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ABSTRACT
Future WLAN devices will combine both IEEE 802.11ad and

802.11ac interfaces. The former provides multi-Gbps rates

but is susceptible to blockage, whereas the latter is slower

but offers reliable connectivity. A fundamental challenge is

thus how to combine those complementary technologies, to

make the most of the advantages they offer. In this work,

we explore leveraging Multipath TCP (MPTCP) to use both

interfaces simultaneously in order to achieve a higher over-

all throughput as well as seamlessly switching to a single

interface when the other one fails. We find that standard

MPTCP often performs sub-optimally and may even yield a

throughput much lower than that of single path TCP over

the faster of the two interfaces. We analyze the cause of

these performance issues in detail and then design MuSher ,
an agile MPTCP scheduler that allows MPTCP to fully uti-

lize the channel resources available to both interfaces. Our

evaluation in realistic scenarios shows that MuSher provides
a throughput improvement of up to 1.5x/2.3x and speeds up

the recovery of a traffic stream, after disruption, by a factor

of up to 8x/75x, under WLAN/Internet settings respectively,

compared to the default MPTCP scheduler.
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1 INTRODUCTION
Millimeter-wave (mmWave) wireless is fast emerging as the

prime candidate technology for providing multi-Gbps data

rates in future wireless networks. The IEEE 802.11ad stan-

dard with its 2 GHz-wide channels provides data rates of up

to 6.7 Gbps, a multi-fold increase over legacy WiFi through-

put. Multiple 802.11ad-compliant commercial devices (both

APs and laptops) have been released over the past few years

and the technology is already making its way into smart-

phones [1, 34].

Nonetheless, communication atmmWave frequencies faces

fundamental challenges due to the high propagation and

penetration loss and the use of directional transmissions

makes links susceptible to disruption by human blockage

and client mobility. Even if PHY and MAC layer improve-

ments (e.g., [19, 30, 45, 48]) result in faster beam steering

and lower re-connection times in the future, any realistic

indoor scenario is expected to contain enough dynamism to

cause a large number of re-connection events, which will

hurt application performance and result in poor user experi-

ence. Further, due to the mmWave channel characteristics,

providing full coverage at 60 GHz is extremely difficult and

realistic deployments are likely to have some coverage gaps.

In this work, we tackle the challenge of supporting the

multi-Gbps throughput provided by the 60 GHz technology

while still providing the reliability of legacy WiFi, which is

the key for wide-spread adoption of 60 GHz WLANs. Using

both 802.11ad and 802.11ac interfaces simultaneously not

only offers reliability by providing a fall-back option in case

60 GHz connectivity becomes unavailable but also allows a

client to theoretically obtain the sum of the data rates offered

by the two technologies. Commercial off-the-shelf (COTS)

APs as well as client devices offer tri-band solutions with 2.4,

5, and 60 GHz interfaces [4, 5] and thus such a multi-band

approach is feasible with existing hardware.

A critical architectural choice is at which layer of the pro-

tocol stack to implement such a solution. We explore Multi-

path TCP (MPTCP) [17], a transport layer protocol that can

use the 802.11ad and 802.11ac interfaces simultaneously to

achieve higher throughput when both networks are available
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and can seamlessly fall back to 802.11ac in an application-

transparent manner when the 802.11ad network becomes

unavailable. Although standardized only recently, MPTCP is

gaining increasing popularity among smartphone vendors,

telecom providers, and startups [2, 3, 6].

MPTCP’s design as a transport layer solution decouples

it from both the application layer and the IP and MAC lay-

ers. Solutions that try to achieve a similar functionality at

the MAC layer, such as 802.11ad’s Fast Session Transfer

(FST) [22], will need to have mechanisms for re-ordering

of packets from different interfaces at the receiver in or-

der to provide an in-order data stream and be transparent

to higher layers. This would invariably require introducing

global sequence numbers at the MAC layer across all inter-

faces and maintaining a queue to perform re-ordering – an

unnecessary duplication of functionality already provided by

the transport layer. In fact, a recent work [44] showed that

a baseline MAC layer solution utilizing the Linux bonding

driver without a mechanism for in-order delivery performs

worse than using the 802.11ad interface alone, as excessive

re-ordering presents a challenge to TCP. Further, given that

FST is part of the 802.11ad specification, any modifications

to fix such issues would make it non-standard compliant.

Despite its attractive features, using MPTCP in multi-band

WLANs is far from straightforward. A large number of recent

studies investigated the performance of MPTCP in scenarios

combining WiFi and cellular interfaces [9, 14, 16, 38, 39])

and showed that the protocol performs poorly over hetero-

geneous paths, due to various interactions among differ-

ent components of MPTCP. More recent works [25, 40, 44]

showed that MPTCP in dual band 5/60 GHz WLANs often

yields lower performance than using the 802.11ad interface

alone, and the authors in [25, 44] even argue that the two

radios should never be used simultaneously.

In contrast, to the best of our knowledge, our work is the

first to show that the use of MPTCP is not only viable but

a promising solution towards dual-band 5/60 GHz WLANs.

We begin with an extensive experimental study using COTS

APs and laptops to understand the causes of the observed

performance and uncover the pitfalls of the current MPTCP

implementation in this new setting. Our study reveals that

MPTCP can achieve near optimal throughput under base-

line, static scenarios. However, realistic dynamic environ-

ments, e.g., with contention in the 5 GHz band or blockage of

the 802.11ad link, are extremely challenging for the current

MPTCP architecture and result in severe performance degra-

dation. We then design and implement MuSher , a novel

MPTCP scheduler that addresses the root-cause of the per-

formance degradation, allowing MPTCP to perform near-

optimally under a wide variety of dynamic use cases.

In summary, our work makes the following contributions:

(1) We develop a comprehensive set of tools to instrument

MPTCP components, like the queues and scheduler, that

help us study the protocol’s performance and understand

the root-cause of various performance issues. We have made

these tools publicly available
1
for others to further improve

MPTCP in new settings.

(2) We conduct an extensive measurement study
2
to under-

standMPTCP performance in dual-band 802.11ad/acWLANs

with COTS devices under realistic settings. We find that, in

contrast to previous works that strongly discourage the si-

multaneous use of the two interfaces, MPTCP yields near

optimal throughput in static scenarios but faces a number of

challenges in dynamic environments.

(3) We design MuSher , a novel MPTCP scheduler that ad-

dresses all the identified challenges via throughput-ratio

based scheduling and a number of additional mechanisms.

(4) We implement MuSher in the Linux kernel
3
and evaluate

it in realistic WLAN and Internet settings. We show that it

achieves up to a factor of 1.5x/2.3x throughput improve-

ment and reduces recovery time from link failures by up to

8x/75x in local WLAN/Internet settings compared to the

default MPTCP scheduler.

2 MPTCP BACKGROUND
Fig. 1 highlights the main components of the MPTCP ar-

chitecture. On the sender side, an application is exposed

to a single TCP socket and outgoing segments generated

by the application are placed in the send-queue. This queue
is at the MPTCP or meta-level, on top of the subflow-level

queues. The Packet Scheduler reads segments from this queue

and assigns them to one of the available subflows. Sched-

ulers are implemented as Loadable Kernel Modules (LKMs)

and use different criteria to select the most suitable sub-

flow for each segment. The default minRTT scheduler in

the Linux implementation of MPTCP chooses the subflow

with the smallest round-trip time (RTT) among the subflows

that have free space available in their congestion-window

(cwnd). Apart from the send-queue, a separate, higher prior-

ity reinject-queue is maintained for segments that need to be

retransmitted.

The rate at which segments are sent out over the individ-

ual subflows is controlled by the Congestion Control algo-
rithm through the use of cwnd, similar to single path TCP

(SPTCP). MPTCP allows for both decoupled and coupled vari-

ants of congestion control. The decoupled variant runs an

independent instance of the default Linux congestion control

1
https://github.com/swetanksaha/mptcp-tools

2
Data available at: https://buffalo.box.com/v/mobicom19-musher-data

3
https://github.com/swetanksaha/mptcp-musher
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Figure 1: MPTCP Architecture (Sender and Receiver)

algorithm (typically Cubic) on each of the subflows while

the coupled variants link the increase of the cwnd among the

subflows. Use of coupled congestion control [23, 33, 37] is

preferred over its counterpart as it maintains fairness with

other competing flows running over a bottleneck link [37].

On the receiver side, the segments first arrive at the subflow-

level receive queues and are then delivered in-order (at the

subflow-level, but not necessarily globally) to a common

receive buffer (recv-queue) at the MPTCP/meta-level. Seg-

ments arriving out-of-order at the meta-level are put in an

out-of-order queue (ofo-queue) that is shared among all the

subflows of an MPTCP connection. The space left in the

shared buffer is advertised to the sender as the receive win-

dow (recv_win).

3 EXPERIMENTAL METHODOLOGY
3.1 Devices
Our setup consists of a Netgear Nighthawk X10 WiFi router

and an Acer Travelmate P446-M laptop.

60 GHz (802.11ad) The router has the QCA9008-SBD1 mod-

ule housing the QualcommQCA9500 chipset, which supports

all the single-carrier 802.11ad data rates (from 385 Mbps up

to 4.6 Gbps). The laptop has the client-version of the mod-

ule, QCA9008-TBD1, which includes the 802.11ac, 802.11ad,

and BT chipsets. It uses the open source wil6210 wireless

driver to interface with the chipset. Both the router and the

laptop use a 32-element phased antenna array. The 60 GHz

radios on both devices use their default rate adaptation and

beamforming algorithms.

WiFi (802.11ac) While the router supports up to 4 MIMO

spatial streams, our client only supports 2, resulting in a link

configuration of 2x2 MIMO, 80 MHz bandwidth, short guard

interval, and default rate adaptation.

Traffic Generation and Maximum Goodput A high-end

desktop is connected to the router through a 10G LAN SFP+

interface to generate/receive TCP traffic. While this setup

would in theory allow us to achieve the maximum 802.11ad

rate of 4.6 Gbps, we found that in practice the maximum

goodput on the router is limited to 1.6-1.65 Gbps and 500-550

Mbps, with 802.11ad and 802.11ac, respectively.

3.2 MPTCP
We use MPTCP version v0.94 and make all our modifications

and instrumentation on top of its code base. We make use

of the fullmesh Path Manager, which establishes a subflow

for each interface combination between the sender and re-

ceiver. Our client device is dual-homed with an 802.11ad

and 802.11ac interface and the server is single-homed with a

10G Ethernet interface, hence a total of 2 subflows are cre-

ated. Unless stated otherwise, we use the default minRTT
scheduler. Finally, we use the default Lia coupled congestion
control, which also achieves the best performance (Table 1),

apart from the first measurement study where we evaluate

all the available congestion control algorithms.

4 MPTCP PERFORMANCE & PITFALLS
In this section, we study MPTCP over dual-band 802.11ad/ac

links under a wide range of scenarios using the analysis tools

described in Appendix A. The goal is not only to characterize

the performance but to understand and analyze the root

causes of the observed behavior.

4.1 MPTCP Memory Optimizations
The Linux implementation of MPTCP (since v0.89) includes

two complementary optimizations (labeled as Mechanisms

1 and 2 in [38], where they were first introduced) to reduce

memory usage. While Mechanism 1 performs opportunistic

re-injection of data from one subflow to the other if a flow is

recv_win limited, Mechanism 2 halves the cwnd and sets the
slow start threshold to the reduced window size for the sub-

flow holding up the advancement of the MPTCP connection

window.

Although the authors in [38] show improvements with

these mechanisms for a scenario involving WiFi and 3G

interfaces, our measurements reveal a significant impair-

ment due to these optimizations. Fig. 2a shows the send-

window (send_win=min(cwnd,recv_win)) and slow-start

threshold (ssthresh) of the 802.11ad and 802.11ac subflows

of an MPTCP connection lasting 180 s. For the 802.11ad sub-

flow (zoomed in on the first 0.5 s), we observe a zig-zag

pattern for the send_win which is being repeatedly halved



(a) Optimizations enabled (Top: 802.11ad; Bottom:

802.11ac)
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Figure 2: Memory usage optimizations

(due to Mechanism 2) causing the subflow to be stuck in the

slow start phase. In fact, the subflow never enters the con-

gestion avoidance phase as it never experiences a loss due

to the premature cutting of cwnd. The 802.11ac subflow does

exit slow start but its send_win and ssthresh are halved

repeatedly over the connection lifetime, even though there

is no loss event (triple duplicate ACK or timeout).

Note that these optimizations are applied here as a result of

flow penalization that accompanies a forced re-transmission

initiated when the SOCK_NOSPACE flag is set on the meta-

socket on the sender side indicating that it is full. MPTCP

treats being send-buffer-limited as a trigger to engage Mech-

anism 2 as a preemptive step to becoming recv_win limited

in the future. These optimization induced cuts result in per-

formance degradation and variance over time. Fig. 2b shows

the MPTCP throughput of a given 802.11ad/ac link with and

without the optimizations. With optimizations enabled (top

plot), the mean throughput over 180 s is 2011 Mbps, whereas,

with optimizations disabled (bottom plot), the throughput is

improved by 216 Mbps to 2227 Mbps and, more importantly,

is much more stable over time.

Fig. 2c shows the subflow cwnd and ssthresh with both

mechanisms turned off. Both subflows are able to exit slow

start and do not experience any cuts to their windows. More-

over, disabling the optimizations does not result in throttling

of the MPTCP flow due to recv_win limitations at any time

during the 180 s. In light of this finding, we disable both

optimizations for the rest of the measurements.

4.2 Baseline Performance
We first establish a baseline for MPTCP performance under

static scenarios. We primarily look at how close MPTCP

throughput is to the sum of throughputs of the two single

path flows (when each of the two interfaces is used alone).

4.2.1 Congestion Control Algorithms. We experiment with

four congestion control algorithms available in the Linux

implementation – Cubic (decoupled), Lia [37], Olia [23], and
Balia [33] – under backlogged traffic. Table 1 lists MPTCP

throughput along with throughput over each interface when

engaged separately for comparison. For each of the four al-

gorithms, MPTCP can achieve throughput very close to the
expected sum (96%-99%). This is in sharp contrast to several

previous works [9, 14, 16, 38, 39] that have shown MPTCP to

perform poorly when used with interfaces of heterogeneous

data rates, albeit in the context of WiFi+3G/LTE, and more

importantly to recent works [25, 44] arguing that 802.11ad

and 802.11ac interfaces should not be used simultaneously.

Note that the sum throughput achieved by MPTCP is sub-
stantially higher than the throughput over any of the two
interfaces alone. E.g., compared to MUST [44], a MAC layer

solution that only uses the 802.11ad interface and switches

to 802.11ac in case of blockage, the use of MPTCP would

result in a throughput boost of 31%-36%. We also verified

that MPTCP can sustain the provided application data rates

under non-backlogged traffic.

Table 1: MPTCP congestion control algorithms
802.11ad
only

802.11ac
only MPTCP Expected

Sum
% Sum

Achieved
Cubic 1649 ± 74 591 ± 23 2167 ± 162 2240 96.74

Lia 1631 ± 89 596 ± 25 2227 ± 95 2228 99.99

Balia 1638 ± 99 595 ± 22 2230 ± 78 2233 99.83

Olia 1649 ± 121 585 ± 18 2192 ± 112 2235 98.05

Delay. We use the time spent by packets in the MPTCP

meta-level ofo-queue as a measure of application-perceived

delay. This is a much more realistic measure for studying the

MPTCP-induced delay due to packet re-ordering required

at the meta-level, as it isolates the extra delay a receiver

experiences due to MPTCP from the delay of the individual

subflows which occurs even if we were to use SPTCP for each

subflow. Additionally, the queue length is also a measure of

the amount of re-ordering induced by MPTCP. Fig. 3a and

3b plot the ofo-queue delay and queue length for each of

the four congestion control algorithms. The maximum delay

and queue length are upper-bounded by 10 ms and 1.5 MB,



(a) Delay of packets in ofo-queue (b) Length of ofo-queue

Figure 3: MPTCP impact on delay and queue length

respectively. In the median case, MPTCP adds only a 5 ms

delay over SPTCP. Further, since the queue length in the

median case is well below 500 kB, using MPTCP does not

impose extra memory requirements on the system while

providing significant throughput gains.

4.2.2 Suboptimal Links. In §4.2.1, we considered optimal

links that can individually support the highest throughput

possible with our hardware. We now repeat the measure-

ments over suboptimal links. We first examine a scenario

involving an optimal 802.11ac link and a suboptimal 802.11ad

link. We vary the quality of the 802.11ad link by changing

the client-AP distance and consider three cases based on the

relationship between the 802.11ad throughput (Thad ) and
the 802.11ac (Thac ) throughput. Fig. 4a shows for each of

the three cases the throughput of the two interfaces when

they are used individually and when they are used together

with MPTCP. We observe that the MPTCP throughput is

greater than 90% of the expected sum for the Thad≫Thac
and Thad≪Thac cases and 85% of the expected sum for

the Thad=Thac case. Further, in each of the three cases, the

MPTCP throughput is higher than the best of the two single

path throughputs (Goal 1 in RFC 6356 [37]). Compared to

MUST, this translates to a throughput improvement ranging

from 44% (when Thad≫Thac ) to 5x (when Thad≪Thac ).
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Figure 4: MPTCP throughput with suboptimal links

We then examine a scenario involving an optimal 802.11ad

link and a suboptimal 802.11ac link. Since it is not possible

to drop the quality of the 802.11ac link by moving the client

away from the AP (as that would also result in a steep drop

of the 802.11ad link quality), we instead fix the 802.11ac

channel width to 20 MHz. Fig. 4b presents a CDF of the

MPTCP throughputs collected over several runs of 60 s at 10

randomly selected locations. MPTCP throughput is close to

the expected sum (vertical line) most of the time and only

for around 17% of the cases is it worse than the faster of the

two interfaces (802.11ad/1600 Mbps).

4.2.3 Field Evaluation. We finally perform a field test of

MPTCP in three realistic indoor locations – conference room,

lab, and lobby – in an academic building. We consider 5

links of varying quality at each of these locations. While the

802.11ac link SNR at the different locations in a given room

is similar, the 802.11ad links are affected more by distance

and furniture and experience different SNRs. Fig. 5 shows

the single path and MPTCP throughputs for the 15 links con-

sidered in the trial. Under almost all link conditions, MPTCP

throughput is very close to the expected sum. In the only

scenario where MPTCP does not provide throughput close

to the expected sum (lab, link L5), its average throughput is

as high as that of the faster of the two interfaces (in this case

802.11ac), again satisfying Goal 1 in [37] and outperforming

MUST, while also adding reliability by allowing for smooth

switch-over, if needed.

4.3 Understanding MPTCP Performance
Our measurements in §4.2 clearly demonstrate that MPTCP

can provide substantial performance improvement in a wide

variety of link quality and environment scenarios, challeng-

ing the generally accepted consensus that MPTCP should not

be used with heterogeneous interfaces. Thus, a root-cause

analysis is needed to answer why MPTCP works well with

the specific scenario involving 802.11ad and 802.11ac inter-

faces. Since our observations in §4.2.1 already indicate that

congestion control does not have an impact on the MPTCP

throughput, we turn our attention to another key MPTCP

component: the packet-scheduler, responsible for the dis-
tribution of application traffic among the subflows.

4.3.1 minRTT Packet Scheduler. We use the tools described

in Appendix A to understand the packet assignment dynam-

ics of the minRTT scheduler. We looked at the scheduler

decisions over the connection lifetime and found that it con-

sistently assigned ∼77% of the packets to the 802.11ad sub-

flow and the remaining 23% to 802.11ac. Further investigation

of the scheduler decision reasons interestingly showed that

for the majority of the time, cwnd was full for one of the

subflows, thereby forcing the selection of the other subflow.

While one might expect the minRTT scheduler to primarily

make decisions based on the comparison of the RTT values

of the two subflows, under backlogged traffic the decisions

are essentially controlled by how and when the space opens

up in a subflow’s cwnd. Our results confirm a similar finding
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reported in [31], where the authors remark that, under satu-

rated congestion windows, the scheduling decision becomes

ACK-clocked.

On the other hand, under non-backlogged traffic, RTT be-

comes the deciding factor. Fig. 6 plots the CDF of the fraction

of time during which the scheduler makes a decision based

on RTT in each 0.5 s interval for source application rates of

400, 1200, and 1800 Mbps. For the high source rate of 1800

Mbps, which is close to the overall combined channel capac-

ity of ∼2100 Mbps, cwnd occupancy is the deciding factor

for the majority of the 0.5 s intervals. When dropping the

source rate to 1200 Mbps, a significant portion of scheduler

decisions are based on subflow RTT values. Finally, with a

low source rate of 400 Mbps, almost all packet assignment

decisions are made based on RTT values.

4.3.2 Impact of Packet Scheduling Decisions. Given that, in

case of backlogged traffic, ACK-clocked scheduling decisions

result in a certain packet distribution between the two sub-

flows, we now investigate inmore detail how the traffic distri-

bution between the subflows impacts MPTCP performance.

To this end, we design an MPTCP scheduler FixedRatio that
performs packet assignment based on a user-defined ratio

(see appendix A).

Fig. 7a plots the MPTCP throughput against the number

of packets assigned to the 802.11ad subflow (Pktsad ) out of
every 100 packets. In each case, the remaining packets (out

of 100) are assigned to the 802.11ac subflow (Pktsac=100-
Pktsad ). Maximum throughput of∼2.1 Gbps is achievedwith

Pktsad=77 and performance worsens as wemove away from

this value with the worst throughput being as low as 400

Mbps (Pktsad=5).
We found that the stark difference in performance with

different assignment ratios is a result of the degree to which

packets arrive out-of-order in the end-to-end MPTCP flow

due to the specific distribution of traffic among the subflows.

A higher number of out-of-order packets can cause packets

to be buffered in the receiver’s ofo-queue and in extreme

cases can even result in throttling of the sender because

of limited space in the receiver’s buffer. In fact, in Fig. 7b,

which plots the CDF of the delay experienced by the data

bytes in the ofo-queue, we observe that the Pktsad=77 value

indeed yields the lowest delay. In general, the Pktsad values

that result in high delay are the ones that result in lower

throughput and vice-versa.

We also plot the CDF of the ofo-queue occupancy under

different Pktsad values in Fig. 7c. One might also expect to

see smaller queue lengths (indicating less out-of-ordering)

for packet assignments corresponding to Pktsad values that

yield higher throughputs. However, under extreme Pktsad
values (e.g., 5, 95), the traffic distribution is so skewed to-

wards one of the subflows that almost all the packets flow

through one of the interfaces, thereby significantly reduc-

ing reordering. As a result, extreme Pktsad values (5, 15, 25,

85, 95), although sub-optimal throughput-wise, have queue

lengths smaller than the Pktsad=77 case. Excluding the ex-
tremes, other Pktsad values show a general trend of having

larger queues in conjunction with lower throughput.

Throughput-optimal ratio. The reason for Pktsad=77 re-

sulting in optimal throughput is that the underlying packet-

distribution ratio imposed by this assignment Pktsratio=
Pktsac/Pktsad=23/77=0.30 is nearly identical to the ratio

of the actual individual throughputs of the two interfaces

Tputratio=Tputac/Tputad=500/1600=0.31. Assigning pack-
ets with this very specific ratio minimizes the chance of pack-

ets arriving out-of-order at the meta-level MPTCP buffers.

Note that although in-order delivery of packets within a

subflow (intra-subflow) is guaranteed because of SPTCP op-

eration at the subflow level, global in-order delivery among

all subflows (inter-flow) needs to be achieved through re-

ordering at the meta-level.

Important Findings:

• Optimal MPTCP performance can be achieved when the

packet-assignment ratio is close to the throughput ratio

of the two subflows.

• The MPTCP throughput vs. packet assignment ratio curve

is unimodal and hence a unique optimal ratio always exists

for given subflow throughputs (see appendix B).

4.4 Performance Issues
All the measurements in §4.2 were limited to scenarios where

both links remained stable for the duration of the experiment.
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Figure 7: Impact of packet scheduling decisions

We now look at more challenging scenarios where we relax

this assumption and show that the default MPTCP architec-

ture results in sub-optimal performance, often worse than

that of SPTCP over the faster subflow.

4.4.1 Varying Channel Conditions. Realistic WLAN scenar-

ios involve cases where link conditions and thereby channel

capacity change over time for the two interfaces, e.g., due

to contention or mobility. We consider a case where the

802.11ac link experiences contention from nearby compet-

ing links. Fig. 8a shows a timeline of the per-flow throughput

of a 180 s MPTCP session. We start with a static link where

802.11ad and 802.11ac are at their maximum throughputs and

we introduce contention with 300 Mbps TCP cross-traffic

at the 30
th

s for 30 s. The throughput of the 802.11ac sub-

flow drops by 300 Mbps to ∼250 Mbps, as expected. Surpris-

ingly, the 802.11ad subflow is also affected negatively during

the contention period with its throughput dropping below

1200 Mbps and exhibiting much more variability than in the

preceding interval. In fact, the MPTCP throughput during

the contention period averages to ∼1450(=1200+250) Mbps,

which is less than even that of 802.11ad operating alone (1650

Mbps). Note that 802.11ad channel capacity is unchanged as

the contention exists only on the 802.11ac link.

A look at Fig. 8b, which plots the TCP congestion control

parameters for the two subflows, explains the unexpected

performance drop in 802.11ad. During the contention period,

the receiver advertised buffer space (recv_win) reduces sig-
nificantly. Remember that the recv_win is maintained at

the meta-level and, although advertised on both subflows,

is actually shared among them. In this particular case, the

sum of cwnd values of the two interfaces of 850 (=350+500)

MSS exceeds the available receiver buffer space (which varies

between 500 and 1000 MSS) several times during the con-

tention period. Under such a scenario, the meta-level global

sequence numbers cannot advance, even though cwnd allows
for it, since the meta-level buffers at the receiver are full, re-

sulting in reduction of throughput on both interfaces. We

further confirmed this finding by instrumenting the MPTCP

sender to log events where it was unable to send data packets

due to being recv_win limited.

We observe similar effects when 802.11ad link capacity is

varied under different scenarios such as increase/decrease

in distance between the AP and the laptop or partial link

blockage by humans.

4.4.2 Network Scans. For all the results presented in §4.2 we

had disabled the periodic channel scans, which are typically

initiated by the network-manager or similar user-space utili-

ties, to avoid biasing our throughput measurements. How-

ever, disabling periodic channel scans is problematic in any

real scenario as it prevents the client from finding APs with

a better link quality or performing efficient handovers.

In order to observe any potential impact of network scans

on performance, we start an 802.11ac scan during an MPTCP

session. Fig. 9a shows the throughput of the 802.11ad and

802.11ac subflows over 60 s and the scan initiated at the 30 s

mark. The 802.11ac throughput is cut down severely during

the scan period that lasts for around 6 s. This is expected as

the radio is unable to transmit regular data frames during

this period. Surprisingly, we observe that the 802.11ad flow

is also impacted negatively during this period, even though

the scan takes place in the 5 GHz band.

Looking at the cwnd values of both subflows during the

802.11ac scan, we find that they are not affected. However,

we observe a 6x increase (Fig. 9b) in the amount of data held

in the ofo-queue at the receiver end. During the scan period,

the packet scheduler, which is not aware of the sudden reduc-

tion in 802.11ac channel capacity, keeps assigning packets

to the 802.11ac subflow even though the interface cannot

transmit them immediately. This is problematic as the re-

ceiver’s packet stream now has gaps (missing in-sequence

packets). These gaps prevent the receiver from delivering

packets to the application until the missing packets arrive or

are re-transmitted over the 802.11ad interface. Note that the

MPTCP receiver is responsible for re-ordering the packets

at the meta-level before delivering them to the application.

MPTCP performance drops can be observed with 802.11ad
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Figure 8: 802.11ac contention
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Figure 9: Network scan
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Figure 10: 802.11ad blockage

scans as well but due the much shorter duration of the scan

their impact is less pronounced.

4.4.3 802.11ad Blockage. In case of a blockage event, MPTCP

should be able to switch-over as quickly as possible to us-

ing only the 802.11ac interface, without disruption to the

application [44]. Additionally, once the 802.11ad link is re-

stored, MPTCP should ideally resume using both interfaces

with as little delay as possible. To study how MPTCP reacts

to sudden loss of the 802.11ad link, we block the 802.11ad

link by hand causing the link to break. We then remove the

blockage and allow the device to re-associate with the AP.

Switch-over. Fig. 10a shows a timeline of subflow through-

puts alongwith link status Failed/OK/Retrying as reported
by the 802.11ad driver. A status of OK indicates that the client
has successfully associated with the AP and the link can

support data transfer. The blockage is introduced at 20 s and

the link fails after further 2 s. Once the blockage is removed,

connection at the MAC layer is restored at the 30
th

second.

During the entire period of 802.11ad disconnection, MPTCP

maintains the 802.11ac subflow throughput without any dis-

ruption to the end-to-end connection seen by the application.

MPTCP, owing to its design, provides a completely seamless
switch-over to 802.11ac.

Restoring 802.11ad throughput. In Fig. 10a, although the

802.11ad link is restored at the 30
th

second, MPTCP does not

resume traffic on the 802.11ad subflow for another∼20 s until

the 49
th

s. We repeated this experiment multiple times and

found that this extra delay in traffic resumption varied from

6 s to as much as 60 s. For comparison, we repeated the same

experiment with a UDP flow over the 802.11ad interface and

found that it resumed as soon the driver reported OK status.
On further investigation, we discovered that interaction be-

tween the MPTCP scheduler and TCP congestion-control

of the 802.11ad subflow is responsible for the extra delay.

In a timeout-based loss event (because of blockage), TCP

congestion-control sets the pf flag on the socket, indicating

it to be potentially failed. The MPTCP scheduler treats sub-

flows with the pf flag set as being unavailable and does not

schedule any packets on them. TCP congestion-control, on

the other hand, is waiting for an ACK to unset the pf flag

and enter the TCP_CA_RECOVERY state that can restore the

cwnd to the value before the loss event. Since no packets are

being directed to the 802.11ad subflow, only a subflow-level

re-transmission of the 802.11ad subflow can trigger the trans-

mission of an ACK on the receiver side. However, multiple

timeout-based losses during the blockage period can lead to

excessively high retransmission timeouts, and hence long

delays before an ACK is received after reconnection.

Resuming tonon-optimal throughput.Wealso observed

cases where the 802.11ad subflow, on resumption, starts with

a cwnd and ssthresh that are half of their pre-loss values.

Fig. 10b shows a sample timeline where the 802.11ad flow

resumes to 1350 Mbps instead of 1650 Mbps. This behavior

depends on the exact specifics of the TCP congestion-control

state at the time it enters the recovery state. Nonetheless, it

is observed quite often and has a non-negligible impact on

throughput.



Important Findings:
• The default MPTCP scheduler performs sub-optimally un-

der varying channel conditions and is unable to fully utilize

the available capacities of both interfaces.

• Network scanning during an active MPTCP session on one

of the interfaces can severely degrade performance of the

other interface.

• In the event of 802.11ad blockage, MPTCP can seamlessly

switch over to 802.11ac but has issues resuming traffic on

the 802.11ad interface once the 802.11ad connectivity is

restored.

5 MUSHER: SYSTEM DESIGN &
IMPLEMENTATION

In this section, we introduce MuSher , an agile Multipath-
TCP Scheduler, aimed at improving MPTCP performance

in dual-band 802.11ad/ac WLANs under diverse scenarios.

We present the design of MuSher and the different mecha-

nisms it employs to address all the performance issues iden-

tified in §4.4. Although such mechanisms can be used on

most platforms with an MPTCP implementation available,

we chose Linux for our reference implementation. To al-

low for easy deployment, MuSher is implemented entirely

as an MPTCP scheduler. Given that MPTCP schedulers are

modular components, implemented as LKMs that can be

loaded/unloaded without requiring kernel reboot, such a

design allows for MuSher to be used without requiring any

changes to the MPTCP source code tree. Note that, although

MuSher addresses challenges related to the underlying wire-

less technologies, it does not rely on any specific hints from

the wireless interfaces or the device drivers managing them.

We made these architecture choices to specifically prevent

MuSher from being tied to any specific hardware/platform.

We first presentMuSher’s solution toMPTCP’s sub-optimal

performance under varying link conditions (§4.4.1) by dis-

tributing traffic among the subflows in a throughput-optimal

way, and then discuss two other key components:

(1) a SCAN component that improves MPTCP performance

bymitigating the negative impact of network scanning (§4.4.2)

through careful management of the subflows.

(2) a BLOCKAGE component that helps MPTCP to quickly

recover to the optimal throughput after an 802.11ad blockage

event (§4.4.3) by addressing the interaction between MPTCP

scheduling and subflow-level congestion control.

5.1 Reacting to time-varying links
Our findings in §4.3.2 and §4.4.1 indicate that the underlying

reason for the drop in throughput of the other subflow, when

channel conditions change on one subflow, is that meta-level

receive buffers are filling up. Assignment of packets in a ratio

very different from the subflow throughput ratio results in

toomany out-of-order arrivals at the receiver, using up buffer

space. To address this issue, we leverage the finding of 4.3.2

that there exists a unique MPTCP throughput-optimal ratio

that depends on the subflow throughput values. For instance,

the reaction to contention on 802.11ac is to set the packet-

assignment ratio to match the ratio of the throughputs of

802.11ad and 802.11ac flows, accounting for the drop in

802.11ac throughput due to contention. E.g., under 300 Mbps

contention Tputratio=Tputad/Tputac=250/1650=0.15, thus
we would set Pktsad=86 (see §4.3.2) resulting in the packet

assignment ratio Pktsratio=Pktsac/Pktsad=13/87=0.15.

5.1.1 Implementation. In practice, MuSher needs a mecha-

nism to quickly determine the throughput-optimal ratio at

runtime. Additionally, we need a light-weight mechanism to

automatically trigger the search for an optimal ratio.

Finding the optimal ratio. Since the ratio vs. throughput

curve is unimodal (§4.3.2), we can use a simple probing ap-

proach to find the maximum of the throughput curve and

thus the optimal ratio. Specifically, we begin by probing two

ratios adjacent to the current ratio, one slightly lower and

one slightly higher, and proceed our search in the direction

where we observe higher throughput. We obtain through-

put estimates by observing the bytes transmitted given by

the tx_bytesmember of the struct rtnl_link_stats_64,
and the timestamp of the last transmission stored in the

trans_startmember of struct netdev_queue. All of this
information is maintained by the Linux kernel for each net-

work interface (struct net_device) irrespective of the spe-
cific underlying device driver. The function CallSearchRatio
in Algorithm 1 presents the search procedure more formally.

An important parameter is the sampling time τ , which is

the time spent at a given ratio to estimate the corresponding

throughput. It provides a trade-off between the convergence

time of the optimal-ratio search and the accuracy of the

throughput estimates. We empirically set the value of τ to

200 ms to achieve the desired balance of convergence time

and accuracy. For instance, using a step_size of 0.05 for a
difference of 0.20 between the optimal and current ratio, the

search would take 800 ms.

Note that we investigated several different approaches, in-

cluding binary/ternary search, to find the optimal ratio. We

chose our particular design based on two key observations

from our measurements: (i) large changes in throughput in-

duced by large changes in the assignment ratio (as part of

binary/ternary search) introduce instability in the network

for the flow under consideration and other competing flows,

and (ii) large jumps in the packet assignment ratio typically

require a larger sampling time to obtain accurate measure-

ments, resulting in an increase in the overall convergence

time. Our approach specifically avoids such large jumps and

achieves a faster convergence time.



Triggering ratio search. To detect changes in the link ca-

pacity of either interface and trigger the search for a new

optimal ratio, MuSher monitors two events: (i) decrease in
total MPTCP throughput and (ii) decrease in send-queue oc-
cupancy

4
of any of the two subflows, without a change in

throughput. Although (i) can detect decreases in link capac-

ity of any of the two subflows, it cannot detect increases if

the packet scheduling ratio keeps any of the two interfaces

non-backlogged. Using (ii), we can detect such increases as

queues are drained faster when the link capacity of the un-

derlying interface increases. The triggering mechanism is

presented formally in the while loop of Algorithm 1. Through

extensive experimentation, we set the value of sleep timeγ to

100 ms. Relying on an event-based trigger mechanism avoids

continuous probing of ratios in search of higher throughput,

which can negatively impact performance. Note that even

if condition (i) or (ii) falsely trigger a ratio search, it will

converge to the optimal ratio.

5.2 Managing Network Scans
MuSher arbitrates the network scan requests generated from

the user space and disables the scheduling of packets to the

subflow where the request has been made for the duration

of the network scan. However, disabling future scheduling

alone may not be enough to prevent packets from being held-

up in the TCP queues or at any of the lower layer buffers.

We thus adopt a two-step approach: (1) Stop the assignment

of packets to the subflow about to undertake scanning and

(2) Wait for the subflow-level send-queue to be emptied out.

The scan is triggered once steps (1) and (2) are completed.

Signaling scan operation to the sender. The approach

discussed above works well in the uplink case, when the

client, whose network interface is performing the scan, is

the MPTCP sender. In the downlink case, the client needs

to notify the other end of the MPTCP connection to tem-

porary disable all traffic to the subflow associated with the

interface about to perform the scan. One option would be

to tear-down the corresponding subflow but this destroys

all the state information on both ends and would result in

additional overhead of re-establishing the subflow once the

scan is over. Instead, MuSher sends an ACK containing the

MPTCP MP_PRIO optionmarking the interface as backup. The
receipt of this option results in the sender stopping further

scheduling of traffic on the subflow on which the ACK was

received. Once the scan is complete, the client sends another

ACK resetting the subflow back to regular operation.

4
The occupancy is calculated as the difference of two internal pointers

maintained by MPTCP for each subflow: write_seq, the highest sequence
number written by the application into the send buffer, and snd_una, the
oldest unacknowledged sequence number.

Algorithm 1MuSher

ω = 200Mbps, β = 100KB, α = 3, λ = 3

γ = 100ms, τ = 200ms, δ = 5

while true do
curr_tput_diff += (get_current_tput(cur_ratio, γ ) − last_tput)

curr_buffer_diff += (get_current_buffer_size() − last_buffer_size)

if |curr_tput_diff | > ω then
tput_threshold_cnt += 1

if tput_threshold_cnt == α then
cur_ratio = CallSearchRatio(cur_ratio)

set_ratio(cur_ratio)

else if |curr_buffer_diff | > β then
buffer_threshold_cnt += 1

if buffer_threshold_cnt == λ then
cur_ratio = CallSearchRatio(cur_ratio)

set_ratio(cur_ratio)

else
tput_threshold_cnt = 0, buffer_threshold_cnt = 0

function SearchRatio(start, stop, step_size)

prev_tput = 0

for ratio = start to stop step step_size do
sleep(τ )
cur_tput = get_current_tput(ratio, τ )
if cur_tput < prev_tput then

return ratio − step

prev_tput = cur_tput

return stop

function CallSearchRatio(cur_ratio)

ratio_right = cur_ratio + δ, ratio_left = cur_ratio − δ
tput_right = get_current_tput(ratio_right, τ )
tput_left = get_current_tput(ratio_left, τ )
if tput_left > tput_right then

return SearchRatio(cur_ratio, 0, −δ )
else if tput_left < tput_right then

return SearchRatio(cur_ratio, 100, δ )
else

return cur_ratio

5.3 Accelerating Blockage Recovery
Our experiments in §4.4.3 highlighted two major impair-

ments for MPTCP in case of 802.11ad link blockage. To re-

duce the delay in resuming traffic over the 802.11ad subflow,

MuSher resets the pf flag to allow for traffic to be scheduled

on the 802.11ad subflow. However, this alone is not enough

to resume the traffic flow on the 802.11ad interface. When

the 802.11ad link is blocked, the subflow-level cwnd is cut to

1, with packets in flight also equal to 1. As a result, the sched-

uler is unable to schedule any new packets on the 802.11ad

subflow since the cwnd is reported as full. To overcome this,

MuSher uses the TCP’s window recovery mechanism to re-

store the cwnd to the value just before the loss event. Note
that TCP already maintains this (pre-loss) value as part of

its congestion-control state. Resetting of cwnd also addresses
the second issue observed in §4.4.3 where the restored value

is half of what it was prior to loss.

Detecting interface state. To invoke its quick recovery

mechanisms, MuSher monitors the 802.11ad interface status



maintained in the operstate member of net_device struct
in the kernel. This struct and its members are available for

all network interfaces by default in the kernel and MuSher
does not need direct access to the underlying hardware-

specific device drivers to receive an explicit notification of

the 802.11ad interface becoming available again.

Signaling active subflow to the sender. The blockage re-
covery mechanisms can be initiated locally on the client in

the uplink case but need the transmission of an explicit no-

tification to the other end of the MPTCP connection in the

downlink case. MuSher achieves this by sending a zero-byte

TCP_KEEPALIVE packet on the 802.11ad subflow. Receipt of

this packet on the other side triggers the immediate recovery

and resumption of traffic on the subflow.

Note: The solution mechanisms in §5.2 and §5.3 need to be

initiated on the client side by MuSher . However, in case of

downlink-only traffic, the scheduler is not run on the client

side at all, and hence, the mechanisms will never be trig-

gered. To address this issue,MuSher uses the Linux’s jprobe
functionality to hook on to the tcp_rcv_established func-
tion that TCP runs every time a data packet is received and

processed. With this setup, we are able to register a callback

function inside our scheduler to run even in the absence

of any outgoing traffic. We then use this callback function

to implement the solutions described above. Note that this

mechanism does not require any changes to the MPTCP code

base or to any parts of the Linux kernel.

6 MUSHER: EVALUATION
In this section, we evaluate MuSher under a wide variety

of scenarios including both stable and varying channel con-

ditions, mobility, and different combinations of link rates

and delay settings, and compare its performance against

MPTCP’s default minRTT scheduler.

6.1 Varying Channel Conditions
We evaluate MuSher under different channel dynamics in

a typical WLAN, involving static and dynamic contention

on the 802.11ac channel
5
and client mobility which changes

channel conditions for both interfaces.

6.1.1 Static Contention (802.11ac). We begin by evaluating

MuSher for different levels of contending 802.11ac traffic. We

create contention using a separate independent link that has

the same 802.11ac hardware configuration as the main link.

We start the cross-traffic at the 5
th

s of our 60 s run.

Fig. 11 shows the idealMPTCP throughput (sum of 802.11ad

and 802.11ac throughput), MPTCP throughput under the

5
The case of contention on the 802.11ad is analogous and hence omitted

due to space constraints.
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Figure 11: Reacting to 802.11ac contention
default minRTT scheduler, and MuSher throughput for dif-
ferent levels of contention. In all cases, the default scheduler

achieves less than the expected sum and the magnitude of

the gap increases with higher contention. For instance, un-

der 100 Mbps of cross-traffic, minRTT achieves ∼90 Mbps

less than the expected whereas contention of 500 Mbps re-

sults in minRTT throughput of only ∼1100 Mbps vs. the

expected sum of 1800 Mbps, a deficit of 700 Mbps. On the

other hand, MuSher is able to detect contention and con-

verge to a throughput-optimal packet assignment under all

scenarios, achieving throughput very close to the ideal sum

and outperforming minRTT by 120-570 Mbps (a 1.5x gain,

in case of 500 Mbps cross traffic).

6.1.2 Dynamic Contention (802.11ac). We next evaluate how

well MuSher reacts to changing cross-traffic. We continu-

ously vary contention levels between 300 Mbps and 500

Mbps for a period of 120 s. The actual contention level is

selected at random but is kept same across runs for both

minRTT and MuSher for a fair comparison. Further, to study

the effectiveness ofMuSher’s trigger mechanism and conver-

gence time, we consider different frequencies of contention

level changes ranging from every 1 s to every 20 s. For each

setting, we repeat the resulting 120 s contention timeline

several times and present the average. In addition to the de-

fault minRTT scheduler, we also compare against an optimal

oracle scheduler which always performs throughput-optimal

assignment of packets between the 802.11ad and 802.11ac

flows given the level of contention.

Table 2: Dynamic 802.11ac contention
minRTT
(Gbps)

MuSher
(Gbps)

Optimal
(Gbps)

MuSher/Optimal
(%)

1 s 1.53 1.68 1.78 94.3

5 s 1.42 1.70 1.78 95.5

10 s 1.41 1.68 1.78 94.3

20 s 1.35 1.71 1.78 96.0

Table 2 presents the results for four scenarios ranging

from highly dynamic (contention level changes every 1 s)

to relatively stable (changes every 20 s). We observe that

MuSher outperforms minRTT in all cases with gains over

the default scheduler up to 360 Mbps (20 s case). Even in



the most challenging scenario where contention changes

every 1 s, MuSher provides 150 Mbps higher throughput

compared to minRTT. This improvement can be attributed

to continuous adjustment of traffic distribution by MuSher
to the changing 802.11ac channel capacity whereas minRTT
either does not adapt (1 s case) or adapts too slowly (20 s

case). More importantly,MuSher is able to achieve more than

94% of the optimal throughput possible with a perfect sched-

uler in all cases thanks to the low overhead of its triggering

mechanisms and ratio probing strategy.

6.1.3 Mobility (802.11ad/ac). We finally evaluate how well

MuSher deals with link capacity changes due to continu-
ous mobility. We evaluate three different mobility scenarios,

where the client (i) moves away from the AP, (ii) moves to-

wards the AP, and (iii) moves laterally to the AP. In cases (i)

& (ii), 802.11ad does not require frequent beam-training as

the relative angle between the client and AP does not change.

In contrast, case (iii) requires frequent beam training. We

perform all measurements in a lobby with furniture and re-

peat them several times with two different users. For each

run, the user continuously moves over a period of 60 s at

constant walking speed. We intentionally experiment with

the worst case scenarios where mobility is sustained over a

long period of time as opposed to intermittent mobility. This

helps us obtain a lower bound on the performance ofMuSher
and ensures that we do not violate our original design goal

for MPTCP to perform at least as good as SPTCP over the

faster of two interfaces.
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Figure 12: MuSher: Performance under mobility
Fig. 12 compares performance of minRTT, MuSher , and

802.11ad operating alone (faster of the two interfaces). For

case (i) & (ii), MuSher and minRTT provide comparable per-

formance withMuSher achieving slightly higher throughput

in case (i). In the lateral mobility case, however, MuSher out-
performs minRTT by ∼160 Mbps. The lateral case involves

more drastic changes in 802.11ad throughput (as indicated by

higher std. dev. of 802.11ad alone) which proves challenging

for minRTT to react. Moreover, MuSher always performs

equally well or better than 802.11ad alone providing a gain

of 101 Mbps in case (iii) and 368 Mbps in case (i). In general,

we note that the gains from MuSher are lower under device

mobility when compared to the dynamic contention sce-

nario. Mobility presents a much more challenging scenario

where channel conditions change much faster on both the

interfaces simultaneously and in a much more unpredictable

fashion compared to the contention case. This accounts for

the relatively smaller gains in the mobility case.

6.2 Network Scans
Fig. 13a shows a timeline consisting of an 802.11ac scan

but with MuSher’s network scan management solution ap-

plied during the scan period. We observe (compared to the

scan period in Fig. 9a) that the 802.11ad throughput remains

unaffected during the scan interval. We repeated the mea-

surements several times with and without the optimization.

As can be seen in Fig. 13b (left two bars), the MPTCP through-

put for the former shows an average improvement from 700

Mbps to 1650 Mbps (2.3x gain).

6.3 802.11ad Blockage
We test our solution in a setup similar to that in §4.4.3. Fig. 13c

shows a timeline where blockage is introduced at the 20
th

s but the connection is already re-established at the 34
th

s. In contrast to Fig. 10a, where MPTCP resumed traffic on

the 802.11ad subflow after a 20 s delay, here MPTCP starts

using the 802.11ad interface in less than 1 s after link re-

establishment. This is a substantial reduction in delay and in

a dynamic environment, where such blockage events might

occur frequently, MuSher’s gains translate into a significant

improvement of user-experience. Fig. 13b (right two bars)

shows that minRTT on average takes 8 s to recover whereas

MuSher can resume throughput in 1 s.

6.4 MuSher over Internet paths
Until now, we explored MuSher’s performance over a net-

work where the combined capacity of the 802.11ad (Cad )
and 802.11ac (Cac ) wireless interfaces was the bottleneck

as the wired path was a 10G link. If MuSher runs over the
Internet, the bottleneck may well be on the Internet path

from the MPTCP server. Additionally, Internet paths have

longer RTTs which could affect MuSher’s reactive mecha-

nisms. Since we could not find an ISP that could provide

us an end-point connection of a link rate of more than few

hundred of Mbps, as 1G Ethernet interfaces are typically

the norm, we used the Linux tc command to control both

link rate and delay of the 10G interface to emulate realistic

Internet paths. Specifically, we consider three link rates: 100
Mbps<Cac<Cad , Cac<1 Gbps<Cad and Cac<Cad<1.8 Gbps,
and three representative RTT values: 10 ms, 30 ms, and 50 ms.

Note that the tc induced delay is added to the commonwired

path behind the AP. It affects both the 802.11ad and 802.11ac

paths equally and hence does not create any additional RTT

asymmetry between the two.
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Figure 13: Managing Network Scans and 802.11ad blockage

6.4.1 Baseline Performance. Table 3 compares the through-

put (average of 10 runs) under different combinations of link

rates and RTT values.

Table 3: Throttled bandwidth & higher RTTs
Bandwidth RTT minRTT (Mbps) MuSher (Mbps)

100 Mbps
10 ms 96 96
30 ms 95 94
50 ms 94 93

1000 Mbps
10 ms 764 938
30 ms 670 926
50 ms 561 922

1800 Mbps
10 ms 1441 1682
30 ms 924 1659
50 ms 711 1640

When the wired link rate is capped at 100 Mbps, both

minRTT andMuSher perform similarly and their throughput

is close to the available link rate. For the 1 Gbps and 1.8

Gbps case, however, minRTT fails to fully use the available

link rate, having a utilization of less than 40% in the worst

case (1800 Mbps/50 ms). Even in the best case (1000 Mbps/10

ms), the throughput is 25% below the capacity. Furthermore,

the performance worsens with increasing delays, indicating

that minRTT is not a good solution for inter-continental

paths with even larger RTTs. In comparison,MuSher not only
achieves much higher throughput (2.3x in the 1800 Mbps/50

ms case) thanminRTT but is also able to utilize at least 90% of

the available link rate under all configurations. We observed

that all 10 minRTT runs suffer from repeated cuts to the

802.11ad subflow’s cwnd whereasMuSher runs rarely do. For
instance, for the 1800 Mbps/50 ms configuration,MuSher had
the 802.11ad cwnd cut only in 2 runs. This can be attributed to
the fact that minRTT always assigns packets to the 802.11ad

subflow (as it typically has shorter RTT) and only schedules

traffic over the 802.11ac subflow if the 802.11ad send-buffers

are full, thereby causing a loss followed by a cwnd reduction.

Further, given that Lia uses TCP Reno style cwnd growth

function, it takes a long time for the cwnd to recover to a

value that is needed to fully utilize the 802.11ad’s capacity.

6.4.2 Scan & 802.11ad Blockage. Table 4 compares the effec-

tiveness ofMuSher’s scan (§5.2) and blockage recovery (§5.3)

Table 4: SCAN & BLOCKAGE performance with throt-
tled bandwidth & higher RTTs

Link rate/
RTT

SCAN BLOCKAGE
minRTT
(Mbps)

MuSher
(Mbps)

minRTT
(s)

MuSher
(s)

100 Mbps / 10ms 87 ± 8 93 ± 1 5.8 ± 3 0.13 ± 0.04
1 Gbps / 30 ms 292 ± 6 943 ± 0.1 7.5 ± 3 0.1 ± 0.04
1.8 Gbps / 50 ms 319 ± 23 1655 ± 14 6.07 ± 3 0.12 ± 0.04

mechanisms with the default minRTT scheduler under three

link rate/RTT settings.

Scan.While minRTT and MuSher perform similarly in the

100 Mbps case, minRTT performs extremely poorly in the

1 Gbps and 1.8 Gbps configurations as it is not scan-aware.

In contrast, MuSher achieves throughput close to the wired

link rate in the 1 Gbps cases as it correctly stops scheduling

traffic over the 802.11ac subflow and 802.11ad has enough

capacity to fully use the available wired link rate. In the 1.8

Gbps case, 802.11ad link alone can only provide 1.65 Gbps

which MuSher utilizes fully, yielding a 5x throughput gain

compared to minRTT.
Blockage. minRTT takes at least 5 s in each of the three

cases to recover after an 802.11ad blockage event. MuSher ,
on the other hand, has the recovery time upper bounded by

0.17 s and on average reduces it by an order of magnitude.

6.5 MuSher with Heterogeneous Delays
Since both 802.11ac and 802.11ad are WLAN technologies,

we typically do not expect to see large delay heterogene-

ity between the two interfaces. In contrast, such conditions

are often observed in MPTCP over cellular+WiFi scenar-

ios. Nonetheless, for the sake of completeness, we perform

additional experiments where we increase the latency for

the 802.11ad and 802.11ac paths so that the RTTs are het-

erogeneous, but leave the bandwidth unchanged. Table 5

shows the performance of minRTT and MuSher for different
combinations of RTT values.

In all cases MuSher achieves the sum of 802.11ad (1.6

Gbps) and 802.11ac (600 Mbps) throughputs. We also an-

alyzed the reverse scenario where 802.11ad delays are higher



Table 5: Performance with heterogeneous RTTs
802.11ac RTT 802.11ad RTT minRTT (Gbps) MuSher (Gbps)

5 ms

10 ms 1.76 2.28
30 ms 1.56 2.25
50 ms 1.00 2.26

than 802.11ac and observed similar results. Hence, through-

put ratio based scheduling can provide optimal throughput

even in the case of heterogeneous delays.

Further, to emulate anMPTCP over LTE andWiFi scenario,

we repeat the experiment with the 802.11ad interface throt-

tled to 100 Mbps (emulating WiFi) and 802.11ac to 20 Mbps

(emulating LTE). The results are presented in Table 6. Even

Table 6: Throttled bandwidth & heterogeneous RTTs
802.11ad RTT 802.11ac RTT minRTT (Mbps) MuSher (Mbps)

5 ms

10 ms 94.9 108
30 ms 94.6 107
50 ms 94.6 108

in this case, we observe that MuSher achieves close to the

sum of the throughputs of the two interfaces. In contrast, the

default minRTT scheduler not only fails to achieve the sum,

but in fact yields lower throughput than that of the fastest in-

terface alone, which agrees with results reported by previous

studies analyzing MPTCP performance over 3G/LTE+WiFi.

7 RELATEDWORK
MPTCP schedulers. Previously proposed schedulers target
WiFi/cellular or Internet scenarios and they can be divided

in three classes: (i) schedulers that leverage the difference

in the subflow RTTs alone [7, 15, 21, 24, 43], similar to the

default scheduler, or in combination with other TCP param-

eters [8, 26, 27, 41, 46, 47], (ii) schedulers that try to deal

with issues caused by heterogeneous paths [15, 24, 41, 43],

and (iii) schedulers that improve MPTCP performance for

specific application use cases [13, 20], require modifications

to applications [18], or are not MPTCP compatible [28, 29].

Our measurements demonstrated that in our target case of

dual-band 802.11ac/802.11ad WLANs, the default MPTCP

scheduler can work effectively under static scenarios in spite

of bandwidth heterogeneity. Consequently, MuSher only tar-

gets dynamic scenarios that involve a drastic change in the

wireless capacity of one of the two paths.

Additionally, previous schedulers targeting WiFi/cellular

scenarios take a macroscopic view of the underlying wire-

less networks by studying how path heterogeneity affects

upper layer (transport/application) performance. In contrast,

MuSher takes a much closer look at the lower layers of the

protocol stack, addressing specific challenges associated with

802.11ad/ac, without requiring explicit information from the

lower layers. The only other work that addresses a challenge

related to the underlying wireless technology is [42], which

targets the specific scenario where a mobile client temporar-

ily moves out of the WiFi AP’s range and experiences long

delays once it comes back in range. The problem is similar

to the first of the two problems we report in case of 60 GHz

blockage in §4.4.3. Nonetheless, in contrast to MuSher , [42]
requires cross-layer information from the wireless driver

and per-device calibration.

MPTCP performance. A number of works have evaluated

different aspects of MPTCP performance under various sce-

narios [9–12, 14, 16, 28, 32, 36, 38, 39, 42]. All these works

consider either Internet paths or scenarios involving WiFi

and cellular interfaces, and hence, their findings are very

different from the findings of this work. For example, many

previous works (e.g., [9, 14, 16, 28, 39] show that heteroge-

neous paths result in significant performance degradation. In

contrast, ourmeasurement study in §4.3.2 shows thatMPTCP

works well in heterogeneous 802.11ac/802.11ad networks.

Very little work has been done towards leveraging MPTCP

in networks involvingmmWave links. A few recentworks [25,

40, 44] briefly explored the use of MPTCP in dual band 5/60

GHz WLANs and showed that it often results in lower per-

formance than using the 802.11ad interface alone. The work

in [35] explored MPTCP performance in 5G cellular net-

works, over 28 GHz and LTE interfaces, using simulations,

and showed that the protocol performs better than SPTCP

with uncoupled congestion control but worse with Balia. Our
work is the first, to our best knowledge, extensive experi-

mental study of the performance of MPTCP over mmWave

links, showing that MPTCP works well in static scenarios

regardless of the congestion control algorithm.

8 CONCLUSION
In this paper, we explored the use of MPTCP to improve per-

formance and reliability in dual-band 802.11ad/ac WLANs.

We showed, in sharp contrast to previous claims, thatMPTCP

under ideal static conditions can improve throughput com-

pared to using SPTCP over the faster of the two interfaces.

However, in dynamic scenarios and for certain network

events (channel contention, network-scan, 802.11ad block-

age, mobility), MPTCP performs sub-optimally. We then de-

signed, implemented, and evaluatedMuSher , a novel MPTCP

scheduler, to address the underlying causes for performance

degradation of MPTCP. Our evaluation in a wide range of

scenarios showed that MuSher improves MPTCP through-

put by up to 2.3x and it can accelerate recovery time from a

link failure by up to an order of magnitude, compared to the

default minRTT scheduler.
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A ANALYSIS TOOLS
A.1 MPTCP Scheduler Probe
This LKM monitors the MPTCP scheduler and the individual

subflows over 35 parameters such as the cwnd, packets in
flight, which subflow was selected and for what reason, etc.

It allows us to monitor and (if needed) log these parame-

ters in real time. The parameters are logged on the sender

side every time an ACK is received. It is implemented as

a kretprobe and it hooks on to the main scheduler func-

tion rtt_get_subflow_from_selectors (in case of min-
RTT ) which is responsible for deciding the subflow to be

used for a given segment.

A.2 MPTCP Queue Probe
This LKM monitors the MPTCP recv-queue and ofo-queue. It
logs the size of each queue along with the number of bytes

enqueued or dequeued, for every enqueue and dequeue op-

eration. It is implemented as a kretprobe and hooks onto the

primary MPTCP and TCP functions responsible for process-

ing incoming packets.

A.3 MPTCP FixedRatio Scheduler
The FixedRatio Scheduler assigns packets to each of the sub-

flows with a fixed user-defined ratio. We use an epoch of

100 segments (each of MSS number of bytes) and specify the

ratio in terms of segments to be assigned to a given subflow

for each epoch. Any super-sized segments are split at the as-

signment boundary and the left over segments are taken care

of in the next epoch. This ratio can be dynamically changed,

during runtime, from the userspace through a sysctl variable.

B MPTCP THROUGHPUT VS. PACKET
ASSIGNMENT RATIO

MuSher relies on the unimodal nature of the curve presented

in Fig. 7a. Our observation regarding this particular nature

of the curve comes from the following intuition. To achieve

maximum MPTCP (total) throughput, defined as the sum

of the maximum throughput of the 802.11ad and 802.11ac

interfaces, two conditions need to be met: (i) Both interfaces

should always have packets to send (backlogged) and (ii) For

a given set of packets, the assignment of the packets should

be such that both interfaces finish sending their share of

packets at the same time (minimize out-of-order packets at

the receiver). Let us assume that at the optimal ratio x pack-

ets are assigned to 802.11ad and 100 − x to 802.11ac. Given

it is the optimal ratio, 802.11ad will run through x packets

in the same time as it takes 802.11ac to finish 100 − x pack-

ets. At any ratio other than the optimal either the 802.11ad

interface will finish its set of packets first or 802.11ac will.

The 802.11ad interface will be idle in the former case and the

802.11ac interface in the latter case. In both these situations,

the required condition (i) for optimal throughput is not met,

which translates into non-optimal throughput. Note that if

MuSher was to assign more packets to the interface that fin-

ished first (and is idle), it would be violating the required

ratio of assignment resulting in out-of-order packets, thereby

not satisfying condition (ii).
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