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Abstract—Collaborative beamforming has already demon-

strated its potential of significant power savings in distributed

sensor networks. In collaborative beamforming, the antennas

of the sensor nodes form a distributed antenna array in an

effort to direct the radiated energy to the desired direction

and thus increase the overall power efficiency of the network.

Existing studies, however, have not addressed several major

design issues: how to (1) optimally select a subset of radiating

sensors for a given receiver to obtain optimal beamforming

performance, (2) alternate among subsets of radiating sensors

to prolong the lifetime of the sensors and robustness of

network connection to the receiver, and (3) do so in the

presence of synchronization and localization uncertainties.

In this paper, we first show that the problem of selecting

the subset of sensors that achieve optimal beamforming

performance is NP-complete. We then propose a heuristic

algorithm with complexity O(M logM), where M is the total

number of distributed sensors, that simultaneously addresses

the above three issues. In particular, we demonstrate its

effectiveness in realistic scenarios with synchronization and

localization errors. Further, we show that real-time grouping

can be achieved even when thousands of sensors are spread

over large distances of over 1000 wavelengths.

I. INTRODUCTION

Wireless sensor networks have been deployed for col-

lecting critical data in various applications [1], [2], [3].

Such sensor networks can continuously record environment

conditions without human intervention, and hence are ideal

for monitoring forests, volcanoes, or swamps. Furthermore,

they can be deployed in enemy territories in military appli-

cations, to track troop movement without risking the lives

of scouts. Typical applications of wireless sensor networks

have three common characteristics: (a) The sensors are de-

ployed in areas without supporting facilities (such as wired

network or energy sources). Consequently, these nodes must

use energy judiciously to prolong the operational time

of the networks. (b) Multiple sensors are deployed and

form a multi-hop wireless network. However, the collected

information must be transmitted to remote places (such

as research facilities or military intelligence satellites) for

analysis. (c) It is very difficult to regularly deploy these

sensors because of the environmental constraints; As a

result, the sensors’ locations cannot be precisely known.

A major task of a wireless sensor network is to dissem-

inate sensor readings back to a centralized host, called the

sink node, for either real time monitoring (for example,

environment monitoring) or/and reactive special event han-

dling (for example, intrusion detection). Information dis-

semination to the sink node can be particularly challenging

when the sink node is very far away from all information-

gathering nodes. For example, the information-gathering

nodes may be deployed in a hostile territory and the sink

node may exist in a satellite or Unmanned Aerial Vehicle

(UAV). In such cases the power required to transfer the

acquired information to the sink node may be prohibitively

high particularly for low-power nodes. Even if it is possible

for a node to communicate directly to the sink node, it will

deplete its battery very soon.

The idea of collaborative beamforming has been recently

proposed as an efficient method for achieving the required

information dissemination [4], [5], [6]. In collaborative

beamforming, the nodes are forming a distributed antenna

array in order to direct the transmitted energy to the desired

direction and minimize radiation in all other directions.

Due to reciprocity, collaborative beamforming is equally

beneficial in the receive mode. The key conclusion of

completed studies so far is that the achieved radiation

patterns are on average acceptable. However, the results of a

typical realization may be far from ideal [6]. In addition, no

specific design methodology has been provided on how to

form an efficient distributed array for a particular realization

and in the presence of localization and synchronization

uncertainties.

To address these important design issues of collaborative

beamforming, our present work focuses on the following

fundamental questions:

• Is there an optimal subset of nodes that forms a

distributed antenna array with optimal performance?

If yes, what is the computational cost of finding it?

• Provided that we usually prefer not to over- or under-

utilize a fixed subset of nodes, can we divide the

available sensor nodes into a number of subsets such

that each of them demonstrates reasonably good per-
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Fig. 1. Concept of distributed beamforming. The chosen nodes form

a distributed antenna array and generate a directional radiation pattern

towards the receiver.

formance and all are essentially equivalent to each

other?

• How robust is this technique under localization and

synchronization uncertainties?

This work addresses these questions by making the fol-

lowing assumptions: (a) the free-space propagation model

is employed to simplify the analysis, (b) the sensors are

assumed to be distributed on a plane, and (c) the MAC layer

is already configured to allow collaborative beamforming.

Our design methodology does consider, however, localiza-

tion and synchronization uncertainties.

The remainder of this paper is organized as follows:

Section II includes some background information and the

overall problem definition (first question). Section III in-

troduces our proposed heuristic algorithm and Section IV

demonstrates its effectiveness on a wide variety of situations

(second question). Section V discusses the impact of local-

ization and synchronization uncertainties to the proposed

method (third question).

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we formally define the radiating sensor

selection problem. Suppose there are M sensors randomly

deployed in an area with radius ρ, as shown in Fig. 1. The

variables, r, θ, and φ, denote the radial distance, zenith, and

azimuth, respectively. Primed and unprimed symbols refer

to the sensor and the field points, respectively.

We assume that every sensor is equipped with an om-

nidirectional antenna that is linearly polarized along the

z-axis, and each sensor has a random but slowly-variant

initial phase, ψi, which corresponds to the initial time jitter

through ψ = ωtjitter. The frequency-domain electric field

E with wavelength λ, radiated from the i-th sensor, at the

point of interest is denoted as

Ei(r, θ, φ) = exp(j(ψi − kRi))ẑ. (1)

In (1), Ei has been normalized to unity, k = 2π
λ

is the

wavenumber and Ri = |r − r
′

i| ' |r| − |r′i| cos ξi is

the distance between sensor i and the field point. From

geometry, we have the angle ξi between r and r
′

i equal to

cos ξi = sin θ cos(φ− φ′i). (2)

We assume the field point is in the far-field region:

r � 2
ρ2

λ
(for ρ > λ), (3)

such that the field amplitude from each sensor is almost the

same.

An antenna array is very effective in transmitting infor-

mation over long distances because the radiated fields of

its elements are being added coherently in the preferred

direction of radiation [7]. For any given subset p of sensors,

the radiation intensity U is given by

Up(θ, φ) = U0(θ, φ)|AFp(θ, φ)|2, (4)

where U0 is the antenna element factor and AF is the array

factor:

AFp(θ, φ) =

mp∑

q=1

exp(j(ψq − kRq)). (5)

The directivity,

Dp(θ, φ) =
4πUp(θ, φ)

∫
2π

0

∫ π

0
Up(θ, φ) sin θdθdφ

, (6)

is defined as the ratio of the power radiated in a given

direction to the average of the power radiated in all

directions. The orientation of the radiation pattern is

where the maximum directivity Dmax located. Given the

receiver orientation (θR, φR), the radiation intensity and

directivity at that orientation are given by Up(θR, φR) and

Dp(θR, φR), respectively.

Definition 1: (Radiating Sensor Selection Optimization

Problem (RSSOP))

Assume a set of M sensor nodes S={s1, s2, s3, ..., sn},

each with coordinates si = (r′i, π/2, φ
′

i), and a receiver

R in the far field with orientation (θR, φR). The radiating

sensor selection problem is to find a subset of sensor nodes

Kp ⊂ S along with their initial phase assignments such

that (a) their distributed beamforming provides the maximal

directivity towards the receiver Dmax = Dp(θR, φR), (b)

the chosen subset provides maximal directivity comparing

to other possible subsets with the same number of sensor

nodes, Dp(θR, φR) ≥ Dq(θR, φR).
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Fig. 2. Normalized power as function of relative phase difference for

two sensor nodes. Maximum power is achieved for zero phase difference,

but constructive interference is obvious for a wide range of angles.

III. PROPOSED TECHNIQUE:

PHASE PARTITION METHOD

To the authors’ best knowledge, it is not practical to

solve the previously stated problem by explicitly computing

the different combinations, because the problem complexity

grows as M !. Our proposed heuristic solution is discussed

in the following.

A. A Suboptimal Subset of Nodes

To demonstrate the proposed technique, let’s first con-

sider two electromagnetic waves with different phases

added together.

E1 = exp(j(−kR1 + ψ1)) = exp(jχ1), (7)

E2 = exp(j(−kR2 + ψ2)) = exp(jχ2). (8)

The total power is proportional to

P = |E1 +E2|
2

(9)

= |1 + exp(j(∆χ))|2 , (10)

where

∆χ = χ2 − χ1 (11)

is the phase difference. As shown in Fig. 2, the smaller the

phase difference, the higher the total power is.

While ideally we would require a zero phase difference

between the waves, in practice, we will always have some

phase error. As a result, instead of grouping nodes whose

phases add perfectly, we choose to group the ones having

approximately the same phase. This is the key idea of the

method. For example, we could choose to form a group of

sensors whose phases χi=ψi−kRi are 0±∆χ deg. , where

2∆χ is the phase span of the method and indicates our

tolerance to phase matching. Using this technique, we can

always find a suboptimal set of sensors whose radiation is

added coherently but not necessarily optimally (depending

on the phase span) along the receiver direction. Note that,

once the receiver location is known, this suboptimal set of

sensors can be very easily identified by simply checking

their phases along the desired direction. Thus no expensive

computations are needed.

Although it is always possible to integrate phase com-

pensators [8], [9], [10] in the sensors, this increases the

power consumption, noise and complexity of the sensors.

For applications that need the simplest possible sensors,

our proposed technique that does not require phase com-

pensators may be preferable.

B. Dividing the Available Sensor Nodes in Suboptimal

Subsets

It is interesting to note that the subset characterized by a

phase of 0±∆χ deg. is not the only available one. Any sub-

set that includes nodes with phases of P ±∆χ deg, where

P is any given phase, will have the same performance. In

other words, the received power depends only on the relative

phase difference of the sensor nodes, note their absolute

values.

Based on these ideas, we now explain how the Phase

Partition Method separates all available sensors into subsets.

Assuming that the phases are already acquired, first, each

phase term χi is wrapped in the range [0, 2π]. Second, the

2π span is equally separated to N partitions, as shown in

Fig. 3, so the phase span is 2∆χ = 2π
N

. Finally, sensors

with phase in the same partition are grouped together. As

a result, the average phase difference ∆χ of each group is

minimized during these processes. As long as N > 2, each

sensor in a group contributes the same sign of field; thus,

no destructive interference occurs.

The optimal number of subsets depends on the appli-

cation. Choosing smaller N (more sensors in a subset)

can yield higher Dmax. However, since the partition span

is wider, some sensors may only contribute small field.

Thus, the transmitted power is not as effective as grouping

by larger N . The exact number of groups also depends

on the expected phase uncertainties due to localization

and synchronization errors. For example, it is unrealistic

to group sensors whose phases differ less than ±10 deg,

when we expect a phase uncertainty of ±60 deg. Additional

details on the impact of phase uncertainty are given in

Section IV.

For large M , the wrapped phases are expected to be

uniformly distributed between [0, 2π]. Hence, each group

will include approximately the same number of sensors

and maximum directivity Dmax. As the partitions can be
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Fig. 3. Sensor distribution as a function of phase. The Phase Partition

Method results in almost uniform distribution for large number of

randomly distributed sensors.

circularly shifted, the grouping can be performed in an

infinite number of ways. However, all solutions have the

same Dmax. For small number of sensors, however, the

distribution will not necessarily be uniform and further

optimization may lead to additional benefits. Nevertheless,

this is not an important case from a practical point of view

since distributed beamforming has significant benefits in

only large number of sensors.

To calculate the complexity of the Phase Partition

Method, we consider its steps one by one: first, phase

calculation and wrapping has a complexity of O(M); sec-

ond, phase term sorting has a complexity of O(M logM)
by quick sort algorithm; third, grouping has a complexity

O(N). All together, the complexity of the Phase Partition

Method is O(M logM).

IV. SIMULATION RESULTS

In order to assess the effectiveness of the proposed

methodology, we considered a number of cases with various

sensor node distributions. In each case we evaluated a)

the maximum directivity Dmax, b) the half-power (3dB)

beamwidth defined as the angle between the two directions

in the main radiation lobe where the radiated power density

is half of the maximum value, and c) the Side Lobe Level

(SLL) defined as the ratio of the main lobe to the maximum

side lobe. For each considered scenario, we ran a large

number of cases and all resulted in very similar properties.

In this section we present a summary of representative

cases. The phase of each sensor node is assumed known

until subsection D where we discuss the effects of phase

uncertainties.

A. Proof of concept

Fig. 4 shows a case of 100 sensors randomly distributed

in a disk of radius ρ = 1λ (large radii are discussed later

in this section). We assume that each sensor has a different

initial phase ψi (randomly assigned in the simulation code).

The sensors are partitioned into six subset with a phase span

of 60 deg. per subset. The (black) dots represent sensor

nodes and the (red) circles indicate the chosen sensors in

each subset. The receiver is located at φR = 180◦ on the

plane of the sensors (θR = 90◦) and marked as the blue

line. The computed radiation pattern is normalized to Dmax

and shown in a logarithmic scale. The maximum directivity

Dmax, half-power beamwidth, and the SLL are listed in

the figure for each subset. As expected, each subset yields

approximately the same performance. With an average of

16 sensors per subset, the system provides a Dmax of

8.6, and a SLL of 6.9 dB on average. All subsets have

maximum power pointed to the receiver. The differences

between subsets could be further minimized by selecting a

narrower phase width for the Phase Partition Method.

B. Effect of Distribution Radius

Depending on the frequency of operation, the sensors

may be distributed over very large areas leading to sparse

node distributions. This simulation studies the effect of the

distribution radius ρ. The total number of sensors is kept

constant at 1000. The most noticeable effect is the change

of pattern beamwidth. The half-power beamwidth decreases

from 30 to less than 2 deg. as ρ increases from 1 to 1000 λ.

The maximum directivities averaged over all 6 groups are

also plotted in Fig. 5 as a function of distribution radius. The

values saturate for ρ > 100 λ. On the other hand, the SLL

and STD(Dmax)/Dmax (STD: Standard Deviation), which

are also plotted in the same figure, seem to be relatively

independent of the distribution radius.

C. Effect of number of sensors

The effect of the number of the sensors is shown in Fig.

6. The sensor number changes from 100 to 100,000 and the

distribution radius is kept constant at 1000 λ. Both Dmax

and SLL are linearly dependent on the number of sensors

when plotted in a logarithmic scale. While the variation of

Dmax decreases as the number of the sensors increases, the

standard deviation of the SLL shows a slower dependence.

D. Effect of phase uncertainty

In practice, the initial phase of each sensor node can be

uncertain due to a) random shifting of its phased locked

loop, oscillator and other circuit components, b) changes in

temperature and other environment conditions, c) synchro-

nization errors between sensors, d) localization errors, and
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Fig. 4. Proof of concept. M = 100, ρ = 1λ. Dmax = 8.6, STD(Dmax) = 1.6;SLL = 6.9 (dB), STD(SLL) = 1.8 (dB).
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e) operating system limitations in each sensor. This simula-

tion studies the effect of imperfect coherence due to these

phase uncertainties. In the simulation, we first generate a set

of sensor coordinates and initial phases. Next, we apply the

Phase Partition Method and generate six groups of sensors

with phase widths of 60 deg. Subsequently, we apply a

random phase error in each sensor and we calculate the

radiation pattern but without changing the partitions. This

of course deteriorates the radiation pattern since each sensor

may not belong to the correct group anymore. The random

phase error is inserted in (5) as

AFp(θ, φ) =

mp∑

q=1

exp(j(ψq + ψnq − kRq)). (12)

The phase error is defined as

ψnq = U(−W,W ), (13)

where U(−W,W ) is an uniform random number generator

in [−W W ], W is the half width of the uniform random

function. The result is shown in Fig. 7. The method is

very robust and the radiation pattern preserves its main

orientation even as the phase error goes up to 180 deg. For

all six subsets, significant deviations start when the phase

error approaches 300 deg.

This shows the robustness of the Phase Partition Method.

As the phase span is 60 deg. in our simulation, adding a

phase of 150 deg. can make a node change from construc-

tive to destructive interference, which corresponds exactly

to a 300 deg. full-width phase error. In rare and pathological

cases we have observed that the main lobe changes to a dif-

ferent direction with a phase error smaller than complement

value. This is because, with the additional phase error, some

sensor subsets can form a better constructive interference at

directions different than the main one. This is an example

that Phase Partition Method may not guarantee Dmax at the

direction of receiver for N = 2. However, this possibility

decreases as N increases. In our experience,N = 6 is a safe

number. All simulations have the radiation pattern pointing

to the receiver.

V. DISCUSSION AND FUTURE WORK

The proposed methodology presents a practical way for

implementing collaborative beamforming in wireless sensor

networks. While the algorithm does not necessarily result

in the best possible performance, it does yield reasonably

good results in most cases with low computational cost.

In addition, it maintains its effectiveness in the presence

of phase uncertainties due to a number of reasons in-

cluding synchronization and localization issues. A number

of interesting extensions can be considered towards im-

plementing these ideas in practical collaborative sensing
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Fig. 7. Effect of phase uncertainty. M = 1000, ρ = 100λ. All sensors are from subset 1 (159 sensors) with different phase noise ψnq = U(−W,W ).
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when the phase error is smaller than the complement value of phase partition span.

networks. For example, it is likely that particular phase

spans may yield optimal performance depending on the

sensor node density per unit area. In addition, it would be

interesting to consider the exact algorithm for grouping the

sensor nodes in the desired subsets. While this could be

accomplished with a few central nodes, it is possible that

sensors far from the center of the constellation may improve

the accuracy of the method. Furthermore, selecting an

appropriate operation frequency will be key for the success

of the method. Although achieving time synchronization for

very high frequencies may prove particularly demanding

[11], efficient antenna design at low frequencies is also

very challenging [7]. Consequently, a compromise will be

necessary to satisfy both requirements. Besides, it will be

interesting to study the refinements necessary to the Phase

Partition Method when more complex propagation models

are considered and further optimization for longer battery

life. Finally, some general questions for beamforming, such

as how to initiate synchronous transmission, should the

computation be done centrally or discretely? How does

subsets communicate with each other? All these issues need

to be carefully considered for obtaining functional sensor

networks based on collaborative beamforming.

VI. CONCLUSION

A new methodology for selecting the appropriate radiat-

ing elements in wireless sensor networks based on collabo-

rative beamforming is presented. The proposed technique is

based on a simple but effective algorithm for grouping all

sensor nodes in subsets according to their initial potentially

random phases and their locations relative to the desired

receiver. A key advantage of this methodology is that

results in several subsets each having essentially the same

performance. Consequently, it allows the network designer

to alternate between the different subsets thus extending the

lifetime of the network. The paper presents the effectiveness

of the proposed methodology for many different cases

ranging from 100 to 100,000 sensors spreading over 1000

wavelengths. In addition, it demonstrates its robustness in

the presence of phase uncertainties that result in phase

errors of more than 180 deg.
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