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ABSTRACT
With the ever-increasing use of smart devices, recent re-
search endeavors have led to unobtrusive screen-camera
communication channel designs, which allow simultaneous
screen viewing and hidden screen-camera communication.
Such practices, albeit innovative and effective, require well-
controlled alignment of camera and screen and obstacle-free
access.

In this paper, we develop Dolphin, a novel form of real-
time acoustics-based dual-channel communication, which
uses a speaker and the microphones on off-the-shelf smart-
phones to achieve concurrent audible and hidden commu-
nication. By leveraging masking effects of the human au-
ditory system and readily available audio signals in our
daily lives, Dolphin ensures real-time unobtrusive speaker-
microphone data communication without affecting the pri-
mary audio-hearing experience for human users, while, at
the same time, it overcomes the main limitations of exist-
ing screen-camera links. Our Dolphin prototype, built using
off-the-shelf smartphones, realizes real-time hidden commu-
nication, supports up to 8-meter signal capture distance and
±90◦ listening angle and achieves decoding rate above 80%
without error correction. Further, it achieves average data
rates of up to 500bps while keeping the decoding rate above
95% within a distance of 1m.

CCS Concepts
•Networks→Mobile networks; •Human-centered com-
puting → Mobile devices;

Keywords
Speaker-microphone communication; hidden audible com-
munication; dual-mode communication
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1. INTRODUCTION
With the ever-increasing popularity of smart devices in

our daily lives, people more and more heavily rely on them
to gather and spread a wide variety of information in the
cyber-physical world. At the same time, various surrounding
devices equipped with screens and speakers, e.g., stadium
screens & sports displays, advertising electronic boards, TVs,
desktop/tablet PCs, and laptops, have become a readily
available information source for human users. As announced
in Sandvine’s semiannual “Global Internet Phenomena re-
port” [1], video and audio streaming accounts for more than
70% of all broadband network traffic in North America dur-
ing peak hours. Under this trend, it is highly expected that
the screens and speakers convey vivid information through
videos and audios to human users while further delivering
other meaningful and customized content to smart devices
held by human users. For example, a sports fan could be
watching NBA live streams on the stadium screen, while re-
ceiving background information or statistics for each player
and team on his/her smart device without resorting to the
Internet. Another real-life example could be a person watch-
ing advertisements on TV while receiving instant notifica-
tions, offers, and promotions on his/her device.

In existing video-based applications, this side information
is usually directly displayed on top of the video content or
encoded into visual patterns and then shown on the screen.
This practice inevitably causes resource contention, since
the coded images on the screen (reserved for devices) inter-
fere with the content the screen is displaying (reserved for
users), leading to unpleasant and distracting viewing expe-
rience for human users. Recent research endeavors [22, 13,
20, 14] have tried to eliminate this tension between users
and devices by developing techniques that allow the screen
to concurrently display content to users and communicate
side information to devices, finally enabling real-time unob-
trusive screen-camera communication.

Such practices, albeit innovative and effective, still have
practical limitations in real-world scenarios, mainly because
they require a direct visible communication path between
the screen content and the camera capture window. First,
the well-controlled alignment of screen and camera under-
mines the flexibility of a dual-mode communication system.
In most cases, users holding smart devices are moving around
public spaces such as malls and cafes. While the user can
still see the content displayed on the screen, the camera of
the smart device cannot accurately capture the full screen
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on target from a wide range of viewing angles, in addition
to its sensitivity to device shaking. Second, screen-camera
communication highly relies on the camera’s line of sight
(LOS). If there are obstacles or moving objects in between
the screen and the camera, the device will fail to capture
and decode any useful information from the screen content.
Third, the communication/viewing distance is restricted by
the size of the screen, which cannot be freely adjusted once
deployed.

To avoid the practical limitations of unobtrusive screen-
camera communication, we develop Dolphin, a novel form
of real-time dual-channel communication over speaker-
microphone links, which leverages sound signals instead of
visible light. Dolphin generates composite audio for the
speaker by multiplexing the original audio (intended for the
human listener) and the embedded data signals (intended
for smartphones). The composite audio can be rendered to
human ears without affecting the content perception of the
original audio. The user thus listens to the audio as usual
without sensing the embedded data. In the meantime, the
data signals carried by the composite audio can be captured
and extracted by the smartphone microphones.

The inherent properties of audio signals overcome several
of the limitations of unobtrusive screen-camera communica-
tion systems. First, the sound travels to all directions and
thus makes the signal receiving angle broader compared to
the highly directional visible light beams. Second, the sound
can be transmitted by diffraction and reflection even with
some small obstacles while visible light is easy to be blocked.
Third, the fact that acoustic frequencies are easy to be sep-
arated on off-the-shelf smartphones (as opposed to visible
light frequencies which require special hardware) motivates
us to adopt OFDM to increase the throughput of speaker-
microphone communication. The fixed screen size limits the
flexibility of screen-camera communication. For example,
the camera needs to focus on the full screen steadily during
communication, while the speaker volume can be adjusted
to control the speaker-microphone communication distance
and a small device motion is allowed.

The design of Dolphin addresses three major challenges.
First, there is an inherent tradeoff between audio quality and
signal robustness. While a stronger embedded signal can re-
sist the speaker-microphone channel interference, it may not
be unobtrusive to the human ear. To seek the best tradeoff,
we propose an adaptive signal embedding approach, which
chooses the modulation method and the embedded signal
strength adaptively based on the energy characteristics of
the carrier audio. Second, the speaker-microphone links suf-
fer from serious distortion caused by both the acoustic chan-
nel (e.g., ambient noise, multipath interference, device mo-
bility, etc.) and the smartphone hardware limitations (e.g.,
the frequency selectivity of the microphone). To combat am-
bient noise and multi-path interference, we adopt OFDM for
the embedded signal and determine the system parameters
according to the characteristics of speaker-microphone links.
We further adopt channel estimation based on a hybrid-type
pilot arrangement to minimize the impact of frequency-time
selective fading and Doppler frequency offset. Third, var-
ious practical environments result in different levels of bit
error rates. To enhance the transmission reliability, we de-
sign a Bi-level orthogonal error correction (OEC) scheme
according to the bit error distribution.

We built a Dolphin prototype using an HiVi M200MKIII

loudspeaker as the sender and different smartphone plat-
forms as receivers, and evaluated user perception, data com-
munication performance and other practical considerations.
Our results show that Dolphin is able to achieve through-
put up to 500bps averaged over various audio contents while
keeping the decoding rate above 95% within a distance of
1m. Our prototype supports a range of up to 8 meters and
a listening angle of up to ±90◦ (given the reference point
facing the speaker) and achieves a decoding rate above 80%
without error correction, when the speaker volume is 80dB.
Finally, Dolphin realizes real-time hidden data transmission
with average symbol encoding time 1.1ms and average sym-
bol decoding time 24.6 ∼ 36.6ms on different smartphones.
The main contributions of this work are summarized as fol-
lows.

• We propose Dolphin, a novel form of real-time un-
obtrusive speaker-microphone hidden communication,
which allows information data streams to be embed-
ded into audio signals and transmitted to smartphones
while remaining unobtrusive to the human ear.

• We propose an adaptive embedding approach based on
OFDM and energy analysis of the carrier audio signal,
which makes the embedded information over various
types of audio unobtrusive. To enhance Dolphin’s ro-
bustness and reliability, we leverage pilot-based chan-
nel estimation during signal extraction and design a
novel orthogonal error correction (OEC) mechanism
to correct small data decoding errors. The result is
a flexible and lightweight design that supports both
real-time and offline decodings.

• We build a Dolphin prototype using off-the-shelf
smartphones and demonstrate that it is possible to
enable flexible data transmissions in real-time unob-
trusively atop arbitrary audio content. Our results
show that Dolphin overcomes several of the limitations
of VLC-based unobtrusive screen-camera communica-
tion systems and can be adopted as a complementary
or joint dual-mode communication strategy along with
such systems to enhance the data transmission rate
and reliability under various practical settings.

2. BACKGROUND
In this section, we present some related basic properties

of the human auditory system [32], the speaker, and the
smartphone microphone, which provide us with the theoret-
ical basis for the design of Dolphin.

2.1 Human Auditory System
Human ear is the core instrument in the human auditory

system, which reacts to sounds and obtains the perception
of loudness, pitch, and semantics. We mainly describe it
from two aspects: the perception of loudness and pitch, and
the masking effects.

Perception of loudness and pitch: Loudness indicates
the strength of sounds. But the subjective feeling of loud-
ness might differ from the physical measurement of sound
strength. The sensitivity of human ear to the sounds of
different frequencies is different. Human ear is most sensi-
tive to the sounds in 2 ∼ 4KHz [27]. A human can hear a
sound even if the physical sound strength is very low, but
the physical sound strength needs to be much higher to be
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Figure 1: The time-domain plot and frequency spec-
trum of human voice, soft music, and rock music.

perceived by humans if the sound resides in higher frequency
bands. The pitch is indicated by the frequency (Hz), and
the human hearing frequency range of sounds is between 20
∼ 18000Hz [27].

Masking effects: “Auditory masking effects” refers to the
phenomenon that a sound in a given frequency (masking
sound) hinders the perception of the human auditory sys-
tem to a sound in another frequency (masked sound). The
masking effect depends on the amplitude and time-frequency
domain features of the two sounds, and includes frequency
masking and temporal masking [19]. Frequency masking
means that the stronger sound will shadow the weaker sound
if the frequencies of two sounds are very close. Due to the
different subjective perception to sounds in different fre-
quencies, the lower frequency sound can effectively mask
the higher frequency sound, but not vice-versa. Temporal
masking means that the stronger signal will flood the weaker
signal if the two sounds appear almost at the same time.

2.2 Speaker and Smartphone Microphone
The response frequency of most speakers and microphones

is from 50 to 20000Hz. The speaker is a transducer that
converts electrical signals into acoustic signals. But differ-
ent speakers have different levels of frequency selectivity,
and their performance degenerates significantly at higher
frequencies. The microphone is also a transducer which con-
verts acoustic signals into electrical signals. Limited by its
size, a smartphone microphone is simple and has limited
capabilities. Similar to speakers, microphones exhibit fre-
quency selectivity. Most people almost cannot hear sounds
with frequencies higher than 18KHz. However, the perfor-
mance of speakers and microphones also degenerates signif-
icantly at higher frequency bands. Therefore, realizing a
second acoustic channel unobtrusive to the human ear over
the speaker-microphone link is not a trivial task.

3. THE ACOUSTIC SPEAKER-
MICROPHONE CHANNEL

The challenges for realizing Dolphin lie in both the limi-
tations of off-the-shelf smartphones and the characteristic
of aerial acoustic communication. The design challenges
due to the nature of the acoustic signal propagation and
speaker-microphone characteristics include tradeoff between
audio quality and signal robustness, speaker-microphone fre-
quency selectivity, ringing and rise time, phase and frequency
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Figure 3: The red dots indicate the sampling points,
and ∆ϕ indicates phase shift.

shift, ambient noise, multipath interference, propagation loss
and limited coding capacity of audio. The successful opera-
tion of Dolphin highly depends on the characteristics of the
acoustic speaker-microphone channel. Therefore, we con-
duct extensive experiments to understand its characteristics.

3.1 Audio Time-Frequency Characteristics
Figure 1 shows the time and frequency characteristics of

three types of audio (human voice, soft music and rock mu-
sic). It is obvious that different types of audio exhibit dif-
ferent features in both the time and the frequency domains.
For example, the human voice is intermittent in the time
domain due to speech pauses. The energy of soft music and
human voice is focused in the 0∼5KHz band. In contrast,
the energy of rock music is distributed in a much wider fre-
quency band (0∼15KHz). Therefore, in order to correctly
decode the embedded information without affecting the orig-
inal audio, we must take the time-frequency characteristics
into consideration when we design the composite audio.

3.2 Ambient Noise
Ambient noise in public spaces can cause significant in-

terference on acoustic signals over the speaker-microphone
link, resulting in low decoding rate for the embedded infor-
mation. To characterize this interference, we measured the
power of ambient noise in different environments. As an ex-
ample, Figure 2 shows the energy distribution of ambient
noise measured on a SAMSUNG GALAXY Note4 smart-
phone in a square and a cafe during busy hours. The am-
bient noise in the two locations (especially in the square) is
relatively high at frequencies lower than 2KHz, but, similar
to the observation in [16], it becomes negligible (i.e., close
to noise levels) at frequencies higher than 8KHz. Hence,
we can use a frequency higher than 8KHz to minimize the
interference caused by ambient noise.

3.3 Frequency Shift
Wireless communication usually suffers from Doppler fre-

quency shift due to mobility. The shift is more prominent
for acoustic communication since the speed of the sound is
relatively low. Let ν denote the speed of sound in the air, fs
denote the frequency of the signal carrier, and θ denote the
angle between the moving direction of the smartphone and
the speaker. When the smartphone moves from left to right
with speed ν0, the Doppler frequency shift ∆f is calculated
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Figure 4: System architecture of Dolphin.

as

∆f =
ν0 cos θ

ν
fs. (1)

From Equation 1, given that the speed of sound in the air is
340m/s, and the walking speed is about 1.5m/s, ∆f cannot
be ignored, especially when fs exceeds 10KHz. Further, note
that the impact of a large Doppler frequency shift is higher
in OFDM systems due to the limited bandwidth of each
subcarrier.

3.4 Phase Shift
Phase shift commonly exists in wireless communications,

and it is a more serious concern for off-the-shelf smartphones
with low sampling rate. To our best knowledge, the max-
imum sampling rate of the speaker and the microphone in
most off-the-shelf smartphones is 44.1KHz, which results in
limited sampling points in a signal period. For example,
there are only 4 sampling points in one period of a sine sig-
nal with frequency 10 KHz.

Note that the digital signals are converted into analog
signals via a DAC in the speaker, and the received analog
signals are converted into digital signals via an ADC in the
microphone. As shown in Figure 3, one major source of
the phase shift is that the sampling points at the DAC in
the speaker will not be the same as those at the ADC in
the microphone. In fact, the imperfect synchronization of
the preamble (to be discussed in Section 4.3.1) makes phase
shift more serious. For example, the phase shift of a 10 KHz
sine signal is π

2
if the synchronization error is 1 sampling

point. Typical preamble synchronization methods (e.g., [12])
result in synchronization errors within 5 sampling points.
Therefore, the imperfect synchronization of the preamble
makes phase shift unpredictable and the phase shift keying
(PSK) technique unsuitable for Dolphin.

4. DOLPHIN DESIGN

4.1 System Overview
Figure 4 illustrates the system architecture of Dolphin

which consists of two parts: the sender and the receiver (e.g.,
a TV and a smartphone, respectively). Roughly speaking,
the sender embeds data (e.g., detailed description of prod-
ucts) into the original audio and transmits the composite
audio through its speaker. The microphone on the user’s
smartphone captures the composite audio and decodes it to
obtain the embedded data.
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(a) The encoded ASK signal on the sender.
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(b) The captured ASK signal on the receiver.

Figure 5: Amplitude shift keying signal.

The sender: Raw data bits are encapsulated into pack-
ets, and bits in each packet are encoded by orthogonal error
correction (OEC) codes (Section 4.4), divided into symbols,
and further modulated by OFDM. We analyze the original
audio stream on the fly to locate the appropriate parts to
carry the embedded information packets. First, we perform
energy distribution analysis to select the subcarrier modu-
lation method for each packet. Then, we perform energy
analysis on every part of the audio corresponding to a sym-
bol. If the energy of a part is enough to mask the embedded
signals, we adaptively embed the symbol into it according
to its energy characteristics. Otherwise, we do not make
any modifications. Finally, the sender transmits the data-
embedded audio via the speaker.

The receiver: After the audio is captured by the smart-
phone microphone, we first detect the preamble of each
packet. Then we can segment accurately each part of the
audio corresponding to a symbol. Signals typically suf-
fer serious frequency-time selective fading over the speaker-
microphone link. To improve the decoding rate, we perform
channel estimation before symbol extraction. Finally, we
convert the corresponding audio signals into symbols, ex-
tract the data bits in each symbol, and recover the original
data after OEC.

4.2 Signal Embedding

4.2.1 OFDM Signal Design
We adopt orthogonal frequency division multiplexing

(OFDM) for the signal design of Dolphin for combating
frequency-selective fading and multi-path interference. In
this section, we describe the OFDM signal design based on
the characteristics of the acoustic channel.
Choosing the operation bandwidth: Recall from Sec-
tion 2.2 and Section 3.2 that the frequency response of most
speakers and microphones is between 50∼20000 Hz, and the
interference from the ambient noise is negligible when the
frequency exceeds 8KHz. In addition, it has been shown
that the bandwidth between 17 ∼ 20KHz consists of nearly
inaudible frequencies [17], where a small amount of energy
of the original audio can mask the embedded signals. Be-
cause this bandwidth is relative limited, we also propose to
use the bandwidth below 17KHz to improve throughput. Fi-
nally, we choose 8∼20KHz as the frequency bandwidth for
the embedded data.
Symbol sub-carrier modulation: As discussed in Sec-

32



1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0

2

4

6

Frequence (KHz)

M
ag

ni
tu

de

(a) The original audio in frequency domain.

1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0

2

4

6

Frequence (KHz)

M
ag

ni
tu

de 0 0 0 0 0 0 111

(b) The encoding EDK signals.

Figure 6: Energy difference keying signals.

tion 3.4, the unpredictable phase shifts due to the non-
ideal synchronization of the preamble makes PSK unsuit-
able in Dolphin. Additionally, the limited subcarrier width
in OFDM makes it hard to decode FSK-modulated signals.
Hence, Dolphin uses ASK to modulate the signal on each
subcarrier.

To ensure the embedded data stream is unobtrusive to the
human ear, we cannot embed strong signals into a subcar-
rier. Thus, we use a special form of ASK, On-Off Keying
(OOK). The embedded signals appear as peaks in the fre-
quency domain, as shown in Figure 5(a). To decode the
embedded data, the receiver must set a threshold to de-
termine whether or not there are peaks on the subcarrier.
However, selecting this threshold is challenging due to the
speaker-microphone frequency selectivity and channel inter-
ference. As shown in Figure 5(b), peaks may be jagged or
even erased. A drawback of ASK is that the energy distri-
bution of the original audio in our embedding data band-
width must be very low. Hence, we cut off the energy of
the original audio in the embedding data bandwidth before
embedding data bits. In order to make the changes unobtru-
sive as much as possible, we only embed data in 14∼20KHz
in ASK, which means we need to cut off the energy of the
original audio beyond 14KHz. If the energy distribution of
the original audio is relatively high in the frequency range
beyond 8KHz, we use a different modulation method called
energy difference keying (EDK) instead of ASK.

EDK adjusts the energy distribution around the subcar-
rier central frequency to indicate 0 and 1 bits. For example,
higher energy on the left of the subcarrier central frequency
indicates 0, and higher energy on the right of the subcarrier
central frequency indicates 1, as shown in Figure 6. Since
the energy of original audio is usually low beyond 15KHz,
we only embed data in 8∼14KHz in EDK. To deal with the
speaker-microphone frequency selectivity and channel inter-
ference, the diversity of the energy on the left and right side
of the central frequency must be sufficiently large. Thus,
we adjust the energy in a frequency band Bsi around the
subcarrier central frequency rather than at some discrete
frequencies. To guarantee the same level of robustness, the
change of the energy distribution in the original audio with
EDK is usually larger than with ASK. But in EDK, we do
not need to cut off the energy of the original audio. In addi-
tion, since the frequencies in the left and right sub-carriers
are very close, the energy adjustment is hard to be perceived.
Hence, EDK is suitable in cases when the original audio has

Preamble SymbolCP

Silence
31 symbols

Figure 7: Dolphin packet format.
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Figure 8: The data bits of an amplitude shift keying
symbol.

relatively high energy in high frequencies (e.g., rock music).
Dolphin packet format: For the convenience of data
transmission and decoding, we divide the embedding data
streams into packets. As shown in Figure 7, a packet consists
of a preamble and 31 symbols, each preceded by a cyclic
prefix (CP). The preamble is used to synchronize the packet,
and the symbols contain data bits.

To synchronize the OFDM transmitter and receiver, a
preamble precedes each transmitted packet. Following the
approach of previous aerial acoustic communication systems
(e.g., [16] and [12]), we use a chirp signal as the preamble.
Its frequency ranges from fmin to fmax in the first half of the
duration and then decreases back to fmin in the second half.
In our implementation, we chose fmax = 19KHz and fmin
= 17KHz, and the duration of preamble is 100ms. Due to
its high energy, we pad each preamble with a silence period
of 50ms to avoid interference to the data symbols.

The data bits in a symbol are embedded into a small piece
of audio as a whole. As shown in Figure 8, when a symbol
signal is converted from the time domain to the frequency
domain, 60 subcarriers in the range 14∼19.9KHz are used
to encode the data bits, and the signal in 20KHz is a pilot
used for time-selective fading and Doppler frequency offset
estimation. The pilot is very easy to be detected because it
lies on the rightmost of the symbol spectrum. To estimate
the frequency-selective fading, we set additional pilots on
each subcarrier of the first symbol. A longer data symbol
duration and less subcarriers increases the decoding rate but
reduces throughput. In our experiments (Section 5.2), we
found that a duration of 100ms and 60 subcarriers achieves
a good tradeoff between robustness and throughput.

In RF OFDM radios, a cyclic prefix (CP) is designed to
combat Inter Symbol Interference (ISI) and Inter-Carrier In-
terference (ICI). It copies a certain length from the end of
the symbol signal in front of the symbol. Similarly, we adopt
the cyclic prefix in acoustic OFDM to combat ISI and ICI.
In our implementation, the CP duration is set to be 10ms.

4.2.2 Energy Analysis
We perform energy distribution analysis to select the sub-

carrier modulation method (ASK or EDK) for each packet.
Let f (in KHz) denote the frequency, F (f) denote the nor-
malized signal magnitude at frequency f , l denote the num-
ber of sampling points in a packet, Fs denote the sampling
rate, and ∆f(fi,fj) denote the bandwidth of the frequency
band f ∈ [fi, fj ], then the average energy spectrum den-
sity (ESD) of the audio corresponding to a packet Ept is
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calculated as

Ept =
l ·

∑20
f=0 |F (f)|2

2 · Fs ·∆f(0, 20)

. (2)

The average energy spectrum density in the lower frequency
band Epl is calculated as

Epl =
l ·

∑8
f=0 |F (f)|2

2 · Fs ·∆f(0, 8)

. (3)

Similarly, the average energy spectrum density in the higher
frequency band Eph is calculated as

Eph =
l ·

∑20
f=8 |F (f)|2

2 · Fs ·∆f(8, 20)

(4)

The default modulation method is ASK. We choose EDK
when the energy distribution satisfies the following two con-
ditions, based on two thresholds Ehigh and Rhl:

Eph > Ehigh and
Eph
Epl

> Rhl. (5)

In our implementation, we empirically set Ehigh=10−7J/Hz
and Rhl=

1
700

. We embed a control signal at 19.6KHz into
each preamble to indicate the selected modulation method
to the receiver.

As shown in Figure 1, voice is intermittent in the time
domain due to the speech pauses. In addition, the music
volume often changes with time. If we embed a data symbol
into a piece of low volume audio, it will be easily perceived
by the user. To avoid this situation, we perform energy
analysis on every piece of audio corresponding to a symbol.
The calculation of the average ESD of a symbol is similar to
that of a packet. We let Est, Esl and Esh denote the ESD
of the whole frequency band, the lower frequency band, and
the higher frequency band, respectively. We embed symbol
bits into a piece of audio only when the average energy of
this audio piece Est is higher than a threshold Emin, which
measures the minimum audio energy spectrum density the
data symbol needs. For better audio quality, Emin should
be large. But a large Emin also means that fewer audio
pieces can be used for data embedding. By our subjective
perception experiments and energy statistics of audio pieces,
we set Emin = 2 × 10−8J/Hz for the tradeoff. The receiver
only needs to detect the pilot in 20KHz to know whether
this piece of audio is embedded with data bits or not.

4.2.3 Adaptive Embedding
Due to the temporal masking effect of the human ear, a

low noise can be perceived when the energy of the original
audio is low, while the noise is often unobtrusive when the
energy of the original audio is very high. Based on this
feature, we increase the strength of embedded signals when
the audio signal is noisy and decrease it when the audio
signal is quiet. In other words, the energy of embedded
signals is adapted to the average energy of a piece of audio
corresponding to a symbol, according to the following rule:
1) For ASK, the embedded signal energy magnitude of a
symbol is calculated as

Eam =

{
N · β2 Esl Esl < Emax

N · β2 Emax Esl ≥ Emax
(6)

2) For EDK, the embedded signal energy magnitude of a
symbol is calculated as

Een =

{
N · β2 Esl Bsi Esl < Emax

N · β2 Emax Bsi Esl ≥ Emax.
(7)

Here, N is the number of subcarrier, β is the embedding
strength coefficient and Bsi is the adjusting bandwidth in
EDK. In our implementation, Bsi is set to be 20Hz when
the subcarrier bandwidth is 100Hz. Emax is a threshold to
measure the maximum embedding signal energy spectrum
density, set to 3×10−7J/Hz. When the energy of the original
audio further increases, the strength of embedded signals
remains unchanged since the signal is robust enough. If
we further increase the strength, the noise would be too
large and it is easy to be perceived. As can be seen from
Equations 6 and 7, the changes in the original audio in the
case of EDK are usually larger than in the case of ASK.
To facilitate channel estimation (Section 4.3.2), the signal
energy of pilots at the sender must be known to the receiver.
Thus, we fix the energy of pilots at the sender.

4.3 Signal Extraction
Embedded signal extraction on the receiver side after the

audio is captured by the smartphone microphone includes
three steps: preamble detection, channel estimation, and
symbol extraction.

4.3.1 Preamble Detection
A preamble is used to locate the start of a packet. In addi-

tion, we detect the control signal at 19.6KHz of the preamble
to obtain the modulation method of the symbol subcarrier
(Section 4.2.2). We adopt envelope detection to detect the
preamble chirp signals. Theoretically, the maximum enve-
lope corresponds to the location of the preamble. But in
practice, the envelopes around the location of the pream-
ble are very close at the receiver due to the ringing and
rise time [16], resulting in synchronization errors within 5
data sampling points in our preliminary experiments. Such
synchronization errors will cause unpredictable phase shift
(Section 3.4). In Dolphin, however, each symbol corresponds
to 4410 data sampling points and hence, errors of up to 5
data sampling points have almost no effect on the amplitude
and energy distribution of the subcarrier signals. This is the
reason we adopt ASK and EDK instead of PSK.

4.3.2 Channel Estimation
After the preamble is detected and located, each symbol

of a packet can also be separated accurately. As mentioned
above, frequency selectivity estimation (FSE), time selec-
tivity estimation (TSE), and Doppler frequency offset elim-
ination (DFOE) are required before symbol extraction. In
Dolphin, we adopt a channel estimation technique based on
pilot arrangement [5].

Choosing the type of pilot: The block-type pilot and
the comb-type pilot schemes [5] are presented in Figures
9(a) and (b). Block-type pilot channel estimation is per-
formed by sending pilots at every subcarrier; the estimation
is used for a specific number of following symbols. It is effec-
tive in estimating the frequency-selective fading channel un-
der the assumption that the channel transfer function is not
changing very rapidly. Comb-type pilot channel estimation
inserts pilots at a specific subcarrier of each symbol. It is
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Figure 9: Hybrid-type pilot scheme. The black dots
are the pilots, and the white dots are the data bits.

effective in estimating the time-selective fading and Doppler
frequency offset of each symbol and thus suitable for time-
varying channels. Considering the high speaker-microphone
frequency selectivity and large Doppler frequency offsets
caused by mobility, we adopt a hybrid-type pilot arrange-
ment, as shown in Figure 9(c). As mentioned in Section
4.2.1, we set pilots on each subcarrier of the first symbol
in a packet to estimate the frequency-selective fading and
additional pilots at 20KHz of each symbol to estimate the
Doppler frequency offset and time-selective fading of each
symbol.

Estimating channel transform function: We first dis-
cuss how to estimate the frequency-selective fading func-
tion (FSE) via the pilots on the first symbol of each packet.
Usually, Least Square Estimation (LSE) or Minimum Mean-
Square Estimation (MMSE) are used to calculate channel
impulse response. MMSE performs better than LSE, but it
is more complex and requires more computation resources.
For real-time signal extraction, we adopt LSE in Dolphin.
After removing the cyclic prefix, without taking into account
ISI and ICI, the received signals in the first symbol can be
expressed as

y(n) = x(n)⊗ h(n) + w(n) n = 0, 1, . . . , N − 1, (8)

where w(n) denotes the ambient noise, h(n) is the channel
impulse response, and N is the number of sampling points
in a symbol. We convert y(n) from the time domain to the
frequency domain via FFT as

Y (k) = X(k) ∗H(k) +W (k) k = 0, 1, . . . , N − 1. (9)

Let Yp(k) denote the pilot signals we extract from Y (k) and
Xp(k) denote the known pilot signals added at the sender
side. The estimated channel impulse response He(k) can be
computed as

He(k) =
Yp(k)

Xp(k)
= Hp(k) +

Wp(k)

Xp(k)
, (10)

where Hp(k) denotes the channel impulse response of pi-
lot signals, Wp(k) is the ambient noise of pilot signals, and
Wp(k)

Xp(k)
is the estimation error. Since we only encode signals

at frequencies higher than 8KHz (Section 4.2.1), the ambi-
ent noise has almost no effect (Section 3.2), resulting in very
small estimation error. In fact, the frequency selectivity is
mainly due to the electro-mechanical components in the mi-
crophone/speaker rather than due to multipath [16]. Hence,
the frequency-selective fading of the symbols following the
first symbol is very similar to Hp(k).

Next we discuss how to estimate the time-selective fading
function (TSE) and Doppler frequency offset (DFOE) via
the pilots on 20KHz subcarrier of each symbol. We use again
LSE. Note that when the receiver is moving, the amplitude
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Figure 10: The error distribution of a packet under
repeated tests.

and phase of the channel response within one symbol will
change due to the Doppler frequency offset. To compensate
for the estimation error, we also need to take mobility into
account. The pilot frequency fs of transmitted signals is
known (at 20KHz), and we can detect the pilots of received
signals to obtain their frequencies fr. Then we can calculate
the Doppler frequency shift determinant ν0 cos θ as

ν0 cos θ =
(fr − fs)ν

fs
. (11)

We further calculate the frequency shift of all subcarriers in
each symbol by Equation 1. After frequency offset elimina-
tion, all data signals are accurately located.

4.3.3 Symbol Extraction
After DFOE, each subcarrier’s embedded data is accu-

rately located, and we use channel estimation to recover the
original signals. We define a “data window” whose length is
equal to the subcarrier bandwidth. The data window inter-
cepts the data whose center frequency is the first subcarrier
frequency. We demodulate the signals according to the mod-
ulation method used for the subcarrier. Then the data win-
dow moves forward at a step of one subcarrier bandwidth un-
til the embedded bits of all subcarriers are extracted. Note
that the power of the embedded signals is adaptive based
on the average energy of a piece of audio corresponding to
a symbol. Hence, we adjust the decision threshold of each
symbol according to its average energy.

4.4 Error Correction
In this section, we first analyze the error distribution char-

acteristics and then introduce orthogonal error correction
(OEC) to enhance data reliability.

4.4.1 Analysis of Data Errors
We repeatedly test the error distribution of a packet un-

der the same conditions (as described in our experimental
settings), as shown in Figure 10. In each test, it is easy to
see that most symbols have errors, but the number of error
bits are typically no more than 3. The error distribution of
a symbol in the frequency domain is random, and it may
be caused by noise rather than the speaker-microphone fre-
quency selectivity. Therefore, only a small error correction
redundancy in the symbols can often correct all the errors.
In some cases, the number of error bits in a symbol may
exceed 10, probably due to high multipath interference. In
those cases, we have to use excessive coding in the symbol
to guarantee reliability.

4.4.2 Orthogonal Error Correction
According to the characteristics of the data errors, we

design an orthogonal error correction (OEC) scheme. Our
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Figure 12: Adaptive embedding improvement on subjective perception.

OEC scheme includes intra-symbol error correction and
inter-symbol erasure correction in two orthogonal dimen-
sions: time and space.

Intra-symbol error correction: Inside a symbol, we fo-
cus on errors caused by noise. In our implementation, we use
the Reed-Solomon (RS) codes [25]. Based on a finite field
with 15 elements (1 element represents 4 bits), an RS(n; k)
code has the ability to correct up to b(n − k)/2c error ele-
ments and to detect any combinations of up to n − k error
elements. In order to improve the error detection ability,
before encoding into an RS code, the last element of the
original message is set to be the XOR of all other elements
in it. The receiver calculates the XOR to verify the correct-
ness after the RS coded data has been successfully decoded.

Inter-symbol erasure correction: Inter-symbol era-
sure correction aims to correct the large number of errors
in very few symbols, which cannot be corrected by the
RS code. The symbols in a packet are denoted as cell(i)
(i ∈ [1, 30]), and cell(i)(j) denotes the bit in the jth sub-
carrier (j ∈ [1, 60]). After running intra-symbol error cor-
rection, we know which symbols are unreliable. Now, we
need to recover each of them by using other reliable sym-
bols in the packet. Our idea is that the last m symbols
in a packet are used as the parity-check symbols. We set
s = b(30 + i)/mc − 1 (i ∈ [0,m)) for each j ∈ [1, 60],

cell(30− i)(j) =

s⊕
k=1

cell(km− i)(j). (12)

As long as only one symbol has serious errors in s relevant
symbols, the error symbol can be recovered by s − 1 other
symbols.

5. IMPLEMENTATION AND EVALUA-
TION

We implement a prototype of Dolphin using commodity
hardware. The sender is implemented on a PC equipped
with a loudspeaker and the receiver is implemented as an
Android app on different smartphone platforms. The app
interface on GALAXY Note4 is shown in Figure 11. The
sender takes an original audio stream and a data bitstream
(generated with a pseudo-random data generator with a pre-
set seed) as its input, generates the multiplexed stream, and
then plays back the audio stream on the loudspeaker in real
time. The receiver captures the audio stream, detects the
preamble of each packet, conducts channel estimation, and
extracts the embedded data in each symbol, also in real time.
Experimental Settings: We use a DELL Inspiron 3647
with 2.9 GHz CPU and 8 GB memory controlling a HiVi
M200MKIII loudspeaker as the sender. The default speaker

volume is 80dB (which is measured by a decibelmeter APP
at 1m distance), and the default distance is 1m. At the re-
ceiver side, we use Galaxy Note4 in most of our experiments.
We show the performance comparison across different smart-
phones in Section 5.3.5. The sampling rate on the receiver
is 44.1KHz.

5.1 Subjective Perception Assessment
First, we conduct a user study to examine whether Dol-

phin has any noticeable auditory impact on the original
audio content and identify a good set of design parame-
ters for better auditory experience. Our user study is con-
ducted with 40 participants (22 males and 18 females) in the
age range from 18 to 46. We evaluate the quality of data-
embedded audio with scores 5 to 1, which respectively indi-
cate “completely unobtrusive”, “almost unnoticeable”, “not
annoying”, “slightly annoying”, “annoying”. We test four dif-
ferent types of audio sources, including soft music, rock mu-
sic, human voice, and advertisements. Each type of sound
source is evaluated using 10 different samples. The exper-
iments are conducted in an office with the speaker volume
set to be 80dB and a speaker-smartphone distance of 1m.

5.1.1 Embedding Strength Coefficient β
The embedding strength coefficient β is the most critical

parameter that determines the embedded signal energy and
affects the subjective perception. A large value of β makes
communication more robust but it makes it easier for the
user to perceive the change in the received audio. To isolate
the impact of β and show the effectiveness of our adaptive
embedding approach, we use ASK as the modulation method
for all symbols and let the energy of each symbol signal not
change with the energy of its carrier audio (called static
embedding). In static embedding, we measure Esl of 10
different samples for each type of audio source, and calculate
the average value Esl in advance.

Figure 12(a) presents the average subjective perception
scores as β varies from 0.1 to 0.9 in static embedding. As
expected, the subjective perception score decreases as β in-
creases. However, different types of audio have different sen-
sitivity to β. The scores of soft music and advertisements
are in general higher than those of voice and rock music.
In the case of human voice with no background music, the
noise is easy to be perceived when the speech pauses. As
for rock music, some pieces contain abundant energy in high
frequencies. If we embed data symbols into such pieces and
change the energy distribution, such changes are also easy to
be perceived. Overall, we observe that for β ≥ 0.3, almost
all the subjective perception scores drop below 4 for differ-
ent types of audios. On the other hand, a low β reduces the
robustness of our system.
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Figure 13: The impact of T with different β on the
decoding rate and throughput.
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Figure 14: The impact of N with different β on the
decoding rate and throughput.

5.1.2 Adaptive Embedding Improvement
In adaptive embedding, we calculate the energy of each

piece of carrier audio corresponding to a symbol in real-time,
based on which the energy of a symbol signal is changed
adaptively according to Equations 6 and 7. Figure 12(b)
evaluates our adaptive embedding method (Section 4.2.3)
which tries to balance the tradeoff between audio quality and
signal robustness. Compared with Figure 12(a), the scores
of all types of audios are obviously improved. In particu-
larly, we observe that the use of EDK improves significantly
the scores of rock music, as we explained in Section 4.2.1.
The scores of voice also improve because, when the speech
pauses, we do not embed data bits into it. On the other
hand, the improvement of soft music is not obvious because
the energy of soft music is relatively steady. When β = 0.5,
of all types of audios achieve a score close to 4. Hence, β
should not be larger than 0.5 to guarantee relatively good
auditory experience in practice.

5.2 Communication Performance
We now evaluate the communication performance of Dol-

phin based on different metrics.

5.2.1 Decoding Rate and Throughput
The decoding rate and throughput are mainly affected

by two factors: the symbol duration T and the number of
subcarriersN . N is set to be 60 when we evaluate the impact
of T ; T is set to be 100ms when we evaluate the impact of
N . We also evaluate the system performance with different
β values. The test audio sources for different β include soft
music, rock music, human voice, and advertisements. We
record the results of different types of audios and calculate
the average value. The experiments are conducted in an
office with the speaker volume set to 80dB and a speaker-
smartphone distance of 1m.

Figure 13(a) shows the impact of the symbol duration
on the decoding rate. As can be seen, the decoding rate
increases when T increases, since a longer duration allows
for more repetitions of the same signal. When T is larger
than 100ms, the average decoding rate over all audios with
β = 0.5 is above 98%. However, 100% reliability is very
hard to achieve in practice. In addition, we observe that
the decoding rate for a given T is different for different β.
When β = 0.1 , the subjective perception score is ideal, but
the decoding rate is obviously lower than that with β = 0.3.
Therefore, there exists a tradeoff between audio quality and
signal robustness. Figure 13(b) shows the effect of the sym-
bol duration on the throughput performance. As expected,
the throughput decreases when T increases. Similar to the
decoding rate, a given T yields different throughputs for dif-
ferent β.

Figure 14(a) shows the impact of the number of subcarri-

OEC Coding (ms) 0.57
Energy Analysis (ms) 0.35

Adaptive Embedding (ms) 0.18

Total (ms) 1.1

ers on the decoding rate. We observe that the decoding rate 
drops significantly when N is larger than 60. To ensure the 
same level of subjective perception, the total energy embed-
ded in a symbol is constant once the piece of audio carrier is 
determined. If the number of subcarriers increases, then the 
energy per subcarrier decreases. Further, we observe that the 
performance with β = 0.1 is still obviously lower. Since a 
larger β can improve the signal robustness with ac-ceptable 
unobtrusiveness, we set β = 0.5 in the following experiments. 
Figure 14(b) shows that throughput increases when N 
increases, because more subcarriers can carry more 
information.

When T =100ms and N=60, the average throughput of 
different types of audios is about 500bps. We believe this 
throughput is sufficient for most of our targeted application 
scenarios because the embedded information is usually some 
side information (e.g., verbal descriptions of video/audio 
contents). Take a 1-minute advertisement as an example. 
Assume the ad can load about 500 × 60/8 = 3750 letters, and 
a word consists of 10 letters on average. Then, there are 
about 375 words which can be instant notifications, offers, 
and promotions, etc.

5.2.2 Encoding and Decoding Time
To evaluate Dolphin’s ability to support real-time com-

munication, we measure per-symbol encoding and decoding
time. We use the default setting: T = 100ms and N = 60.
At the sender, we measure the encoding time of each sym-
bol including OEC Coding, Energy Analysis, and Adaptive
Embedding. At the receiver, we first perform Preamble De-
tection and Frequency Selectivity Estimation (FSE) for each
packet, then we decode each symbol. Therefore, the de-
coding time of each symbol only consists of Time Selectiv-
ity Estimation (TSE), Doppler Frequency Offset Elimination
(DFOE), Symbol Extraction and OEC Error Correction.

Table 1 shows that the average encoding time of a sym-
bol is much shorter than the symbol duration (100ms) and
hence, the sender is able to support real-time operation. Ta-
ble 2 plots the average time of decoding operations in two
smartphones. The results show that Preamble Detection is
the most time-consuming operation. This is because the en-
velopes of different piece of audio needs to be calculated to
find the maximum and it involves iterative operations. How-
ever, Preamble Detection is only necessary for each packet

Table 1: The average real-time encoding time (ms) 
of a symbol on the PC.
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Note4 S4

Prep.(ms)
Preamble Detection 369.2 542.9

FSE 23.4 34.5

Dec.(ms)
TSE and DFOE 22.3 32.2

Symbol Extraction 0.85 1.6
OEC Error Correction 1.5 2.8

Dec. Sub-total (ms) 24.6 36.6

Table 2: The average time (ms) of decoding a symbol
and pre-processing in real-time on two smartphones.

Distance (m) 0∼1 1∼2 2∼3 3∼4 4∼6

Goodput (bps) 261.3 209.1 156.8 104.5 52.3

Table 3: The average goodput under different com-
municating distances.
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Figure 17: Energy consumption of Dolphin.

rather than each symbol, and the total decoding time of each
symbol is also smaller than the symbol duration. Hence, the
receiver can also support real-time decoding although with
a short delay due to Preamble Detection.

5.2.3 Error Correction
In this experiment, we use the orthogonal error correction

(OEC) scheme to correct different levels of bit error rates
under different communicating distances. We vary the dis-
tance from 0 to 6m in a long corridor with a speaker volume
of 80dB. We adjust the intra-symbol error correction param-
eter n−k and the inter-symbol erasure correction parameter
m to completely guarantee the correctness of decoded signals
with different distances. Then, we calculate the correspond-
ing goodput, which is defined as the ratio of the correctly de-
coded data bits (excluding the bits used for error-correction)
to the total transmission time. From Table 3, it can be seen
that the goodput decreases as the distance increases. This
is because a longer communicating distance leads to more
bit errors and thus we have to use more coding bits.

5.2.4 Energy Consumption
We also measure the battery consumption of our Dolphin

prototype on different smartphone platforms. Figure 17
shows the remaining battery percentage of GALAXY Note4
and S4 after a 4-hour continuous acoustic signal capture and
decoding. It shows that, Dolphin can support real-time em-
bedded information delivery for more than 4 hours, and this
time period is enough for most application scenarios, e.g., a
basketball or football game.

5.3 Other Practical Considerations
We now evaluate the impact of other practical factors on

Dolphin’s performance without using OEC.

5.3.1 Distance and Angle
The impact of distance on decoding rate is significant,

because the acoustic power decays with the square of the

distance. We vary the distance from 2 to 10m in a long
corridor with a speaker volume of 77dB and 80dB. As shown
in Figure 15(a), the decoding rate decreases as the distance
increases but remains above 80% for distances up to 6m with
a volume of 77dB and 8m with a volume of 80dB. Obviously,
Dolphin can support even longer distances by adjusting the
speaker volume.

In addition, we examine Dolphin by varying the smart-
phone rotation and horizontal angles (Figures 15(b) and (c))
to evaluate the impact of misalignment between the sender
and the receiver for two speaker volumes: 77dB and 80dB.
In the first experiment, we rotate the smartphone vertically
from 0◦ to 180◦. In the second experiment, we vary the
horizontal angle from 0◦ to 90◦ while keeping the micro-
phone towards the direction of the sound source. In both ex-
periments, the speaker-smartphone distance remains equal
to 1m. As shown in Figure 15(b), Dolphin’s overall per-
formance is relatively stable when the smartphone rotates
vertically from 0◦ to 90◦. Further, when α=180◦, i.e., the
speaker and the smartphone face towards opposite direc-
tions, the decoding rate is still above 80%. This demon-
strates the practicality of Dolphin, which does not require
that the users accurately keep the microphone towards the
direction of the sound source. Figure 15(c) shows that the
decoding rate remains relatively stable, when the horizon-
tal angle ε varies from 0◦ to 45◦, but decreases sharply for
larger angles . This is because the HiVi M200MKIII speaker
transmits directionally. If the smartphone lies within the
speaker’s transmission conical beam, the microphone can
capture the audio directly. Otherwise, the audio only can
arrive at the receiver by reflection. Even so, the decoding
rate is still above 80% with a speaker volume of 80dB when
ε = 90◦. Dolphin ensures good performance for most places
around the speaker.

5.3.2 Ambient Noise
Figure 16(a) shows the impact of the ambient noise on

the decoding rate. We performed experiments at three dif-
ferent locations: an office, a restaurant, and a square, and
varied the volume from 74dB to 82dB. We observe that Dol-
phin is resilient to ambient noise, maintaining a decoding
rate above 90% at all three locations. This is because we
select the appropriate frequency bandwidth for the embed-
ded signal to reduce the influence of ambient noise. In the
office, the ambient noise is very small (Figure 2). In the
cafe, the ambient noise is mainly due to the conversations
among customers. However, the frequency range of human
voice is relative low and does not interfere significantly with
the sound signals above 8KHz. In a square, there are differ-
ent sound sources, some of which generate higher frequency
sounds, and Dolphin performs slightly worse compared to
the other two locations.

5.3.3 Obstacles
In this section, we discuss the impact of obstacles between

the sound source and the receiver microphone on the decod-
ing rate. The obstacles include a 28×21×5cm book or a hu-
man between the HiVi M200MKIII (sender) and the Galaxy
Note4 phone (receiver). The LOS between the speaker and
the microphone is completely blocked by the obstacles. From
Figure 16(b), we can observe that the presence of an obsta-
cle obviously decreases the decoding rate while the sound
signals can still reach the receiver via diffraction. On the

38



2 4 6 8 10
70

80

90

100

Distance (m)

D
ec

od
in

g 
ra

te
 (%

)

80dB
77dB

(a) Distance.

0 45 90 135 180
70

80

90

100

Angle α (degree)

D
ec

od
in

g 
ra

te
 (%

)

80dB
77dB

(b) Rotation angle α.

0 22.5 45 67.5 90
70

80

90

100

Angle ε (degree)

D
ec

od
in

g 
ra

te
 (%

)

80dB
77dB

(c) Horizontal angle ε.

Figure 15: The impact of distance and angle on decoding rate.
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Figure 16: The impact of various practical settings on decoding rate.

one hand, the size of obstacles will affect the performance.
When the volume of speaker is above 80dB, the decoding
rate with the book blocking at the distance of 1m is about
90% but the decoding rate with a human blocking at the
distance of 1m is about 80%. On the other hand, the dis-
tance also affects the performance. The decoding rate with
the human blocking at the distance of 4m is even higher
than that at the distance of 1m. As can be seen from Fig-
ure 15(a), the decoding rate decreases as the communicating
distance increases. However, the HiVi M200MKIII speaker
transmits directionally. When the human stands very close
to the speaker, the sound conical beam will be completely
blocked. When the human gradually moves away from the
speaker, the unblocked signals can still reach the receiver
via diffraction. Obviously, Dolphin will perform better with
obstacles by using a speaker with wider transmission angle.
This is a great advantage of Dolphin compared to unob-
trusive screen-to-camera communication systems which are
very sensitive to any obstacles.

5.3.4 Device Motion
We now study the impact of device motion on Dolphin’s

performance. We evaluate three types of motion: (i) a static
user holds the Galaxy Note4 in the air facing the HiVi
M200MKIIIl; in this case, the motion is due to the slight
hand shaking; (ii) the user moves the smartphone slowly to-
wards and away from the speaker (horizontal moving); and
(iii) the user moves the smartphone slowly in parallel to the
speaker (vertical moving). Figure 16(c) shows the results
when the volume from 74dB to 82dB. First, in the case of
a static user holding the phone, the performance is very
close to the case of the phone placed on a table, i.e., the
impact of slight hand shaking is negligible. On the other
hand, the impact of the actual device motion is more promi-

nent, especially in the case of horizontal moving, due to
Doppler frequency shift (in Doppler frequency shift deter-
minant ν0 cos θ, cos θ is 1 for horizontal moving but takes its
minimum value for vertical moving). However, the decod-
ing still remains higher than 90% with both types of motion
when the the volume is above 76dB. The use of pilots in each
symbol helps Dolphin successfully estimate the Doppler fre-
quency offset and reduce its effect.

5.3.5 Different Smartphone Models
Finally, we examine the impact of different smartphone

platforms on Dolphin’s performance. We use four smart-
phone models (GALAXY Note4, GALAXY S4, iPhone 6,
and iPhone 5s). Our current implementation of the Dolphin
receiver is based on the Android framework. To test Dol-
phin on iPhone 6 and iPhone 5s, we use the smartphones to
capture the audio signals and decode them on the PC. We
vary the volume from 74dB to 82dB at a distance of 1 m. As
shown in Figure 16(d), the performance of GALAXY Note4
is the best and that of GALAXY S4 is the worst; such perfor-
mance differences are mainly caused by the frequency selec-
tivity of microphones. Nonetheless, all four models maintain
a decoding rate higher than 95% when the volume is above
76dB. This is due to the use of pilots in the first symbol of
each packet that allow the receiver to estimate the frequency
selective fading function and largely eliminate the impact of
frequency selectivity.

Discussion. Note that, Dolphin focuses on signal broad-
casting application scenarios, and thus we implemented
data encoding on the PC (connected to a high-power loud-
speaker) as the transmitter. That is, Dolphin does not target
smart device to smart device communication. However, to
test the performance of Dolphin using a speaker of poor
quality, we use GALAXY Note4 or GALAXY S4 as the
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sender and GALAXY Note4 as the receiver in our exper-
iments. Since the Dolphin sender is currently implemented
on a PC, we use a PC to encode the data-embedded audio
and playback them on the smartphone sender. Compared
with HiVi M200MKIII loudspeaker, the smartphone speak-
ers have lower volume and higher frequency selectivity. In
addition, the smartphone speakers have higher noise which
influences the auditory perception. In our test, the volume of
smartphone speakers is set to 100%, which is around 65dB.
We focus on the performance under several practical con-
siderations (e.g., distance, angle and obstacles). We found
that Dolphin supports up to 5-meter signal capture distance
and 360◦ listening angle with the decoding rate above 80%.
In addition, the decoding rate with the human blocking at
the distance of 1m is above 85%. The results show that the
signal capture distance is also limited by the volume, but
better performance in listening angle and obstacles benefits
from the wider transmission angle of smartphone speakers.
Not surprisingly, the auditory perception is worse due to the
poor quality of smartphone speakers.

6. RELATED WORK
Unobtrusive screen-camera communication: In re-
cent years, extensive research efforts have led to specially-
designed color barcodes for barcode-based VLC [18, 8, 9, 21,
30, 23, 10]. To eliminate the resource contention in the above
designs, several recent studies seek to achieve unobtru-
sive screen-to-camera communication. Along this direction,
Yuan et al. leverages watermarking to embed messages into
an image [28]. In [4], the authors proposed to embed data
hidden in brightness changes upon two consecutive frames.
In [26, 22, 20], the key idea is to switch barcodes with com-
plementary hues. PiCode and ViCode [11] integrate bar-
codes with existing images to enhance viewing experience.
The most recent effort is Hilight [13, 14], which leverages
the alpha channel to encode bits into the pixel translu-
cency change. Compared to Dolphin, unobtrusive screen-to-
camera communication requires well-controlled alignment of
the camera and the screen and obstacle-free access.

Aerial acoustic communication: Aerial acoustic com-
munication over speaker-microphone links has been studied
in [7, 16, 31, 12, 17, 15, 29]. In [7], the authors used mul-
tiple tones to transmit data in an audible mode or a single
tone in an inaudible mode. Dhwani [16] and PriWhisper [31]
aim to realize secure acoustic short-range communication by
leveraging the microphone-speaker links on mobile phones.
In [12], chirp signals were used to realize an aerial acoustic
communication system. In [15] and [29], the authors pro-
posed to hide information in audios and use the loudspeaker
and the microphone with flat frequency response to display
and record data-embedded audio. However, [7, 16, 31] only
focus on reliable speaker-microphone data communication,
while [15, 29] were not designed for off-the-shelf smartphones
without considering the characteristics of acoustic channel,
and [12, 17] used the inaudible audio signals to achieve very
low-rate communications. In contrast, Dolphin aims at es-
tablishing dual-mode unobtrusive communication using off-
the-shelf smartphones.

Audio watermarking: With the development of network
and digital technologies, digital audio is easy to be repro-
duced and retransmitted. Audio watermarking [6, 3, 19,
2, 24], as a means to identify the owner, encodes hidden

copyright information into the digital audio. The common
encoding schemes used in audio watermarking include least
significant bit (LSB), spread spectrum [6], echo hiding, DCT
and DWT [24] etc. In order to prevent the watermark from
being readily removed by pirates, it must be robust to com-
mon audio processing (e.g., MP3 compression, cropping and
resampling) and be statistically undetectable to users. To
this end, for example, LSB manipulates the least significant
bit of the sample points, and DWT selectively manipulates
some coefficient of wavelet domain. The position to be mod-
ified usually is controlled by a key which is only known to the
owner. Unlike audio watermarking which directly provides
embedded copyright information audio files to users and aim
to ensure copyright information cannot be removed, Dolphin
seeks to enable unobtrusive data communication and provide
relevant side information which users can obtain through
their smartphones when the speaker plays the audio, by
addressing several challenges unique to the nature of the
acoustic signal propagation and speaker-microphone char-
acteristics. Therefore, Dolphin must address real-world sig-
nal degradations over the speaker-microphone channel while
watermarking does not. To achieve our goal, modifying the
original audio and decoding the signals in Dolphin must take
into account ambient noise, the characteristics of commer-
cial speakers and microphones, and channel estimation.

7. CONCLUSIONS
We presented and implemented Dolphin, a new form of

real-time unobtrusive dual-mode speaker-microphone com-
munication atop any audio content generated on the fly. We
implemented Dolphin on off-the-shelf smartphones and eval-
uated it extensively under various environments and practi-
cal considerations. Dolphin has its own superiorities and can
be adopted as a complementary or joint dual-mode commu-
nication strategy with existing unobtrusive screen-to-camera
communication systems to enhance the system performance
under various practical settings.
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