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Abstract—Indoor localization has been an active research
area given the popularity of Location-Based Services. The CSI
fingerprinting based approach is one of the most practical and
effective approaches since it can provide adequate accuracy with
low overhead for users. The key drawback that limits its wide
application is the huge amount of human effort required to build
the fingerprint map. This paper is the first to explore addressing
this limitation by automating CSI map construction using an
Unmanned Aerial Vehicle (UAV). Given the limited battery
capacity of commodity UAVs, it is extremely important yet chal-
lenging to optimize energy efficiency for the UAV during the CSI
measurement task. To address this challenge, we formulate an
energy optimization problem based on a novel graph model that
includes the cost of possible actions for UAVs. We then transform
the formulated problem to the classic Generalized Traveling
Salesman Problem (GTSP), which can be solved efficiently. We
implement the system on an off-the-shelf programmable drone
equipped with a CSI measurement module. We achieve great
energy efficiency improvement over the conventional coverage
path planning algorithm. Meanwhile, accurate indoor localization
can be achieved using the CSI data collected by our UAV system.

I. INTRODUCTION

Channel State Information (CSI) is used to help wireless
transmitters adapt transmissions based on channel conditions.
It is achieved using a set of PHY layer parameters that can
describe the channel properties of a wireless communication
link. Recent researches [1]-[3] show that CSI can also enable
accurate indoor localization thanks to its ability of providing
fine-grained channel information for each subcarrier, which
can characterize indoor environment. It is also ready to be
deployed on existing Wi-Fi infrastructure without hardware
modification. Using fingerprinting-based approaches, we can
localize a user’s device by matching a CSI fingerprint at the
user’s current location with a pre-constructed CSI fingerprint
map. Despite all the advantages of CSI-enabled localization,
there is major barrier for this approach to be widely applied in
practice. That is, measuring CSI at a high resolution through
war-driving is a very time-consuming and labor-intensive task.

To address this issue, a promising solution is to automate
this process using robots. While automated CSI collection can
be performed by a ground robot, it has to be programmed to
avoid obstacles in the space to be surveyed. This results in two
limitations: (i) a detailed layout of the space is required for
path planning, which could be dynamic due to the frequent
replacement of furniture; (ii) the fingerprint database will

inevitably be incomplete, missing data for locations occupied
by objects. Therefore, we propose to automate CSI measure-
ment using an Unmanned Aerial Vehicle (UAV), which can
be programmed to fly at human height, hence (i) avoiding the
need for fine-grained layouts during the motion planning and
(ii) obtaining CSI fingerprints from more locations including
those occupied by other objects (e.g., above a table).

A critical issue for employing UAVs is the energy con-
sumption, which restricts the amount of work a UAV can do.
Most commodity UAVs have a flight duration of less than an
hour since the amount of batteries they can carry is limited
by their payload. Hence, with limited energy available for
UAVs, an energy-optimal strategy for the CSI measurement
task is necessary. However, it is extremely challenging to
find the most energy-efficient way to build the CSI map.
The first reason is that the costs of straight flight and turns
are different for UAVs. To make a turn, the UAV needs to
decelerate in one direction until hovering, and then accelerate
in another direction to a cruise speed. This procedure leads
to extra energy cost compared to straight flight. Besides, in
an indoor environment, there may be multiple Access Points
deployed, and each location may be covered by different
subset of them. Current CSI measurement tools [4] introduce
another challenge. To obtain a CSI measurement from an AP, a
wireless receiver has to first associate with that AP and receive
high-throughput packets (unicast 802.11n or 802.11ac frames)
from it. In contrast, a receiver can measure RSSI from multiple
APs simultaneously. [5] demonstrates measuring RSSI using a
drone. However, it is more challenging to measure CSI since
the UAV needs to get associated with each AP to measure CSI
one by one. Switching between APs introduces extra energy
cost because during this period the UAV cannot take any
measurements and simply hovering in the air costs energy for
UAVs. Therefore, the UAV needs to decide, at each location to
be monitored, whether it should keep flying straight, make a
turn or hover and switch to another AP. We need an algorithm
that gives optimal decision for the UAV during the entire task.

This paper is the first, to our best knowledge, to study the
problem of automating CSI measurements using UAVs. First,
we design a UAV movement model for CSI measurement. Our
model decomposes a UAV motion path into a sequence of three
types of actions, namely, flying straight at a uniform speed,
making a turn, and switching between APs. We measure the
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energy cost for each type of action by real-world experiments.

Next, we use the developed UAV energy model to formulate
an energy optimization problem based on a novel graph to
find optimal decisions for the UAV. We first construct a graph
to represent the physical layout of the environment. Each
grid in the environment is represented as a vertex. Only
physically neighboring vertices are connected by an edge,
whose weight is the energy cost for the UAV to move between
the two grids. To model the cost of turns, we expand each
vertex representing a physical location into four of them,
representing four orientations of the UAV. We call each set
of four vertices a widget. The weight of edges inside a widget
is the cost of changing orientation (i.e., a turn). Vertices in
different widgets are connected by directed edges only if they
represent the same flying orientation and the direction of the
edge follows the orientation they represent. We further expand
each widget into multiple widgets representing different APs.
Vertices representing the same orientation in different widgets
are connected by edges with the cost of switching APs. Our
formulated problem can be transformed to a classic problem,
i.e., Generalized Traveling Salesman Problem, which can be
solved efficiently using an existing solver [6].

Finally, we implement our system on an off-the-shelf drone
equipped with a CSI measurement module. We compare the
localization accuracy obtained using CSI data collected by
our UAV system and manual war-driving in real-world ex-
periments. The results show that our system can build the CSI
fingerprint map with great energy efficiency, reducing human
labor cost in war-driving without sacrificing much accuracy.

Our major contributions are summarized as follows:

o To our best knowledge, this work is the first to study the
problem of automating CSI measurements using UAVs.
An energy model is designed specifically for the CSI
measurement task with UAVs.

o We propose a novel graph model to characterize the en-
ergy optimization problem for UAVs in the CSI measure-
ment task. Our model can generate the optimal sequence
of actions from a list of three options for the UAV.

o We implement the system on a commodity drone. Real-
world experiments show that the CSI data collected using
our system yield accurate indoor localization results.
More importantly, our algorithm can save 37.8% energy
for the CSI measurement task compared to conventional
coverage path planning algorithm.

II. RELATED WORKS
A. WiFi-Based Indoor Localization

Recent research efforts approach indoor localization with
the help of infrastructure and mobile devices that provide
various kinds of signals, including WiFi, RFID [7], [8],
acoustic signal [9], [10], visible light [11]-[13], motion sensor
signal and their combinations [14]-[17]. Wi-Fi signal is one
of the most convenient ones to use thanks to the pervasive
deployment of WiFi infrastructure and WiFi-enabled mobile
devices. Therefore, we focus on WiFi-based indoor localiza-
tion techniques that fall into the following three categories:

Fingerprinting-based approaches: This category of ap-
proaches [1]-[3], [18]-[20] are widely used for WiFi-based
location estimation because they can make use of commercial
off-the-shelf wireless devices and have demonstrated good
performance. Fingerprinting based approaches are usually
composed of two phases. The first one is the offline training
phase, when an RSSI or CSI fingerprint map is built to capture
the physical characteristics of the RF environment. Then in
the online location estimation phase, the location of a user
carrying a mobile device can be estimated by looking up its
RSSI or CSI fingerprint in the database. This approach only
requires that the users report RSSI or CSI measurements, and
does not introduce any modifications to the hardware. Also,
the computation during the online phase is simply a pattern
matching, which is usually low-cost.

AoA-based approaches: Leveraging antenna arrays in mod-
ern APs that support MIMO communication, the angle-of-
arrival of a signal arriving at an AP can be calculated from
the phase difference between multiple antennas. Then the
location of a transmitter can be estimated by triangulation
if the AoA of line-of-sight signal is available. This approach
has shown improved localization accuracy over fingerprinting-
based approach. [21] achieves median localization error of 40
cm by accurately identifying the AoA of direct path using
APs with three antennas. [14] seeks help from motion sensors
in smartphones to estimate the angle and distance between
mobile devices and APs. [15], [22], [23] use specially designed
antennas to estimate AoA accurately.

ToF-based approaches: Distance between wireless transmit-
ters and receivers can also be estimated by the Time-of-Flight
of the packets. However, due to the timestamp resolution
limit (i.e., several nanoseconds) of commercial off-the-shelf
WiFi devices, the distance estimation error can not be better
than several meters [24]. [25] achieves sub-nanoseconds ToF
resolution by emulating a wideband radio using frequency
band hopping on commodity WiFi cards. [26] use specially-
designed hardware to achieve good ToF estimation accuracy.
[27] can estimate ToF accurately when the transmitter and
receiver are synchronized.

To summarize, the fingerprinting-based approach does not
require extra hardware or firmware update on existing WiFi in-
frastructure. Any user with a mobile device that can report CSI
can localize himself in a building for which a fingerprint map
has been built. If we can automate the CSI map construction
process using UAVs, fingerprintg-based approach will become
much more practical without huge labor cost of war-driving.

B. UAV Coverage Path Planning

Coverage Path Planning (CPP) in robotics is the task of
determining a path that passes over all points of an area
of interest while avoiding obstacles. To define full coverage,
existing works model the environment in different ways,
including landmark-based topology [28], [29] and grid-based
decomposition [30], [31]. Grid-based decomposition is the
most related type for our work since we want to take CSI mea-
surement at a uniform granularity. Related works on grid-based
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decomposition include Wavefront algorithm [30] and Spanning
Tree Coverage Algorithm [31]. Graph-based algorithm [32],
[33] has been proposed to represent the environment as a graph
and assign a weight to each edge as the cost of robot moving
between two vertices. Optimal path can be found by looking
for the path with minimum total cost. Different from traditional
CPP, in our task, the UAV not only needs to visit every location
but also needs to measure CSI for each AP separately. The
jobs required at each location can be different. Additionally,
the extra cost involved by switching between APs is not related
to the physical movement of UAV. Therefore, no existing work
was able to solve our problem.

III. SYSTEM MODEL
A. CSI Measurement

1) CSI Fingerprint Based Indoor Localization: CSl-based
fingerprinting approaches [1], [3] are shown to outperform
RSSI-based approaches [18] due to the fine-grained channel
characteristics contained in CSI. CSI can be obtained using
the Intel CSI Tool [4], which divides all the subcarriers into
30 groups and reports a complex number for each group:

H; = |Hjle“"i je1,...,30,
where |H;| is the amplitude and ZH; is the phase.

Here we use a representative CSI-based localization ap-
proach, Fine-grained Indoor Fingerprinting System (FIFS) [1],
to illustrate how CSI is used in the localization task. FIFS
defines CSI fingerprint as the total power over all subcarriers:

)]

30
fi=Y_|Hi, 2)
i=1
The location is estimated based on Bayesian inference:
P(L;,)P(F|L;
PLIF) = o P ®

Sty P(L)P(F|L:)
where L; is the 2d coordinate of a reference location ¢ €
{1,2,....,N}, F =[f1, fa, ..., fx] is a vector denoting the CSI
fingerprints for a location covered by K APs.

P(L;|F) is the a posteriori probability that fingerprint F
is generated from location L; and P(L;) is the a priori
probability that a user’s mobile device shows up at location
L;. Assume the a priori probability is uniformly distributed,
ie., P(L;) = % then:

PULIF) - j%mm _ PRI
i ¥ PFIL) - Do, P(F|Li)

Therefore, the only factor that determines P(L;|F) is the
likelihood P(F'|L;). Assume the CSI for different APs are
independent, then:

K

P(F|L;) = [ P(fxlLa),

k=1
where the CSI fingerprint for the kth AP P(fx|L;) follows
Gaussian distribution:

&)

N —(f& = pri)?

Finally, given a fingerprint generated from the CSI data
measured on a device, this device’s location is determined by

a weighted average of all reference locations.
N

L=> P(Li|F)L;.
i=1

Therefore, the data we need to collect for the offline training
phase should include the distribution of the CSI fingerprint
for each AP at each location: P(fi|L;), characterized by two
parameters, i.e., mean ji; and standard deviation ;.

2) UAV-Enabled CSI Measurement: The distribution of the
CSI fingerprints can be estimated using the samples collected
by the UAV. Thus, the UAV needs to move to each location of
interest to measure CSI for all the APs covering this location.
For example, as shown in Figure la, we divide the region to
be measured into equally spaced grids. Then we need to plan
a path for the UAV to visit different locations.

RSSI can be measured for multiple APs at the same
time. However, to obtain the CSI information for a pair of
transmitter (an AP) and receiver (a client), the client needs
to connect to the AP to receive high-throughput packets, from
which CSI is extracted. Then the wireless adapter on the client
will send the extracted CSI for each packet to the MAC layer
for a user program to record it. Therefore, to measure CSI from
multiple APs at the same grid, the UAV has to get associated
with and measure CSI for each AP one by one.

@)

B. UAV Movement Model

1) UAV Basics: The most typical type of UAV is a quadro-
tor helicopter with power in three dimensions, i.e., roll, pitch,
and yaw, as shown in Figure 1c. Such kind of UAVs can hover
in the air, ascend or descend, move in horizontal direction
by rolling and pitching and rotate around the vertical axis
by yawing. However, UAVs consume energy just to keep
themselves in the air against gravity. In contrast, ground robots
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Fig. 2: Initial problem formulation.

(b) Expansion

consume much less energy when they are staying still. This is
a key characteristic if we care about the energy consumption
when UAVs execute certain tasks. More importantly, energy
is more critical for UAVs since they are usually powered by
batteries with limited capacity. It is also more dangerous for
a UAV to lose power than ground robots since it may cause
accidents or even hurt people if they cannot find a safe place
to land before using up their batteries. Therefore, it is more
challenging and important to design energy-efficient strategies
for UAVs to perform any kind of task.

2) UAV Energy Model for CSI Measurement Task: Here we
discuss the options for a UAV in the CSI measurement task.

Straight Flights. To measure CSI at a grid, the UAV needs
to fly across the grid. It is shown that 60 CSI samples at
each location are enough for indoor localization [1]. Since 60
samples can be measured in about 0.1 seconds using the Intel
CSI Tool [4], the UAV does not need to hover at the center
of a grid. Its speed determines the physical location range for
the collected samples. The slower the speed is, the closer to
each other the samples are. The bottom line is that the location
range of samples for different grids should not overlap. For
a certain flying speed and grid interval, the energy cost for
moving between adjacent grids is a constant denoted by E,,.

Making Turns. We assume the drone can only move in
four directions, which are on the same horizontal plane and
separated by an equal interval of 90 degree. Given the fact
that the UAV can move towards any of the four directions no
matter which one it is facing, we define a turn for the UAV by
a deceleration in one direction until hovering, followed by an
acceleration in another direction. During a turn, the UAV does
not have to actually spin its body. Hence, there is no difference
in the energy cost for the turning of different angles. The extra
energy cost for making a turn compared with uniform motion
is resulted from the deceleration and acceleration actions. We
represent the energy cost for making a turn by E in this paper.

Switching APs. To switch between two APs, the UAV needs
to hover at a position while waiting for establishing the
new connection. During this period, the UAV cannot take
measurements, which costs an extra portion of energy F.

IV. PROBLEM FORMULATION
A. Design Goal

Now we give the design goal of our system: In a region
represented by uniform grids, each of which may be covered by

Fig. 3: Expanded graph for modeling cost of turns.

different APs, find a sequence of actions for the UAV, consisting
of straight flights, turns and switching between APs, to obtain
the CSI fingerprint for each AP at each location with minimum
energy cost.

B. Graph Model Overview

To approach this problem, we propose to model the mea-
sured region by a graph, in which each vertex represents a
grid, and there is an edge between two neighboring grids, as
shown in Figure 1b. Then, the UAV needs to visit each of the
vertices (corresponding to a particular grid) to measure the
CSI fingerprint for each of the APs covering this grid.

As described above, the UAV has three choices of actions,
i.e., flying to a neighboring grid at a constant speed, making a
turn, and switching between APs. To model these actions, we
assign the costs of the actions as the weights of corresponding
edges in the graph. Then by finding a walk on the graph, we
can obtain a sequence of actions for the UAV to perform.
Finally, the minimum energy cost is attained by minimizing
the “length” (i.e., the summed weights of the visited edges) of
the walk that satisfies our requirements. To achieve this, we
shall ensure that the cost of the UAV’s movements be precisely
modeled by the weight of edges connecting the vertices
corresponding to neighboring grids. This is, surprisingly, a
challenging task. We next present the modeling of the costs
for turns and hovers' in detail in the following subsections.

C. Modeling Cost of Turns

As stated above, we want to find a sequence of actions
for the UAV with minimum energy cost. Unfortunately, in the
original graph shown in Figure 1b, the weight of edges cannot
reflect the cost of the UAV’s turns. For example, as shown in
Figure 2a, the cost of the path from vertex w to vertex w
through vertex v is the same as that from vertex u to vertex
x through v. However, the second path actually costs more
energy since the UAV needs to make a turn at vertex v.

To address this challenge, we propose to expand each vertex
into four vertices as shown in Figure 2b. These four vertices
form a square with sides that represent the cost of turns by

'The cost of straight flying is straightforward and thus we omit the
discussions on it.
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Fig. 4: Expanded graph for modeling multiple APs.

weight E; and diagonals with weight 0, which means that the
UAV has no extra cost if it straightly moves through a grid
without changing its direction. For example, in Figure 2b, the
total cost for path us — v1 — vs — wi equals to 2F,,, while
the total cost for path us — v — vy — z9 is 2F,, + F.

The UAV can also make U-Turns (i.e., 180-degree turns).
For example, the UAV can move from grid « to grid v and turn
back to grid u along path us — v; — ug without any cost for
the turn. Hence, we propose to connect two neighboring grids
by two directed edges as shown in Figure 3. The weights of
diagonal edges in the square are also changed into £ so that
the UAV cannot avoid the cost of a turn to perform a 180-
degree turn. Consider the case when the UAV needs to go to
grid v from grid v and turn back again. Now the shortest path
for this action is usz — vs — v; — w7, with a total cost of
2F,, + E;. Meanwhile, this change does not affect the cost of
straight flights and 90-degree turns. The paths corresponding
to the paths ©w = v — w and v — v — 2 in the figure 2a are
us — v3 — ws and uz — v3 — V4 — T4, respectively.

To summarize, we use 4 vertices to represent a physical grid,
with any two of them connected by edges with a weight of E}.
Each vertex actually models a different orientation of the UAV.
Only vertices representing the same orientation on neighboring
grids are connected by directed edges with a cost of E,,,. And
the direction of the edge complies with the orientation these
two vertices represent. As a result, a path on this graph can
be used to model a sequence of the UAV’s moves and turns,
with the summed weight equal to the total energy cost.

D. Modeling Costs of Switching APs

For grids covered by multiple APs, the UAV can hover at a
grid to measure all the APs first, then move to other grids. It
can also measure some of the APs at a grid first, move to other
grids and come back to measure the remaining APs. In the first
case, the total energy is dominated by hovering (i.e., £}) when
switching between APs. But the energy of the second strategy
is mainly determined by F,, and E; for moving between grids.
The challenge is that we cannot determine which strategy is
better because the relative quantity of FE,,, E; and Ej is
affected by the energy model of the UAV and the accuracy
and resolution requirement of CSI measurement.

In order to have a universal model for different settings, we
further expand the graph in Figure 3 by using different squares
to represent different APs. Consider the case when there are 3
APs with different coverage ranges as shown on the left-hand
side of Figure 4. For the simplicity of illustration, we show the
original graph instead of the expanded one, in which different
colors are used to represent different APs. The coverage of

each AP can then be represented by a single graph shown in
the center of Figure 4. We name a solid circle as a real vertex
to represent that the grid is covered by this AP while a virtual
vertex denoted by a hollow circle means the opposite. Then we
can treat the graph for each AP as a layer and merge them into
a single 3D graph, in which different layers are interconnected
by edges with a weight of E; as shown on the right-hand side
of Figure 4. We can imagine that when the UAV needs to
switch to a different AP, it needs to move to a different level
in the graph with the cost of E;. Note that after this expansion
only real vertices need to be covered by the path because they
represent that there is actually an AP covering those grids.

E. Graph Model of the Problem

Based on the modeling of the cost of different actions, we
now give the formal definition of our constructed graph.

Definition 1: The UAV based CSI measurement task can be
modeled by the following graph:

G=(V,E),

where V' is the set of all vertices, including both real and
virtual ones. Each vertex represents the state of the UAV, com-
prised of its location, orientation and the AP it is connected
with. F is a set of edges representing the costs of transition
between states. An edge from vertex u to vertex v is defined by
a weight: wy, € {En, Et, Es} , corresponding to the cost of
changing UAV’s location, orientation and the AP to measure.

By this definition, a cycle on the graph represents a sequence
of actions for the UAYV, with its length equal to the total energy
cost. In the next section, we will present our solution to find
the shortest cycle passing all real widgets on the graph.

V. SOLUTION

In this section, we first formulate an energy optimization
problem based on the graph G. Then we equivalently trans-
form our problem to the well-known Generalized Traveling
Salesman Problem, which can be solved efficiently using Large
Neighborhood Search Heuristic [6].

A. Definitions

As previously described, we expand each vertex in the
original graph into four vertices that form a square widget.
The widget is further split into multiple ones in G, each of
which corresponds to a pair of grid and AP.

Definition 2: We use W, C V to denote the widget
representing each grid-AP pair.

Definition 3: The set of all real widgets is defined as:

R = {W,|Vi € W,, vertex i is real}

Definition 4: The set of vetices in a subset of real widgets
S C R is defined as:

Vs = {ili € Wy, W,, € S}

B. Mathematical Formulation

1) Decision Variables and Objective Function: We use a
non-negative integer variable f;; € N defined for each pair of
vertices (i,7) to denote the number of times the UAV moves
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from vertex ¢ to vertex j. Then another binary variable v; €
{0,1} is used to represent whether a vertex is visited and it
is defined for each vertex ¢ as:
v — { 0 if > iev fij + 2 kev fki =0 ®)
‘ Lot Y ey fij + 2 kev fri =1
Our objective is to find a cycle passing every real widget
with minimum total cost. Since a cycle on the graph can be
represented by a sequence of flows between vertices, the total
cost of the cycle to be minimized is:
ji: wij fij- )
i,jev
2) Constraints: Now we discuss the constraints that the
solution of our problem needs to satisfy.

Widget Coverage Constraints. First, we require that every
AP is measured at least once at every grid it covers. In other
words, each real widget in G must be visited at least once.
Therefore, the widget coverage constraint is expressed as:

> vi>1, forall W, C R (10)
iEW,

Flow Conservation Constraints. For every vertex in the
graph, the inflow should be the same in volume as the outflow:
S fii=>_ fi, forall j € V/{s} (11)
i€V jev
Subtour Elimination Constraints. Given the constraints pre-
sented above, we can find a solution that satisfies all of them,
for example, as shown in Figure 5a. Here, every widget is
visited at least once and the flow at every vertex is valid.
Besides, the inflow and outflow for each vertex is exactly the
same. However, we observe that this is not a feasible solution
since there are two disconnected subtours. This challenge leads
to the need for the Subtour Elimination Constraint. Inequality
12 is a Subtour Elimination Constraint for the Traveling
Salesman Problem (TSP) which is similar to our problem:

>

1€S8,5€V/S
We adapt this constraint into Widget-Level Subtour Elimi-
nation Constraint to make it suitable for our problem:
Z fij+ fi>1, foral SCR,S#0
i€Vs,j€VR,s
This constraint guarantees that for any cut of all real widgets,
there exists a flow between the two subsets of the cut.

fij+fii>1, forall SCV.S#0 (12)

(13)

C. Transformation to Generalized TSP

The Widget-Level Subtour Elimination Constraint is in-
troduced previously to exclude subtours from the solution.
However, this constraint is still insufficient to give us a feasible
solution. Let us study the example shown in Figure 5b.
Consider an instance of the Widget-Level Subtour Elimination
Constraints when we pick S and R/S. The yellow path
connecting the blue widget at the top center and the red widget
makes the constraint satisfied. But it is actually not connected
with the blue path. The key observation here is that each

ol A A O B B
S
[ . R/S

(a) (b)
Fig. 5: Examples of (a) a solution that satisfies Widget
Coverage Constraints and Flow Conservation Constraints with
subtours (b) a solution that satisfies Widget-Level Subtour
Elimination Constraints 13 with subtours.

widget can be visited more than once, during which different
vertices inside the same widget could be visited.

In order to make the Widget-Level Subtour Elimination
Constraints work, we need to require each widget to be visited
exactly once instead of at least once. However, for the red
widget to be visited, a walk has to pass its only neighbor,
i.e., the blue widget on top of it, twice. This results in a
contradiction. To solve this problem, we need to eliminate
such widgets with only one neighbor. We propose to transform
the graph G into a complete graph by assigning the weight
between any two vertices, e.g., v; and v;, as the shortest
distance from v; to v; on graph G. Then the UAV can find
a “short cut” between any two vertices with the total cost
unchanged. Now we require exactly one vertex to be visited
for each real widget:

> wi=1, forall W, C R
1EW,
In this way, we ensure that the solution walk passes each real
widget once and there always exists a feasible solution. The
resulted objective function and constraints now exactly model
our Minimum-Energy Motion Planning (MEMP) problem,
summarized as follows:

(14)

min Y wi; fi, subject to:  (15)
i,jEV

dwi=1 for all W, C R (16)

iEW,
S fii=Y fir forall j €V (17)

icV JjeV

> f+tfi=1 forall SCRS#D  (18)

i€Vs,j€VRys
fij € Ny, € {07 1} (19)

Finally, we show that our problem is equivalent to Gener-
alized Traveling Salesman Problem (GTSP) [6], defined as:

Definition 5: Given a complete weighted graph G =
(V,E,w) on n vertices and a partition of V into m sets
Py = {V1,...,Viu}, where V; N V; = 0 for all i # j and
U™, V; =V, find a cycle in G that contains exactly one vertex
from each set V;,7 € 1,...,m and has minimum length.
The real widgets in MEMP can be treated as the sets Py in
Definition 5. The virtual widgets can be removed from the
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graph since all the walks passing them have short cuts with
equal or less weight in the complete graph. Therefore, our
problem can be efficiently solved using Large Neighborhood
Search based algorithm [6] for GTSP.

VI. SYSTEM IMPLEMENTATION
A. System Overview

Our system consists of a server, an onboard processing unit
and a UAV as shown in Figure 6. It works as follows:

First, the user provides a map of the region to be measured
and the predicted coverage of each AP. In the server, we
construct a graph representing the UAV’s energy model and the
CSI measurement task. Then the energy optimization problem
is solved to obtain a minimum-energy path for the UAV.

After that, the server sends the optimal path to the onboard
processing unit, which processes the path and generates a
sequence of commands to be sent to the flight controller on
the UAV. The motion planner also reads flight status feedback
from the onboard sensor to adjust the succeeding commands.
Meanwhile, the CSI measurement module on the onboard
processing unit collects CSI data according to the plan.

Finally, all the raw CSI data are sent back to the server after
the UAV finishes measuring the whole region. These data will
then be further processed to build the fingerprint map to be
used for indoor localization.

B. Implementation Details

We implemente our system on top of an off-the-shelf
programmable UAV. The details are given below:

Server: The server is implemented on an Asus laptop, in
which a program is developed to construct the graph from
the map and AP coverage setting. Then the graph is fed to
the GLNS solver [6] to derive the minimum length cycle on
the graph. Besides, the server communicates with the onboard
processing unit through Wi-Fi to send the planned path and
receive CSI measurement data.

UAV and Onboard Processing Unit: We implement the
proposed system on a commercialized programmable UAV

TABLE I: Energy Model Parameters

Parameter Explanation Value
En Energy cost for moving a grid | 1.326 KJ
Ey Energy cost for making a turn | 3.415 KJ
b Energy cost for switching APs | 3.760 KJ
TABLE II: Simulation Statistics
Model Baseline S1 S2 MEMP
Energy (KJ) 1283.72 | 1292.52 | 823.95 | 799.05
Distance (m) 340 346 858 798
No. of turns 19 12 51 29
No. of switches 264 272 21 45

DIJI Matrice 100 equipped with the DJI Guidance system [34]
for positioning and obstacle avoidance in indoor environment.
It carries an Intel NUC mini PC which communicates with
the flight controller via UART serial communication. Motion
planning for the UAV is implemented based on DJI onboard
SDK in Robot Operating System (ROS). It takes the planned
path as input and generates a sequence of commands for the
UAV to execute. The onboard SDK also provides us the energy
consumption for the UAV in the form of remaining battery
power. Intel CSI Tool [4] is used to measure CSI on the UAV
with an Intel 5300 Wi-Fi card. We use the ping command to
send packets to an AP at the rate of 1000 packets/sec and CSI
can be extracted from the replies sent back at High Throughput
bitrates. We can achieve a CSI sample rate of approximately
600 packets/sec.

VII. EXPERIMENTS

A. UAV Energy Consumption Measurement

We conduct experiments to measure the three basic compo-
nent of the energy model in a stadium. The UAV we use can
show real-time remaining battery level in mAh on a mobile
APP connected to its remote controller. The output voltage
of the battery remains constant at 22.2 V. By recording the
battery level when the UAV starts and finishes a task, we can
compute the total energy consumed during the task by taking
the product of the battery difference and the voltage.

We first investigate the effect of speed on energy consump-
tion. We let the drone fly for the same distance of 30 meters at
different constant speeds, i.e., 1 m/s, 2 m/s and 3 m/s. The total
energy and time costs are shown in Figure 8a. Higher flying
speed results in both less energy and time consumption.

To measure the energy consumption for straight flights and
turns, we then let the UAV fly at a constant speed of 1 m/s for
two different routes with same total distance. The first route
is a round trip between two locations with 30 m distance. The
second route consists of two round trips between two locations
with 15 m distance. The energy consumed in the two routes
are 35.12 KJ and 41.95 KJ while the UAV makes two turns
and four turns respectively (the total energy consumption of
the acceleration to 1 m/s at the beginning and deceleration
from 1 m/s to hover at the end is the same as the energy
cost by a single turn). Therefore, we derive the cost of a turn
as Fy = 3.415KJ and the cost of straight flight as 0.663
KJ/m. Last, we measure the energy consumption for hovering
as 0.470 KJ/s by letting the UAV hover for 10 minutes.

2410



Fig. 7: Experiment environment.

We set the grid interval as 2 meters and flying speed as
1 m/s to guarantee localization accuracy. And to switch to
another AP, the UAV needs to hover for 8 seconds. Then the
energy cost for a switch results from 8 seconds of hovering.
The energy model parameters are summarized in Table I.

B. Minimum-Energy Motion Planning

Now we discuss the effectiveness of our Minimum-Energy
Motion Planning algorithm. We apply our algorithm to the
environment setting shown in Figure 7. The experiment envi-
ronment consists of several corridors, which are divided into
grids with equal interval of 2 meters. Each grid is covered by
different sets of APs specified by the color of the blocks at
the grid. We construct a graph according to our design using
the location and APs for each grid. The graph is then used as
the input for the GTSP solver to generate the solution.

Figure 8b is an illustration of the solution. Only part of it is
shown here for presentation clearness. The UAV begins with
measuring CSI for AP 12, makes two turns before switching
to AP 13 and turns back to measure CSI for AP 13. After that,
the UAV measures CSI for AP 6 and AP 3 sequentially.

To show how energy efficient our solution is, we compare
the total energy cost of the optimal solution derived by our
MEMP algorithm with solutions given by a naive baseline
approach, and two simplified versions of our algorithm.

Baseline: We use the conventional coverage path planning
algorithm as a baseline approach. In this approach, only the
total distance traveled by the UAV is considered. The solution
given by this algorithm is the path that covers all the APs
with shortest total distance. Other factors that affect the total
energy consumption, such as number of turns and number of
AP-switches, are not considered.

MEMP without AP-Switching Cost (S1): We consider a
simplified version of our model, i.e., without taking into
account the cost of switching between APs. In this version, the
total energy cost by straight flights and turns is minimized. By
comparing the solution given by this model with the baseline
approach, we can understand the impact of AP-switching cost
on the total cost.

MEMP without Turning Cost (S2): We also study the
effect of turning cost. In this strategy, the UAV tries to avoid
switching APs while following a relatively short path. But it
may take unnecessary turns, which adds to the total cost. The
three alternative solutions are all special cases of our MEMP

algorithm. Thus, we can find the solution for each one of them
using our model by setting both F; and E5 to 0, only Es to
0 and only FE}; to O respectively. Then we compute the actual
energy cost for each solution using the true costs F,,, F; and
E,. The energy cost, distance traveled by the UAV, number
of turns and number of times it switch between APs for each
solution are shown in Table II.

We can see that the baseline solution gives the shortest
distance, while simplified version 1 requires the least number
of turns and simplified version 2 requires the least number of
switching between APs. Our MEMP model gives the minimum
energy consumption by finding a perfect balance between
distance, number of turns and times of AP switching. It can
save 37.8% energy compared with the baseline approach.

Another interesting observation is that the simplified algo-
rithm S1 gives even higher energy cost than the baseline. The
reason is that it let the UAV perform 8 more times of AP
switching and travel 6 more meters, just to save 7 turns. This
reveals the importance of modeling the cost of AP switching
since this action actually takes more energy than the other two
in this environment setting.

C. Localization Using CSI Data Measured On UAV

We conduct indoor localization experiment in the envi-
ronment as shown in Figure 7 to evaluate the effectiveness
of the CSI fingerprint map built by our system. We collect
training CSI samples at a total of 146 training locations
with 2 meter interval using two methods, i.e., conventional
manual war-driving and using our UAV system. 1000 CSI
samples are collected for each AP at each location. For
testing, we manually collect 100 CSI samples for each AP
at each one of the 584 testing locations uniformly distributed
in the environment with 0.5 meter interval. We implement
the localization algorithm as described in section III-Al and
compare the results obtained using two sets of training data.

We use different number of collected training and testing
samples to calculate the localization accuracy. We observe that
if we use at least 200 training samples and 20 testing samples,
the localization results will not improve noticeably even if
more samples are used. Therefore, we present our results
obtained using 200 training samples and 20 testing samples
for each AP at each location in the following paragraph.

Figure 8c shows the cumulative distribution function (CDF)
of the distance errors using the CSI data collected both
manually and using our system. We observe that there is only
a slight difference in localization error. 66.21% of the distance
errors are within 2 meters for the training data collected
manually, while for our system the percentage is 64.85%. And
the mean distance error are 1.71 m and 1.95 m respectively.
These results verify the fact that the CSI measured by our
system can be used to achieve accurate indoor localization.
Note that we use Naive Bayes Algorithm just to show the
validity of the CSI data collected by our UAV system. Better
accuracy can certainly be achieved by applying pre-processing
techniques to the CSI data, which is left as future work.
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Fig. 8: Experimental results.

VIII. CONCLUSION

In this paper, we propose to use UAVs to automate CSI map
construction, which can largely reduce labor and time cost
for CSI-fingerprinting based indoor localization. We design
a novel graph model to accommodate the cost of different
actions for the UAV during CSI measurement. Then we
formulate the Minimum-Energy Motion Planning problem for
CSI measurement using UAVs as an optimization problem on
the graph. We solve the problem by transforming it to the well-
studied Generalized Traveling Salesman Problem, which can
be solved efficiently using an existing solver. We implement
our system using a commodity drone. We show that our
solution can save 37.8% energy compared with conventional
coverage planning algorithm. We also show by large scale
experiments that accurate indoor localization can be achieved
using CSI fingerprint map constructed by our system.
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