to adapt for temporal fluctuations in order to
discover channel reuse opportunities.

Note that it is also possible to collect client slide conflict
information in real time. For instance, 802.11k Radio Resource
Measurement (RRM) amendment [1] defines a measurement
type called Frame Report, in which the AP asks the client
to report the number of packets the client receives from each
unique transmitter on all channels. The AP can then use this
information to infer other APs within the client’s vicinity.
However, such active measurements are disruptive since they
require the client to switch channels.

B. Spatial Planning

In enterprise wireless deployments, APs are usually scat-
tered evenly across a building to achieve good coverage, as
in the case of our department building shown in Figure 1.
However, there typically are certain public areas within the
building, such as lounges and conference rooms, where users
tend to use the wireless network more than other areas.

We first use the infrastructure side logs to study how the
existence of public areas affects the load distribution of the
campus APs. We use three metrics to quantify an AP’s load
during a period of time: number of Wifi sessions served, total
duration of Wifi sessions, and total traffic of all sessions. For
each of the 14 APs, we calculate these three load metrics
during a 44 day period from 03/12/2015 to 04/25/2015.

Figure 7 shows the relative load distribution. We make
several observations. First, as expected, the load of APs near
public areas, such as AP 3, 4, 5, and 12, are much higher than
others. Second, interestingly, certain APs near public areas,
such as AP 7, are not as heavily loaded as other nearby APs.
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Moreover, loads are not evenly distributed among APs that are
near the same public area, such as AP 3 and 5. Finally, we
notice that the three load metrics may produce inconsistent
AP load ranks: some APs may serve fewer Wifi sessions
while still providing longer connection time or more traffic.
In the following discussion, we use session count as the load
metric, since the other two can be biased by factors such as
applications or user behaviors.

From infrastructure logs, network operators can easily iden-
tify the hot spot APs that are more heavily loaded than their
neighbors. Two actions can then be taken to deal with such
load imbalance: redirection and reposition. With redirection,
underutilized APs are left as is, so that when nearby hot spot
APs are congested, clients can be redirected to them for load
balancing. On the other hand, the underutilized APs can be
repositioned to better locations to improve their utilization.

With only infrastructure measurements, however, it is not
clear which approach should be taken for each of the underuti-
lized APs. Furthermore, in both approaches, there are inherent
challenges that are difficult to resolve. When redirecting the
clients from a congested AP with a good signal to an idle AP
with a possibly worse signal, it is not clear what the impact on
clients’ network performance will be. In addition, when there
are multiple nearby underutilized APs as offloading candidate,
it is difficult to determine each AP’s signal-load tradeoff from
clients’ perspective. Finally when removing or repositioning
underutilized APs, it is challenging to predict how their load
would redistribute to nearby APs, or whether a coverage hole
will be created.

In the rest of this section, we first show how smartphone
measurements can be used to build an empirical load balancing
graph to help the network operator make better load offloading
decisions. Then we analyze how an AP’s load would be
redistributed upon removal, to further help network operators
evaluate the impact of AP repositioning.

1) Load Balance Graph: In enterprise wireless environ-
ment, where all APs use the same set of SSIDs and authen-
tication method, clients’ association priority is solely based

on each AP’s signal strength. However, it is well known that
Wifi clients are usually reluctant to roam to new APs unless
the associated AP’s signal strength significantly drops below
a certain threshold, which is as known as the “sticky client”
problem. Therefore, the associated AP may not provide the
best signal throughout the entire Wifi session.

From load balancing perspective, it is useful to identify the
subset of an AP’s neighbors which can potentially provide
better signal to the AP’s clients, such that when the AP is
overloaded, its clients can be redirected without compromising
their signal quality. With smartphone measurements, we can
capture such relationships using an empirical load balancing
graph GL = (V,EL), where V is the set of APs, and 〈APi →
APj〉 ∈ EL if a client associated with APi reports a better
signal from APj than APi. We also assign a weight to each
edge to quantify how many times such relationship is observed
in the dataset.

Figure 8 shows the GL constructed for the 14 APs in the
3rd floor of our department building. Such a graph is useful in
two ways. First, it identifies backup APs for each hot spot AP
for load balancing purposes. For example, a large portion of
AP 5 and 11’s load can be shifted to AP 2 and 9 respectively
without degrading client perceived signal quality. Second, it
helps to decide which action to take for each underutilized
AP. For instance, edges with large weight, such as 〈5 → 2〉,
〈4→ 0〉 and 〈11→ 9〉, indicate that those underutilized APs
(2, 0 and 9) are better kept for load balancing purposes. On the
other hand, APs such as 7, 10 and 13 seldom provide better
signal than nearby hot spot APs, thus should be considered as
reposition candidates. However, even some of these candidate
APs can not provide good signal for load offloading purposes,
they may exclusively serve certain users, thus removing them
will probably create coverage holes. We further look into this
in the next section.

2) Load Redistribution Graph: We now study how the load
of a removed or broken AP would be redistributed among its
neighbor APs. This information is useful in two ways. First,
when repositioning underutilized APs, it is important to make



0

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 8: Load Balance Graph. Nodes are
shaded based on relative load. Edge width
corresponds to 〈device, timestamp〉 count
in our dataset.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 9: Load Redistribution Graph. Edge
width corresponds to the number of Wifi
sessions shifted from the originating node.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Redundancy

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

U2 (426 APs)
U1 (396 APs)

Fig. 10: CDF of Campus AP Redundancy.

sure that the removal of the AP neither increases the burden
of nearby hot spot APs that are already heavily loaded, nor
creates coverage holes for the clients that were only able to
connected to the removed APs. Second, when certain APs stop
accepting connections either temporally (e.g., due to scheduled
maintenance) or permanently (e.g., due to failure), network
operators can use such information to evaluate the impact of
such unusual events on clients’ network connectivity.

To this end, we can build a load redistribution graph GR =
(V,ER) with smartphone measurements as follows. Given the
Wifi scan result R = (AP1, AP2, . . . , APn) that is reported
just before a Wifi connection with APc ∈ R, we remove APc

from R and find the AP with the best signal, denoted by APs.
We draw an edge, 〈APc → APs〉, and increase its weight by 1.
Intuitively, this means if APc is removed, the client’s next Wifi
session will be shifted to APs. In a special case where APc

is the only AP in R, we draw a loop edge 〈APc → APc〉 and
increase the edge weight by 1, indicating that this next session
would be lost if APc is absent. To make R accurately reflect
the device’s network condition at the time of association, we
require that R is reported no earlier than 10 seconds before the
connection event, and Wifi sessions without such scan results
are not counted towards GR.

Figure 9 shows the load redistribution graph for the 14 APs.
Among the underutilized APs, AP 7 has medium incoming
weights, indicating it is capable to provide backup connections
in case of neighbor AP failures. On the other hand, APs 10
and 13 have very small incoming weights, suggesting they
may not be able to provide good signal for clients that need
to be redirected when neighbor APs fail. Additionally, there
are no loop edges for AP 10 and 13, meaning all the Wifi
sessions they serve can be safely shifted to nearby neighbor
APs when they are removed. Therefore, AP 10 and 13 can
be repositioned to better places to increase their utilization.
However, we must note that the above conclusion is biased by
the Wifi sessions of PHONELAB participants, thus may not be
representative of all campus AP users. Further investigations
need to be conducted to reach a final decision.

We also observe from Figure 9 that, for those heavily loaded
APs (e.g., AP 4 and 5), most of their loads can be shifted to

nearby APs, although certain number of connections will be
dropped. To quantify this, we define the redundancy of an AP
as follows:

R(APi) = 1− wAPi→APi∑
j|APi→APj∈ER

wAPi→APj

(1)

where ER is the edges of redundancy graph, wAPi→APj
is

the weight (i.e., number of sessions) of edge 〈APi, APj〉 in
the load redistribution graph, and wAPi→APi is the weight
of APi’s loop edge. A large redundancy means that most of
APi’s connections can be safely shifted to its neighbors.

We are now ready to analyze the redundancy of campus
APs. To make the analysis statistically meaningful, we only
calculate the redundancy of APs whose total outgoing weight
is larger than a certain threshold (100). In total, we found 396
such APs from UB-Scan dataset and 426 APs from ND-Scan
dataset. Figure 10 shows the CDF of these APs’ redundancy.
The median redundancy is as high as 0.95 for UB and 0.9
for ND due to the dense AP deployment within campus. We
do notice, however, that for about 5% of the APs in each
campus, the redundancy is lower than 0.5. Such APs shall raise
the attention of network operators and may require further
investigation for better spatial planning.

3) Discussion: We studied how to use the smartphone
measurements to help the network operator make load bal-
ancing decisions and evaluate the redundancy in AP spatial
planning. Note that the accuracy and usefulness of the two
graphs largely depend on the number of campus Wifi users
who contribute measurements. In both graphs, the edge weight
and even the edge existence are biased by the subset of users
who report scan results. We discuss possible incentives to
encourage participation in data collection in Section V-B.

In addition, similar to the conflict graph discussed in Sec-
tion III-A, the load balancing graph could potentially be built
in real time fashion. For instance, the congested AP could
trigger a Frame Report on its clients and eagerly disassociate
a client if it received better signal from another campus AP.
However, such real time coordination may further burden the
congested APs, thus an empirical graph built offline can still
be useful.



IV. RELATED WORKS

Monitoring Wifi networks has received significant attention
over the past decade. Early works [4], [7], [12], [20] used the
existing AP infrastructure, SNMP logs, and traces collected
on the wired side of the WLAN to analyze Wifi traffic. Yeo et
al. [26], [27] introduced the idea of passive monitoring using
a small number of wireless sniffers. The same approach was
used in a number of follow-up works [8], [9].

The next step was the deployment of large-scale passive
wireless monitoring systems. Jigsaw [6], [5] was the first
deployed large-scale monitoring system. 192 sniffers were
deployed to report all wireless events across location, channel,
and time to a back-end server, which then merges different
sniffer traces into one unified trace to identify the root cause
of various performance artifacts. MAP [21] and its successor
DIST [24] were security-focused wireless monitoring systems.
Finally, as an alternative to dense sniffer deployment, wardriv-
ing was used to construct practical conflict graphs [30].

The drawback of these systems was the high cost and effort
associated with the dense deployment of static wireless sniffers
in order to achieve good coverage. A few works tried to mit-
igate the cost by exploiting existing infrastructure. DAIR [2],
[3] used wireless USB dongles attached to employee desktop
machines and used the collected traces for several applications
including rogue AP detection, helping disconnected clients,
and network performance monitoring. However, DAIR nodes
were still static and suffer from some of the disadvantages of
previous solutions.

The idea of using smartphones to monitor wireless networks
and/or spectrum has been exploited in a few recent works [17],
[16], [28], [22]. The work in [17] used smartphones to detect
and map heterogeneous networks and devices in home net-
works. The smartphones periodically perform measurements
and use them to detect new devices, determine the impact
of one device to another, etc. The works in [16], [28] de-
veloped two crowdsourcing-based RF spectrum monitoring
systems using smartphones. The smartphone was augmented
with external hardware to perform spectrum measurements—
a software defined radio in [16] and a frequency translator
in [28]. Pazl [18] is a smartphone-based indoor Wifi monitor-
ing system. The goal was to develop an indoor localization sys-
tem to localize the measurements from different smartphones,
but it was only evaluated via small scale experiments with
five participants. The closest work to ours is MCNet [19], a
system that uses smartphones to evaluate the user perceived
performance in enterprise wireless networks. MCNet collects
active performance measurements from smartphones, while we
investigate the effectiveness of passive measurements (channel
scans).

All these works share many of our ideas with respect
to the advantages of a smartphone-based monitoring system
over the previously developed systems using a collection of
statically deployed sniffers and the site-surveys. Nonetheless,
these works either instrumented the smartphones with exter-
nal hardware to collect specific types of measurements, or

performed active measurements through deployed softwares.
In contrast, in this paper, we tried to answer the question of
whether the billions of Wifi channel scan results already being
generated by smartphones could assist in wireless network
monitoring, configuration, or troubleshooting.

V. CONCLUSIONS AND DISCUSSION

Through two extensive case studies, we demonstrated
that smartphone measurements can contribute unique insights
about large scale wireless network deployments which are
difficult or impossible to glean from site surveys, statically
deployed sniffers or infrastructure side logs. Quite simply,
smartphones represent real network users, and their data is
representative in the way that these other sources of measure-
ments cannot be.

To conclude, we address two practical issues in collecting
smartphone scan data: (1) Will smartphone scan data compro-
mise user privacy? (2) What are the incentives for users to
contribute data?

A. Privacy

One particular concern that arises when sharing channel
scan data is privacy. To address this, we first point out the types
of user data that the infrastructure can already collect. Then,
we discuss the minimum requirements in terms of channel
scan data for each case study.

In enterprise network environments, the Wifi session infor-
mation, including user’s identity, device MAC address and
association time, is usually recorded by the management
software. Therefore, a complete view of the user’s Wifi
connection activity is already available on the infrastructure
side. Even when the user’s device is not connected to any AP,
the infrastructure can still detect the presence of the device
by sniffing probe packets. Against this backdrop, providing
channel scan information does not represent an additional
loss of privacy compared to what infrastructure networks can
already monitor about their users.

Next we discuss the minimum requirements in terms of scan
data for each of the case studies in the previous sections.

1) For all case studies, device identification information
is not utilized in any way; thus, it can be properly
anonymized even before scan results data are uploaded.

2) Timestamp information is not needed either, as long as
the multiple scan result entries can be correctly grouped
together and be identified as from one single scan.

3) Since the channel scan data are mainly used to help
monitor central managed networks with predetermined
SSIDs, such information is not required from the scan
results. Furthermore, the user can choose only to upload
channel scan data when they contain a predefined set of
SSIDs, to avoid revealing information such as home Wifi
networks.

4) Signal strength information is necessary in analyzing
and predicting the device’s association behavior in the
spatial planning case study, yet is optional in the other
study. Additionally, this information can be replaced by



an ordering of the APs by signal strength, eliminating the
need for absolute RSSI values.

5) Channel information is not required, since the infras-
tructure has the complete knowledge of the channel
assignments for all APs at any instant.

6) Wifi connection information is only useful in identifying
the association choice from the scan results in the spatial
planning case study. If such information can be annotated
in the scan results before data uploading, Wifi connection
information is not required either. For example, the de-
vice can identify the scans happened just before a Wifi
connection event, and mark the corresponding BSSID as
chosen AP in the scan result.

To summarize, for the purpose of constructing the conflict
graph or performing spatial planning as in our case studies,
only the BSSID information is necessary for the infrastructure
to identify the APs. Other potentially sensitive information can
either be removed or anonymized.

B. Incentives
Next, We discuss incentives for users to participate in data

collection. First, smartphones already perform Wifi scans ag-
gressively, thus the natural scan rate already provides a stream
of network measurements with sufficient temporal granularity
for monitoring purposes. By only passively harvesting the
scan results, the overhead incurred in the process is kept low.
Further steps can be taken to reduce the energy consumption
of date uploading as described in [11], [29]. Additionally, user
privacy can be maintained using the anonymization techniques
we discussed in Section V-A.

Finally, we look into incentives that encourage users to share
the data. Note that in enterprise networks, such data collection
consent can be incorporated as part of the authentication
process. For instance, users may be required to install the
data collection app when connecting to the enterprise network,
and the installation can then allow the user’s other devices to
connect to the network. For public Wifi service providers such
as Boingo, extra Quality of Service (QoS) or price discounts
can be offered to incentivize participation.

In summary, the measurement overhead can be significantly
reduced by passive data collection and asynchronous delay
tolerant data uploading, and effective incentive mechanisms
can encourage measurement participation.
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