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ABSTRACT

Driven by a wide range of real-world applications, signifi-
cant efforts have recently been made to explore device-free
human activity recognition techniques that utilize the in-
formation collected by various wireless infrastructures to
infer human activities without the need for the monitored
subject to carry a dedicated device. Existing device free hu-
man activity recognition approaches and systems, though
yielding reasonably good performance in certain cases, are
faced with a major challenge. The wireless signals arriving
at the receiving devices usually carry substantial informa-
tion that is specific to the environment where the activities
are recorded and the human subject who conducts the ac-
tivities. Due to this reason, an activity recognition model
that is trained on a specific subject in a specific environ-
ment typically does not work well when being applied to
predict another subject’s activities that are recorded in a dif-
ferent environment. To address this challenge, in this paper,
we propose EI, a deep-learning based device free activity
recognition framework that can remove the environment
and subject specific information contained in the activity
data and extract environment/subject-independent features
shared by the data collected on different subjects under dif-
ferent environments. We conduct extensive experiments on
four different device free activity recognition testbeds: WiFi,
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ultrasound, 60 GHz mmWave, and visible light. The exper-
imental results demonstrate the superior effectiveness and
generalizability of the proposed EI framework.
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1 INTRODUCTION

Human Activity Recognition (HAR) plays an important role
in a wide range of real-world applications, such as smart
home, health care and fitness tracking. Traditionally, smart
mobile devices, including phones, watches, and other wear-
ables, are widely used to recognize human activities. How-
ever, device-based approaches have many limitations due
to the extra burden and discomfort brought to those who
wear devices. To address this challenge, significant efforts are
recently made to explore device-free human activity recog-
nition techniques that utilize the information collected by
various wireless infrastructures without the need for the
monitored subject to carry a dedicated device.

These approaches, though different in various aspects,
share the same idea: by extracting and analyzing information
carried by the wireless signal transmitted between a pair
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of wireless devices (e.g., smartphone, laptop, WiFi access
point), we can infer the activities of a person located between
the sender and receiver, since his/her activities would incur
changes to the transmission pattern of the wireless signals.

Thus far, various device free human activity recognition
approaches and systems have been developed. However, a
major challenge has not been addressed. That is, the wireless
signals arriving at the receiving devices usually carry sub-
stantial information that is specific to the environment where
the activities are recorded and the human subject who conducts
the activities. On one hand, the signals, when being trans-
mitted, may be penetrating, reflected, and diffracted by the
media (e.g., air, glass) and objects (e.g., wall, furniture) in
the ambient environment. On the other hand, different hu-
man subjects with different ages, genders, heights, weights,
and body shapes affect the signals in different ways, even
if they are taking the same activity. As a result, an activity
recognition model that is trained on a specific subject in
a specific environment will typically not work well when
being applied to predict another subject’s activities that are
recorded in a different environment.

To address this challenge, in this paper, we propose
EIL a deep-learning based device free activity recognition
framework that can remove the environment and subject spe-
cific information contained in the activity data and extract
environment/subject-independent features shared by the data
collected on different subjects under different environments.

The core of El is an adversarial network, which consists of
three main components: feature extractor, activity recognizer,
and domain discriminator. The feature extractor, which is a
Convolutional Neural Network (CNN), cooperates with the
activity recognizer to carry out the major task of recognizing
human activities, and simultaneously, tries to fool the domain
discriminator to learn the environment/subject-independent
representations.

To deal with the practical yet challenging scenarios where
for most of the environments/subjects, the collected activity
data are unlabeled, the proposed model not only makes use
of labeled data, but also takes advantage of the information
contained in the unlabeled data. In addition, to tackle various
practical issues, in the proposed model, we also design three
constraints that can significantly improve the prediction
performance.

We conduct extensive experiments on FOUR different
device free activity recognition testbeds, based on dif-
ferent wireless technologies: WiFi, ultrasound, 60 GHz
mmMWave, and visible light. The experimental results
demonstrate the superior effectiveness and generalizability
of the proposed EI framework.

The rest of this paper is organized as follows. We first pro-
vide an overview of the proposed EI framework in Section
2. Then we elaborate on each component of the proposed
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Figure 1: System framework

deep learning model in Section 3. In Section 4, we conduct a
series of experiments on four different device free activity
recognition testbeds to evaluate the performance of the pro-
posed framework. We discuss the related work in Section 5
and conclude the paper in Section 6.

2 SYSTEM OVERVIEW

In this section, we provide an overview of the proposed EI
framework. As shown in Fig. 1, EI consists of three compo-
nents: data collection, data preprocessing and deep learning
model.

e Data Collection. In this paper, we consider a scenario
where the human activities are monitored in different
environments (e.g., different rooms), and in each envi-
ronment there are some ambient devices whose gener-
ated signals (e.g., WiFi and acoustic) can be affected by
human activities. Our system first collects the activity
data (i.e., the affected signals) in each environment
during the monitoring process.

e Data Preprocessing. For some environments, part of
the collected data are manually labeled, and for the
others, the label information is not provided. Our goal
is thus to train a prediction model based on all the col-
lected data including both labeled and unlabeled data
to predict the label of each unlabeled activity. In order
to achieve the goal, we first normalize the acquired sig-
nal and then transform the signal to a form suitable for
analysis. Finally we split the transformed signal into
short segments to train the activity recognition model.
The detailed descriptions of the data preprocessing for
different signals are provided in Section 4.

e Deep Learning Model. The collected activity data,
after being preprocessed, may still be very complex.
This makes it difficult for traditional machine learn-
ing algorithms to characterize the underlying patterns
of such data. To address this challenge, we make use
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Figure 2: Model Overview.

of deep learning techniques which have been proved
effective in deriving discriminative representations
from complex data. In particular, we propose a deep
learning model, which incorporates an adversarial net-
work, to predict the label of unlabeled activities. The
proposed deep learning model can not only make use
of labeled data, but also take advantage of the infor-
mation contained in the unlabeled data that can help
improve the predictive performance. Additionally, the
proposed model is able to remove the uniqueness of
each domain (defined as a pair of environment and hu-
man subject), and extract commonness shared across
different domains. Therefore, it can be used to pre-
dict the labels of the activities recorded under unseen
environments.

3 METHODOLOGY

An overview of the proposed deep learning model is shown
in Fig. 2. The input data of our model includes both labeled
and unlabeled human activities. In this paper, we consider
a general and practical problem setting: the environments
for collecting labeled data are different from the ones where
unlabeled data are collected. This problem setting requires
that the proposed approach must be able to learn transfer-
able features for different environments, i.e., environment-
independent representations.

Towards this goal, the input data are first transformed
into low-dimensional representations Z by the component
of feature extractor, which consists of three-layer convo-
lutional neural networks (CNNs). Using the learned feature
representations, the activity recognizer, whose goal is to
maximize the prediction accuracy, can obtain the predictions
y on all the input data. To remove domain-specific features,
a domain discriminator is designed to label each domain

(i.e., to identify which activities are conducted by which
subject under which environment). The input of the domain
discriminator is the concatenation of Z and y. After two fully
connected layers with softmax, we can obtain the domain
label distributions S. The goal of domain discriminator is
to maximize the performance of domain label prediction,
which seemingly contradicts with our ultimate goal of learn-
ing domain-independent features of activities. To address
this contradiction, in our design, the feature extractor tries
its best to cheat the domain discriminator (i.e., minimize its
predictive accuracy), and at the same time, boost the per-
formance of the activity recognizer. Through this minimax
game, the proposed model can finally learn the common
environment-independent features for all the activities.

Besides, we design three constraints that can signifi-
cantly improve the prediction performance. The details of
our model will be elaborated in the rest of this section.

3.1 Model Inputs

The proposed model can recognize human activities with
different types of signals, including WiFi, ultrasound, 60
GHz millimeter wave, and visible light. Below we provide a
general description of the model inputs. The details on how
these signals are transformed into the input to the model can
be found in Section 4.

First, we refer to the domains with and without label in-
formation as source and target domain, respectively. In this
paper, we consider the scenario of multiple source and target
domains. Let X be the input activity data of the proposed
model, which includes two parts: labeled human activities
X! and unlabeled ones X*. Each data X; has a corresponding
domain label d; € D, where D denotes the set of all the
source and target domains. Each labeled data Xg e X! also
has a true activity label yll. € Y, where Y is the set of all



the activities. Let d denote the domain label vector of X, and
y! be the ground truth vector of X!. Thus, the inputs of our
model are the activity data X, the domain label vector d and
the ground truth data y'. The output is the estimated label
y of each unlabeled activity X} € X*“.

3.2 Feature Extractor

We employ CNNs to extract activity features, which are
widely used in the human activity recognition task [58]. In
the proposed approach, we use three-layer stacked CNNs to
extract features. In each layer of CNNs, 2D kernels are used
as the filters, followed by a batch norm layer to normalize
the mean and variance of the data at each layer. At last, we
add a rectified linear unit (ReLU) to introduce nonlinearity
and a max-pooling layer to reduce the size of representation.
Let O be the set of CNN parameters. Given the input data X,
we can obtain their feature representations as follows:

Z = CNN(X; ©). (1)

3.3 Activity Recognizer

Based on the outputs of feature extractor (i.e., Z), a fully-
connected layer followed by an activation function is used
to learn the representation V; of X; as follows:

V; = Softplus(W,Z; + b,), )

where W, and b, are the parameters to be learned and the
softplus function is an activation function to introduce non-
linearity. In order to predict the labels of human activities, we
need to map the feature representation V; into a new latent
space H; € RE, where C is the number of human activities.
Moreover, a softmax layer is used to obtain the probability
vector of activities as follows:

y; = Softmax(H;) and H; = W,V; + b,, (3)

where W, and b,, are parameters. The input data of the pro-
posed model include labeled and unlabeled activities, and
thus § = [§/, §“], where §' denotes the predicted probabili-
ties of labeled data, and y“ represents the predicted proba-
bilities of unlabeled data.

For the labeled data, cross entropy function can be used
to calculate the loss between the predictions and the ground
truths as follows:

X! ¢

a = |Xl| IZ; CZ Yw log(Yzc (4)
where |X!| is the number of data with labels. Actually, di-
rectly optimizing Eq. (4) suffices to learn model parameters
and make predictions on unlabeled data. However, when
label information is limited, incorporating unlabeled data
can help the proposed model improve the predictive perfor-
mance. Actually, for unlabeled data, we also can calculate

their losses using entropy as follows:

x“| ¢

L, = |xu| > Zy,clog(yw (5)

i=1 c=

where |X"| is the number of unlabeled data. By minimizing
the entropy in Eq. (5), we can increase the confidence of the
predictions on unlabeled data, and thus drive the classifier’s
decision boundary away from unlabeled data [13].

In this paper, we consider a practical yet challenging sce-
nario of human activity recognition, that is, for a significant
portion of the domains (i.e., environment-subject pairs), no
activity data are labeled. This requires the classifier to be
able to learn the common activity features shared by all the
domains, i.e., transferable activity representations for new
or unseen domains. Such features should be environment-
independent and do not contain any domain-specific infor-
mation. To achieve this goal, we need to remove the unique-
ness of activities in each domain. Specifically, we use domain
adaption technique to capture the environment-independent
activity features.

3.4 Domain Discriminator

Domain adaptation is a technique that aims to learn a map-
ping among domains. When the target domains are fully
unlabeled, the technique is called unsupervised domain adap-
tation [10]. In this paper, we employ the technique of unsu-
pervised domain adversarial training [10, 11] to fully make
use of unlabeled data to remove the domain-specific unique-
ness of activities. In particular, we aim to design a domain
discriminator, whose goal is to recognize the environment
where the activities are recorded, to force the feature ex-
tractor (whose goal is to cheat the domain discriminator) to
produce environment-independent activity features.

To achieve this goal, similar to [60], we first concatenate
the output matrix of feature extractor (i.e., Z) and the predic-
tion matrix ¥ as follows:

F=Zo7Y, (6)

where @ is the concatenation operation. Since Z contains
both domain-independent and domain-specific features, to
identify the commonness shared across different domains, we
need to take Z into consideration. Moreover, some features,
though being domain-specific, are helpful to the activity
recognition task. Thus, we still need to keep such features.
This can be achieved by concatenating Z and y as the input
of domain discriminator.

Then, two fully connected layers with corresponding acti-
vation functions are used to project F into domain distribu-
tions S, as follows:

U; = Softplus(W¢F; +by), (7)



S; = Softmax(W,U; + b,,), (8)

where Wy, br, W, and by, are parameters. U; is the represen-
tation in the latent space. In order for the domain discrimi-
nator to identify the domain labels of the input activities, we
define the loss between the domain distributions and true
domain labels as follows:

x| |D]

L= =15 D, D, dy log(Sy). ©)

i=1 j=1

where |D| denotes the number of domains, and d; is the
one-hot vector of true domain labels. The goal of the do-
main discriminator is to minimize the loss function L, so
as to maximize the performance of domain label prediction,
which contradicts with our ultimate goal of learning domain-
independent features of activities. To address this contradic-
tion, we propose to maximize the domain discriminator loss
Ly in our final objective function. Based on Eq. (4), Eq. (5)
and Eq. (9), we can obtain the loss function as follows:

L=Ls+aL, - fLg, (10)

where « and f are the weighting parameters. From Eq. (10),
we can observe that the feature extractor tries its best to cheat
the domain discriminator by maximizing L4, and at the same
time, boost the performance of the activity recognizer by
minimizing both L, and L,,. Through this minimax game, we
can learn the common environment-independent features
for all the activities and finally obtain the predicted labels
for unlabeled data.

3.5 Constraints

It is known that without sufficient data, deep neural networks
are prone to overfitting, which often leads to unsatisfactory
performance. In practical device-free activity recognition
scenarios, it is usually difficult to collect sufficient activity
data. Therefore, how to prevent overfitting with limited data
is vital for the design of our unsupervised domain adaptation
model. In order to tackle the overfitting problem, we propose
two effective constraints: confidence control constraint and
smoothing constraint. They are designed to handle the over-
confidence and the unsmooth latent space of deep neural
networks, two typical symptoms of overfitting [41].

To further improve the model’s performance, we also
propose a balance constraint that can incorporate the prior
knowledge of the labels’ distribution in the training data to
improve the stability of training process.

3.5.1 Confidence Control Constraint. One symptom of over-
fitting is the overconfidence of the model when it places all
probability on a single class in the training set [41]. If the
model is overconfident on the estimation of the unlabeled

data, it may converge prematurely and get stuck in an infe-
rior local optimum, which may degrade the performance of
the model on testing.

To address this issue, we propose a confidence control
constraint, which penalizes §;, when it is too confident. The
loss of the confidence control constraint is defined as follows:

1 X|
Le=——
¢ |X|;

In this way, if ;. approaches 0 or 1, the penalty will go
to infinity.

c
(log(Yic) +1og(1 = ¥ic)), ~ (11)
=1

c

3.5.2 Smoothing Constraint. Unsmooth latent space is an-
other common symptom of overfitting. It happens when the
prediction on a data point X; is significantly different from
those of its neighbors in the feature space Z (i.e., the clas-
sifier abruptly changes its predictions across neighboring
data samples). In such a situation, the proposed model will
learn an unreliable estimation [39]. Under the unsupervised
domain adaption setting, there is no labeled information to
penalize the wrong predictions for the unlabeled data in tar-
get domains through the loss function (i.e., Eq. (10)), which
will aggravate the unsmoothing problem. To avoid this prob-
lem, we add a smoothing constraint to the loss function
Eq. (10).

In supervised domain adversarial training models [54], it
is easy to add a smoothing constraint. If a pair of data has the
same label, then the distance between them in the feature
space is short. However, in the unsupervised domain adapta-
tion setting, some data samples do not have labels. Thus, such
approaches cannot be directly applied. To solve this problem,
we propose to add M e-neighbors to each input sample X;
in its latent feature space V;. This is equivalent to adding
Gaussian noise rp, to V;, denoted as V" = V; + rp,. Then
the Jensen-Shannon divergence between the predictions of
V; and V" is calculated as the loss value of the smoothing
constraint.

Mathematically, we add M small centered isotropic Gauss-
ian noise r,, ~ N(0,¢€l) (m € {1,---, M}) to the latent rep-
resentation V;. We also enforce that after passing the label
predictor (i.e., Eq. (3)), the label distribution predicted from
the noisy representation denoted as §}"* should be close to
that predicted from the original latent representation (i.e.,
V). We achieve this through minimizing the Jensen-Shannon
divergence between them. Jensen-Shannon divergence is a
method of measuring the similarity between two probability
distributions. It is based on Kullback-Leibler divergence, but
is symmetric and always returns a finite value. Assuming that
the Kullback-Leibler divergence between distributions y; and
¥ can be expressed as KL(y;||y}"), then the Jensen-Shannon



divergence between them is defined as follows:
temy _ Lo Vit Vi + 7
IS@illyT) = SKLF:ll = — ) (12)
Thus, the average loss of the smoothing constraint can then
be formulated as follows:
X]

M
1 1
L:—E—ESA-A’-”. 13
P Mm=1J illy; (13)

3.5.3 Balance Constraint. We observe that, in some cases,
the model tends to assign the same label to the data samples
corresponding to multiple similar but different activities. To
deal with this issue, we propose to add a balance constraint to
the loss function, which first estimates the percentage of each
activity according to our prior knowledge or labeled data, and
then enforces the estimated percentage in the final prediction
of the activities. In particular, let P, be the estimated or
known overall percentage of activity c. After predicting the
labels of |X| samples, we can obtain a prediction matrix with
size |X| X C. ;. is the probability of X; being labeled as
the c-th activity, and d; is its domain label. We introduce an
auxiliary distribution q; to be the balanced label prediction
probability. We calculate q;. by normalizing the total number
of predictions on activity ¢ with the same domain label d;:

Qe = Pe-Yic/ Xy Vie La,=q;
* ZCPC ')A’ic/Zi’ )A’i’c * ]ldl-/:di
After obtaining the auxiliary distribution q;, we define

the balance constraint as the Jensen-Shannon divergence
between ¥; and q; as follows:

1 Am
)+ EKL(YL' [l

(14)

x|

1
Lo = 57 2, 35illan). (15)
i=1

3.6 Objective and Training

With all the above constraints, we can finally give the overall
loss function as follows:

J=L+yLs+nLy+ xLe, (16)

where y, 1 and 7 are predefined hyper-parameters.

In the training process, we iteratively update the parame-
ters. Let Q = {A,T'} be the set of all the parameters, where
A ={Wg,br, Wy, b, } denotes the parameters in the domain
discriminator, and I' = Q — A. We first fix A and update the
remaining parameters (i.e., I') according to Adam [22], and
then fix I to update A.

4 EXPERIMENTS

In this section, we conduct experiments on four different
device free activity recognition testbeds, i.e., WiFi, ultra-
sound, 60 GHz mmWave and visible light, to evaluate the
performance of the proposed system.

4.1 Baseline Methods

We compare our approach with two state-of-the-art domain
adaptation deep learning models CAT [60] and VADA [39]
as well as random forest, one of the most widely used tradi-
tional classification models. In its original design, CAT model
uses only labeled data on the source domain. For a fair com-
parison with our model, we let CAT incorporate unlabeled
data on the target domains. We also slightly change the loss
function of the domain discriminator in VADA so that it can
fit our multi-source, multi-target domain adaptation scenario.
In addition, both of the deep learning models adopt the same
CNN architecture as our approach for a fair comparison. For
random forest, we extract 10 statistic features from both
time and frequency domain. The time-domain features in-
clude: mean, standard deviation, relative standard deviation,
mean absolute deviation, max, min, energy, and interquartile
range. The frequency-domain features include dominant fre-
quency and mean frequency. Especially, for acoustic signals,
we utilize MFCC features.

4.2 Experiment with WiFi Signals

4.2.1 Channel State Information. In this section, we make
use of the Channel State Information (CSI) to analyze the
effect of the human activities on the WiFi signal. CSI refers
to known channel properties of a communication link in
wireless communications. This information describes how a
signal propagates from the transmitter to the receiver and
represents the combined effect of, for example, scattering,
fading, and power decay with distance . Modern WiFi de-
vices supporting IEEE 802.1n/ac standards have multiple
transmitting and receiving antennas, and thus can transmit
data in MIMO (Multiple-Input Multiple-Output) mode. In
an Orthogonal Frequency Division Multiplexing (OFDM)
system, the channel between each pair of transmitting and
receiving antennas consists of multiple subcarriers. The nar-
row band flat-fading channel with N; transmitters and N,
receivers on the s-th subcarrier (s € {1,2,---, Ns}) can be
modeled as:

y:HSTXx+n, (17)
where y € CN-¥! denotes the received vector, Hy € CN:*Nr
is the channel matrix over the s-th subcarrier, x € CNt¥1 jg
the transmitted vector, and n € CNrx1 represents the noise
vector. Noise is often modeled as circularly-symmetric com-
plex normal with n ~ CN(0,S) where the mean value is
zero and the noise covariance matrix S is known. The CSI
value for each subcarrier is an estimate of Hy. Since there
are N; subcarriers, the final CSI can be represented by a
multi-dimensional matrix H € CNs*Nt*Nr ‘We use the tool
in [16] to report CSI values of 30 OFDM subcarriers. Thus,
the dimensionality of H is 30 X N; X N,. The reason why

!https://en.wikipedia.org/wiki/Channel_state_information
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CSI can be used for recognizing human activities is mainly
because it is easily affected by the presence of humans and
their activities. Specifically, the human body may block the
Line-of-Sight (LOS) path and attenuate the signal power.
Additionally, the human body can introduce more signal re-
flections and change the number of propagation paths. Thus,
the variance of CSI can reflect the human movements in the
WiFi environments.

4.2.2  Experimental Settings. In this experiment, we employ
11 volunteers (including both men and women) as the sub-
jects and collect CSI data from 6 different rooms in two
different buildings. Figure 3 shows the Experimental setting
in one of the rooms. In particular, we build a WiFi infrastruc-
ture, which includes a transmitter (a wireless router) and two
receivers. We choose to use the Intel Wireless Link 5300 NIC
to collect the CSI data, and the transmission rate is set as 200
packets per second. The human activities (shown in Fig. 4)
conducted by the subjects include wiping the whiteboard,
walking, moving a suitcase, rotating the chair, sitting, and
standing up and sitting down. We let the subjects repeat
these six activities in each room for 5 rounds and in each
round, the subjects are asked to take each type of activity
for 51 seconds. Totally, we collect the activity data of 40
subject-room pairs, corresponding to 40 different domains.

Receiver ! |
! * a0 'c

Figure 3: Experimental setting for human activity
recognition with WiFi signals.

4.2.3 Data Preprocessing. In this experiment, the CSI mea-
surements we use are the amplitude information of the sub-
carriers. Due to the packet loss during the data collection
process, we first interpolate the CSI measurements to obtain
uniform sampling periods and then normalize the CSI mea-
surements to have a mean of zero and standard deviation of
one. After that we use the Hampel filter [7] to remove out-
liers and downsample the CSI measurements into 25 Hz. We
segment the CSI measurements every 128 samples with 32
samples overlap, which corresponds to the human activity of
about 5.12 seconds. For each segment from the two receivers,

o) e
(a) (b) (c)
)
2] o) = .?
[ : Jf
(d) (e) 4]

Figure 4: Human activities used to evaluate the perfor-
mance of EI (a) Wiping the whiteboad; (b) Walking; (c)
Moving a suitcase; (d) Rotating the chair; (e) Sitting; (f)
Standing up and sitting down.

we calculate the correlation between the segment and the
segments lagged by no more than 7 time units. We set 7 to
be 128 in our experiments. Then we combine them with the
FFT of each segment as the input to the deep learning model.

4.2.4  Performance Evaluation. We first quantitatively ana-
lyze the performance of the proposed EI framework on the
CSI dataset and compare it with the baselines. We randomly
divide the CSI dataset into source domains (i.e., the subject-
room pairs with labeled activities) and target domains (where
no activities are labeled), and at the same time, ensure that
the rooms in source and target domains are different. In this
experiment, there are 22 source domains (11 volunteers in
3 rooms) and 18 target domains (10 volunteers in 3 rooms),
and 10 volunteers are involved in both source and target do-
mains. We gradually increase the number of source domains
from 2 to 22, and use accuracy as the measure of evaluation.
Figure 5 shows the results on the CSI dataset.
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Figure 5: Accuracy of the proposed model on CSI data.

From Fig. 5, we can observe that all the approaches have
low accuracy when there are only 2 source domains. This



is because the labeled samples are too few to learn a good
classifier for each approach. However, the approaches that
utilize unlabeled data on the target domains (i.e., EI, VADA,
CAT) are able to learn better classifiers than random forest
which takes as input only labeled data. The WiFi signals
are sensitive to the surrounding environments, and thus the
signals collected in the source domains and target domains
are quite different, which makes random forest unable to
achieve a good performance on the target domains. For this
reason, even when the number of source domains increases,
the performance of random forest does not have significant
improvement. On the contrary, the other three deep learning
based approaches are able to extract the common features
shared by both source and target domains, which enables
them to utilize label information more effectively. There-
fore, their performance is better than that of random forest.
Among them, the proposed EI framework can achieve the
best performance. By adding the balance constraint and con-
fidence control constraint, the proposed approach can sig-
nificantly increase the exploration ability, and is suitable for
the task of activity recognition with WiFi signals even when
the boundaries among different activities are ambiguous.

The ultimate goal of the proposed EI framework is to
learn environment-independent representations of activities.
To qualitatively evaluate the learned representations, we
conduct the following experiment on the WiFi CSI dataset.
From the unlabeled data in target domains, we first select one
subject who collected data of two different activities in two
different rooms, i.e., four activity and room pairs. Then we
randomly select 40 data samples for each activity and room
pair, and finally plot the learned representations of these
samples according to Eq. (1) on a 2-D space with ¢-SNE [28]
shown in Fig. 6a.

In Fig. 6a, we use orange and blue colors to represent dif-
ferent activities, and circle and triangle markers to represent
different rooms. Note that the activity labels of those sam-
ples are unknown. It can be observed that the samples in the
latent feature space Z can form two clearly separate clusters,
where each cluster corresponds to an activity. Moreover, we
can observe that within each activity cluster, samples from
different rooms are mixed with each other. This demonstrates
the effectiveness of the proposed EI framework, i.e., learning
environment-independent features.

To further illustrate the aforementioned observation, we
first pick two samples with the same activity label. As seen
in Fig. 6a, they are close to each other in the latent feature
space, though being collected from two different rooms. We
then plot their original one-channel CSI waveforms in Fig. 6b.
As one can see, their waveforms are quite different. With
such different input data, the proposed EI framework can
still learn similar representations. This again validates that
the proposed EI framework is able to remove domain-unique
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Figure 6: Learned representation (a) and raw signal (b).

features and extract environment-independent information
from unlabeled data.

4.3 Experiment with Ultrasound Signals

4.3.1 Experimental Settings. In this experiment, we aim to
study the effect of human activities on ultrasound signals and
evaluate the performance of the proposed system. To achieve
the goal, we employ 12 volunteers (including both men and
women) as the subjects to conduct the 6 different activities
(wiping the whiteboard, walking, moving a suitcase, rotating
the chair, sitting, as well as standing up and sitting down)
that are shown in Fig. 4. The activity data are collected from
6 different rooms in two different buildings. Figure 7 shows
the experiment setting in one of the rooms. The transmitter
is an iPad on which an ultrasound generator app is installed,
and it can emit an ultrasound signal of nearly 19 KHz. The
receiver is a smartphone and we use the installed recorder
app to collect the sound waves. The sound signal received
by the receiver is a mixture of the sound waves traveling
through the Line-of-Sight (LOS) and those reflected by the
surrounding objects, including the human bodies in the room.
We let the subjects repeat these six activities in each room
for 5 rounds and in each round, the subjects are asked to
take each type of activity for 51 seconds. Totally, we collect
the activity data of 40 subject-room pairs (i.e., 40 domains).



Figure 7: Experimental setting for human activity
recognition with ultrasound signal.

4.3.2 Data Preprocessing. While the ultrasound signal is
being transmitted, it may be reflected by the ambient objects,
such as the human body. When the human subject moves,
the phase of the received signal will get increased/decreased
with the change of its propagation distance.

Thus, we can view the received ultrasound wave at the re-
ceiver as a phase-modulated signal whose phase changes
with the movement of subject. As suggested in [51], we
can extract the phase information through demodulating
the received signal. Assume that the transmitted signal can
be represented by T(t) = Acos(2xft), then we can repre-
sent the received signal as R(t) = A’ cos(2x ft — 2z fd/c),
where A and A’ are the amplitude of the transmitted and
received signal respectively, f is the frequency, c is the speed
of sound, and d is the length of the propagation which will
be influenced by the movement of subject. Then d/c is the
propagation delay and 27 fd/c is the phase lag caused by
the propagation delay. The demodulation algorithm is to
multiply the received signal with cos(27 ft) to extract the
signal around frequency f*:

A’ cos(2rn ft — 2mfd/c) X cos(2x ft)
= I%I(cos(—Zﬂfd/c) + cos(4rft —2nfd/c)).

After passing the output signal through a low pass filter
of frequency f’, we only keep the signal whose original
frequency was between [ f — f”, f + f”], which represents the
influence of the human movement on the ultrasound signal.
Using similar method, we multiply the received signal with
—sin(27z ft) to get %'(sin(—Zﬂfd/c)).

Then, we downsample signal to 345 Hz and segment the
signal for every 2048 points with 512 overlapping points.
Finally, we use A?l(COS(—ZHfd/C)) and A?/(sin(—and/c)) as
well as their FFTs as the input to the deep learning model.

4.3.3  Performance Evaluation. In this experiment, we divide
the rooms into two disjoint sets as source and target domains.

There are 21 subject-room pairs (11 volunteers and 3 rooms)
used as the source domains, and 19 pairs (10 volunteers and 3
rooms) as the target domains. Nine volunteers are involved in
both source and target domains. Figure 8 shows the accuracy
of all the approaches on the ultrasound dataset with different
number of source domains.
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Figure 8: Accuracy of the proposed model on ultra-
sound data.

From Fig. 8, we can observe that the proposed EI frame-
work can achieve better performance compared with the
baselines in all cases. We also notice that the performance
of random forest is the worst. For random forest, though we
use Mel-frequency Cepstral Coefficients (MFCCs) 2, a feature
commonly used for audible sound based recognition tasks,
as its input data, its accuracy is still not as good as that of
the deep learning models. Moreover, it can be observed that
as the number of source domains increases, all the meth-
ods have a general trend of increasing-and-stabilizing. This
means that with a few labeled data, all the approaches are
able to learn good classifier boundaries on the ultrasound
dataset.

In Fig. 9a, we first show the learned representations of
acoustic signals that correspond to a single subject perform-
ing two different activities in two different rooms. From
Fig. 9a, we can observe similar patterns as those in the ex-
periment with WiFi signals, but the boundary between these
two activities is more clear. Figure 9b lists two acoustic sig-
nals of the same activity collected from different rooms on
the same volunteer. Though they are different, the represen-
tations of them are quite close in the learned latent space.

4.4 Experiment with 60 GHz mmWave

In recent years, the 60 GHz millimeter-wave (mmWave) tech-
nology has been introduced to further increase the through-
put of wireless networks. In addition to improving the com-
munication performance, 60 GHz millimeter-wave signals

Zhttps://en.wikipedia.org/wiki/Mel-frequency_cepstrum
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Figure 9: Learned representation (a) and raw signal (b).

can also be leveraged for sensing tasks such as human activ-
ity recognition. In this section, we study the effect of human
activities on the mmWave signals.

4.4.1 Experimental Settings. In this experiment, 10 volun-
teers (including both men and women) are employed as the
subjects and the activity data are collected from 4 different
rooms in two different buildings. Figure 10 shows the ex-
periment setting in one of the rooms. The platform we use
to collect the mmWave activity data is X60 [35]. Each X60
node is based on National Instruments’ mmWave Transceiver
System [18] and equipped with a user-configurable 24-
element (12 for TX and 12 for RX) phased antenna array
from SiBeam. Previous gesture tracking systems [53] used
receivers equipped with narrow-beam horn antennas (e.g.,
3.4 degrees in [53]), essentially eliminating multipath, which
enabled them to perform the passive tracking using physics
laws. In contrast, commercial mmWave systems using phased
array antennas generate imperfect beams with wide main
lobes and often strong side lobes due to the discretization of
the individual antenna element phase shift and the relatively
small number of antenna elements. For example, the main
lobe in the beams generated by our hardware is 30-35 degrees.
In Fig. 11, we illustrate the pattern of the beam we used (beam
12) in polar coordinates. Such imperfect beams often result in
non-negligible multipath propagation (although still weaker

Figure 10: Experimental setting for human activity
recognition with mmWave signals.

than in WiFi) [29, 34, 35]. Thus, using only the physics laws
it is very difficult to precisely model the complex ambient en-
vironments as well as the unique characteristics of different
human subjects. Deep learning technique is an ideal solution
for this problem due to its superior feature extraction ability.

In our experimental setting, we ask the subjects to conduct
5 types of activities (walking, moving a suitcase, rotating the
chair, sitting, as well as standing up and sitting down) that
are shown in Fig. 4. The subjects are also asked to repeat
these five activities in each room for 4 rounds and in each
round, we collect 10 segments of mmWave signal (5 seconds
for each segment) for each activity of one subject. Totally,
we collect the activity data of 19 different domains.

0
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920 -90

Figure 11: The pattern of the 12 beam of the
mmWave signal in polar coordinates.

4.4.2 Data Preprocessing. With the accompanying software
API on this platform, we are able to obtain a channel impulse
response (CIR) sample (each has 1024 points) every 40 ms. For
each data segment, we collect samples for 5 seconds, hence
there are 125 CIR samples in each segment. Also, in order
to characterize the frequency response of the wireless chan-
nel, we transform each CIR sample to a frequency response
sample through simply calculating the Fourier transform of
each CIR sample. After that, we downsample each frequency



response sample to 32 points to compose a 32 X 125 feature
matrix as the input to our model.

4.4.3 Performance Evaluation. In the experiment on the
mmWave dataset, there are 11 source domains (9 volunteers
in 2 rooms) and 8 target domains (6 volunteers in 2 rooms),
and 5 volunteers are involved in both source and target do-
mains. Figure 12 shows the accuracy of all the approaches
on the mmWave dataset. We can observe that the proposed
EI performs better than all the baselines, but the improve-
ment is not significant compared with the results on both
WiFi and ultrasound datasets. This phenomenon is caused
by the unique properties of the collected mmWave data. The
60 GHz mmWave is usually made directional 3 and this di-
rectionality makes the collected data not as sensitive to the
surrounding environments as WiFi and acoustic signals.
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Figure 12: Accuracy of the proposed model on
mmWave data.

We also conduct experiments to analyze the representa-
tions learned by the proposed EI framework, which is shown
in Fig. 13. As seen, though the environment-specific infor-
mation contained in the mmWave signals is not as much as
in WiFi and acoustic signals, the proposed EI framework can
still remove it and improve the prediction performance.

4.5 Experiment with Visible Light

4.5.1 Experimental Settings. To evaluate the performance
of the proposed system in the visible light environments, we
build an optical system using photoresistors to capture the
in-air body gesture. Given the light source, the system is able
to precisely detect the illuminance change (lux) caused by
the body interaction. Specifically, we employ the cadmium-
sulfide (CdS) cells, which are basically resistors that change
their resistive value in ohms depending on the amount of
light which is shining onto the squiggly face. To measure
the resistor, we employ Arduino Uno and connect one end

360 GHz mmWave is highly attenuated due to its high frequency. To mitigate
its high attenuation characteristics, directionality is usually employed.
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Figure 13: Learned representation (a) and raw signal

(b).

of the cell to the power (5V) and the other to a pull-down
resistor to ground. With each board equipped with 6 analog
input pins (A0 A5), we developed 3 boards with 18 CdS cells
in total (as shown in Fig. 14). The resistor value of each cell
is monitored and recorded through the serial port at the
sampling rate of 15 Hz. To simultaneously record the data
from three boards, we implemented the reading program
using processing sdk so that the logged system clock on
each board is synchronized. For the ambient light source, we
chose Qooltek Portable USB lamp because it provides three
lighting options: natural mode, warm mode and cool mode,
which covers most of the lighting conditions in daily life.
In this experiment, we treat the above three lighting op-
tions (i.e., natural mode, warm mode, and cool mode) as
three different environments, and then design four hand
gestures (i.e., drawing an anticlockwise circle, drawing a
clockwise circle, drawing a cross, and shaking hand side to
side). Specifically, we employ 6 volunteers (including both
men and women) as the subjects and each of them performs
20 trials of every gesture under a given lighting condition.
In total, we collect the activity data of 18 different domains.



Figure 14: The optical system used for collecting visi-
ble light signals.

4.5.2  Data Preprocessing. Due to the unavoidable small vari-
ation in the sampling length between trials, we need to seg-
ment the data into the uniformed length. Since all 18 pho-
toresistors are synchronized in one trial, we randomly pick
one as the pivot (e.g., the first one) and segment all the data
based on the same timestamp. The hand gesture generates
the peak (or valley) when it covers (or leaves) the surface
of the photoresistor. To detect peak values, we adopt a peak
detection algorithm with adaptive threshold [63].

Given the recorded signal x(n), this algorithm obtains the
relationship between the counted peaks and the threshold
value. Specifically, it goes through all the threshold values
from 0 to the maximal magnitude difference, and the corre-
sponding number of peaks (or valleys) is detected. Then, we
search for the stage where the number of the peaks stays
unchanged when the thresholds increase, which implies that
most of the random noise is ignored and only the true peaks
are counted. In this way, we can accurately find the gesture-
relevant peaks in x(n). Based on the empirical knowledge,
we select the entire gesture window as 2100 ms to make
sure it covers all the peaks and segment the data from all
photoresistors according to the timestamp. Eventually, each
gesture is represented by a data sequence of 480 samples.

4.5.3  Performance Evaluation. Different from the previous
three experiments, the environment in this case is the light-
ing option, not the room. In practice, the collected visible
light data are not sensitive to the lighting options, but the
quality of the data mainly depends on the gestures of sub-
jects. Therefore, the domain-specific information in this ex-
periment comes more from the uniqueness of subjects than
environments.

In this experiment, the lighting options are fixed (three
options), and we have 6 source domains (2 volunteers) and 12
target domains (4 volunteers). Note that there is no common
volunteer in both source and target domains.

Figure 15 shows the experimental results on the Visible
Light dataset. We can observe that the proposed EI frame-
work still outperforms all the baselines in terms of accuracy.
Since there is no common subjects between source and target
domains, for each approach, higher accuracy means better
ability of learning transferable feature representations. Ran-
dom forest cannot extract such features, and thus performs
the worst. Figure 16 presents the case study on the learned
representations and raw visible light signals. Here we se-
lect two different subjects who collect data of two different
activities in one environment, i.e., four activity and subject
pairs. Figure 16a shows the learned representations. We use
orange and blue colors to represent different activities, and
circle and triangle markers to represent different subjects.
Figure 16b lists two light signals of the same activity col-
lected by different subjects in the same environment. Both
Fig. 15 and 16 show that the proposed EI framework has
the ability of removing unique characteristics of different
subjects and is effective for the device free human activity
recognition task.
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Figure 15: Accuracy of the proposed model on visible
light data.

4.6 The Effect of the Balance Constraint

As described in Section 3.5, in the proposed EI framework,
we add a balance constraint to control the percentage of the
data labeled as each activity by the model. The percentage
of each activity, in our design, can be estimated according
to either prior knowledge or labeled data in source domains.
In practice, however, the real percentage of each activity in
unlabeled data from target domains may not exactly equal
to the estimated percentage. In this section, we evaluate how
sensitive our model is to the percentage of each activity.
Here we take the CSI dataset as an example. We set the
number of source domains to be 22 and the number of target
domains to be 18. Then, for each target domain, we randomly
select some activities and discard a proportion of the data
of these activities to make the percentage of activities in the
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Table 1: Accuracy of EI framework when the activity
percentage in the target domains does not match that
in the source domains.

Number of activities 1 2 3 4 5
Discard ratio = 0.25 | 0.73 | 0.73 | 0.72 | 0.72 | 0.72
Discard ratio = 0.50 | 0.72 | 0.71 | 0.71 | 0.71 | 0.69

target domains different from that in the source domains.
In this experiment, we consider two cases where the ratios
of the discarded data are set as 0.25 and 0.50, respectively.
For each case, we vary the number of the selected activities
from 1 to 5. Table 1 reports the accuracy of the EI framework
for the two cases. From this table, we can observe that com-
pared with the ideal scenario when the percentage of each
activity in the target domains equals to that in the source
domains (the accuracy is 0.75 according to Fig. 5), the perfor-
mance of the EI framework drops slightly. Additionally, the
results in Table 1 also show that the accuracy of the EI frame-
work decreases slightly when the ratio of the discarded data
increases from 0.25 to 0.50. The results of this experiment
verify that the proposed EI framework can still achieve good
performance even when the percentage of each activity in
unlabeled data does not match that in labeled data.

To further evaluate the effect of the balance constraint, we
also implement the EI framework on the CSI dataset without
taking balance constraint into account, and then compare it
with the EI framework with balance constraint as well as the
baseline methods. The adopted experimental setting here is
the same as that in Section 4.2.4. The comparison results are
shown in Fig. 17, from which we can see that even when we
remove the balance constraint, the EI framework can still
achieve better performance than the baselines. However, the
performance of the EI framework without balance constraint
is not as good as that when the balance constraint is enabled.
For example, when the number of domains used for train-
ing is 22, the accuracy of the EI framework with balance
constraint is 0.75 while that of the EI framework without
balance constraint is only 0.61, which is also much lower
than the accuracy of any of the unbalanced settings shown
in Table 1.

In summary, the above experimental results show that the
designed balance constraint plays an important role in the
human activity recognition tasks, even if the percentage of
the activities in the target domains does not exactly match
that in the source domains.
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Figure 17: Accuracy of the proposed model without
balance constraint.

5 RELATED WORK

Device-free Human Activity Recognition: Human activ-
ity recognition (HAR) has been widely studied in recent years.
However, traditional methods such as vision based [5, 30, 56]
and wearable device based [9, 19-21] methods either have
privacy and complexity problems or require subjects to wear
special devices. To address these challenges, researchers start
to leverage wireless signals (e.g., ultrasound, WiFi, nmWave,
visible light, etc.) to achieve device-free human activity recog-
nition. Based on the type of adopted wireless signal as well
as the feature extracted from the signal, those methods can
be clustered into the following categories:

e Acoustic-based methods: Acoustic signals emitted
and recorded by Commercial-Off-The-Shelf (COTS)



mobile devices can achieve frequency higher than 17

KHz, which is inaudible to most people [32]. When

the acoustic signals reflect off moving objects, such

as human body, they get frequency shift due to the

Doppler effect. In some recent work [6, 15, 31, 33],

the authors propose to recognize human gestures and

activities through analyzing frequency shift over a

period of time.

RSSI-based methods: As an indicator of the power

level of the signal received at the receiver, the re-

ceived signal strength indicator (RSSI) can be used
to measure the distance as well as the channel con-
ditions between the transmitter and receiver. Some
researchers [1, 36, 40, 49] propose to recognize human
activities through analyzing the RSSI values. For exam-
ple, by analyzing the changes in WiFi signal strength,
it is possible to recognize in-air hand gestures around

the user’s mobile device [1].

CSI-based methods: As a known channel property

of a communication link, CSI can reflect the combined

effects of scattering, fading and even the power de-
cay with distance. Thus, compared with RSSI, CSI can
capture the fine-grained changes of wireless channels.

Because of the release of Linux 802.11n CSI Tool [16],

recently a lot of research work have been conducted

to utilize CSI for the task of human activity recogni-
tion [3, 8, 14, 38, 47, 48, 50, 52, 55] or gesture recogni-

tion [17, 24, 37, 42, 45, 46, 59].

e mmWave-based methods: Compared with WiFj,
which uses 2.4/5 GHz frequency bands, 60 GHz
mmWave has a much shorter carrier wavelength. The
shorter wavelength of 60 GHz mmWave can create
stronger reflection from small objects since wireless
signals cannot easily bypass objects larger than wave-
length [53]. Moreover, 60 GHz mmWave is usually
made directional and the signal strength of 60 GHz
mmWave is highly correlated with the object mate-
rial [23]. Therefore, researchers have begun to use this
technology to recognize/tracking different gestures
[27, 53], monitor vital signs [57], and image the ob-
jects [61, 62]. To the best of our knowledge, our work
is the first that uses 60 GHz mmWave to recognize
whole-body activities.

o Light-based methods: Since each human activity can
produce unique continuous shadow map under visible
light, some recent work [4, 25, 26] propose to recog-
nize human activities or gestures by analyzing those
shadow maps.

The above device free activity recognition approaches
and systems, though having good performance in certain

cases, are all challenged by the environment/subject-specific
information contained in the wireless signals.

Domain Adversarial Training: Technically, our work is
related to domain adversarial training approaches [2, 10, 11,
39, 43, 44, 60]. Domain adversarial training shares with the
generative adversarial network [12] the use of adversarial
objective, and its goal is to encourage a neural network to
learn a representation that is predictive to learning task on
the source domain, but uninformative to the domain of the
input. [2, 10, 11] are the first domain adversarial training
approaches that are proposed to tackle the unsupervised
domain adaptation problem. To further improve the domain
adaptation performance, Zhao et al. [60] propose a condi-
tional adversarial architecture, which can retain the infor-
mation relevant to the predictive task when removing the
domain-specific information. Although this architecture is
effective, it is mainly designed for supervised tasks without
taking the unlabeled data into account. To take advantage
of the unlabeled data, the authors of [39] propose to force
the classifier to be confident on the unlabeled data to im-
prove the adversarial training. Different from previous work,
our proposed model incorporates the unlabeled data into
conditional adversarial architecture. Moreover, we find out
that merely increasing the confidence on the unlabeled data
may lead to premature convergence and even extreme cases
where most samples are incorrectly assigned to the same
activity category. In order to tackle these problems, we fur-
ther add a confidence control constraint and make use of
the prior knowledge, i.e., the percentage of activities on the
labeled data, to design a balance regularization.

6 CONCLUSIONS

In this paper, we propose an effective and general framework
to recognize device free human activities. Especially, the pro-
posed framework can remove environment and subject spe-
cific information and learn transferable features of activities.
The proposed framework is composed of a feature extractor,
an activity recognizer, a domain discriminator, and several
constraints. The feature extractor tries to its best to cheat the
domain discriminator by minimizing domain label accuracy,
and at the same time, maximizes the performance of the ac-
tivity recognizer. Through this minimax game, the proposed
framework can finally derive environment-independent fea-
tures. Extensive experiments on four different testbeds, in-
cluding WiFi, ultrasound, 60 GHZ mmWave and visible light,
demonstrate the effectiveness of the proposed framework.
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