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ABSTRACT

The continuously increasing number of smartphones and tablets

allow the users to access Wireless LANs (WLANs) while undergo-

ing different types of mobility, posing new challenges to wireless

protocols. Current history-based WLAN protocols do not work

well in mobile settings where wireless conditions change rapidly.

Thus, today’s WLANs need to be able to determine the type of

the client’s mobility and employ appropriate strategies in order

to sustain high performance. While previous work tried to detect

mobility using hints from sensors available in mobile devices,

in this work, we demonstrate how different mobility modes can

be distinguished by using physical layer information – Channel

State Information (CSI) and Time-of-Flight (ToF) – available at

commodity APs, with no modifications on the client side. Our

testbed experiments show that our mobility classification algo-

rithm achieves more than 92% accuracy in a variety of scenarios.

In addition, we demonstrate how fine-grained mobility determi-

nation can be exploited to greatly improve performance of client

roaming and MIMO beamforming.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless communica-

tion
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1. INTRODUCTION
With the proliferation of smartphones, tablets, and the advent

of the BYOD phenomenon, mobile devices are soon becoming

the preferred medium of Internet access in Wireless LANs (WLANs).

Due to their smaller form factor, these truly mobile devices allow

the users to access the wireless network while undergoing dif-

ferent forms of mobility. However, client mobility poses difficult

problems to the WLAN protocols. In static scenarios, the wireless

channel remains stable and hence wireless protocols can refer to

the past history, carefully adapting themselves to avoid failures
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and maximize performance. In contrast, during mobility, wire-

less conditions may change frequently requiring protocols to be

agile and apply different strategies. Designing such strategies is

not trivial because they depend on the actual type of mobility

demonstrated by the client. E.g., the WLAN should try to roam

the client to a better AP only when the client is moving away from

her AP and should not consider roaming for the other scenarios

because it is unlikely that a better AP will be discovered. Likewise,

mechanisms to obtain higher throughput in modern 802.11n/ac

WLANs, such as beamforming, rate adaptation, frame aggrega-

tion, multiuser-mimo (MU-MIMO), require different optimiza-

tions based on the intensity of client mobility – which determines

the length of past history that a wireless protocol can refer to.

Today’s WLAN protocols are unable to detect client mobility.

They generally rely on the past history to generate optimal per-

formance for stationary clients. However, such a general frame-

work is slow to adapt to client mobility. Recent work [1] tried

to detect mobility using on-board sensors in a smartphone. Al-

though this technique can broadly classify between stationary

and device mobility, it requires changes at both the client and

the AP in order to benefit download traffic because client mo-

bility state is unknown to the AP and it also requires the sensors

to be always on consuming battery life. Rather than changing

the client, which is a more difficult proposition, in this work we

demonstrate how different mobility modes can be distinguished

by using physical (PHY) layer information available at commod-

ity APs.

2. MOBILITY CLASSIFICATION
We identify four broad categories of client mobility. If the client

is stationary, it can be in the static mobility mode when there are

no significant environmental changes affecting the channel be-

tween the AP and the client. A static client may also be in the

environmental mobility mode when the channel changes due to

external movements. Of course the client itself may be moving

– a mobility mode that we call device mobility. The client may

experience different speeds under device mobility. We identify

two broad and dominant categories of device mobility in WLANs.

First, the user may slowly move the device although she is sta-

tionary or her movement is confined within a small area, which

we define as micro mobility. E.g., the user may be attending a

VoIP call over WiFi and a little movement of her head may dis-

place her smartphone. On the other hand, the client may change

its location as its user walks from one location to another. In such

scenarios, we classify the client to be under macro mobility.

We use HP MSM 460 APs with Atheros AR9390 chipset and Sam-

sung Galaxy S5 smart phones. We tuned the AP at 5.805GHz us-
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Figure 1: (a) Variation of CSI similarity values over time. (b) CDF of CSI similarity values for various mobility modes. (c) ToF values

over time under device mobility. The user walks towards and away from the AP periodically in the macro-mobility scenario.

ing 40MHz channel and 802.11n protocol. We sent regular data

packets from the AP and collected CSI, ToF, and Received Signal

Strength Indicator (RSSI) information from the acknowledgment

(ACK) sent by the client. We ran four different experiments to an-

alyze different classes of mobility. Our goal is to develop simple

classification schemes that can distinguish the above four sce-

narios.

2.1 Classifying Mobility using RSSI
We first explored the possibility of classifying the mobility mode

of the client based on the RSSI of the client. In our experiments,

we found that RSSI is quite stable in static scenarios in a quiet

environment, but it is susceptible to any changes in the environ-

ment; often, the RSSI variation under environmental mobility is

higher than the observed variation under device mobility. There-

fore, we concluded that it is difficult to distinguish between en-

vironmental and device mobility solely based on RSSI. In the fol-

lowing, we will show how Channel State Information (CSI) can

conclusively classify static, environmental, and device mobility,

and how Time-of-Flight (ToF) can distinguish between the two

types of device mobility.

2.2 Classifying Mobility using CSI
Any transmitted signal from the client undergoes reflections

and arrives along multiple paths (multipath) at the AP. The wire-

less channel is expected to vary under environmental or device

mobility because the fine-grained multipath structure may change.

Those fine-grained variations are hard to be captured by RSSI

because it aggregates all multipath components as one indica-

tor. However, we found the same variations can be reliably de-

tected by CSI because it captures the multipath characteristics

from each subcarrier in the frequency domain. We characterize

the similarity between two CSI samples by calculating the Pear-

son correlation coefficient with magnitudes on all subcarriers.

Figure 1(a) shows that the similarity stays close to 1 in the static

case because the CSI matches across time on a stable channel. In

contrast, the similarity drops sharply under environmental or de-

vice mobility. We further found that the similarity drops faster for

device mobility than environmental mobility. This is because en-

vironmental mobility typically affects only a few multipath com-

ponents, whereas if the client itself is moving, all multipath com-

ponents will be affected. Figure 1(b) shows the distribution of

similarity of consecutive CSI samples collected at every 0.5 sec-

onds. Clearly, it is easy to find threshold values to distinguish

between static, environmental, and device mobility. However,

we found it is difficult to distinguish between micro mobility and

macro mobility using CSI, even using larger sampling periods.

2.3 Classifying Device Mobility using ToF
To further classify device mobility, we utilize the intuition that

the distance between the client and the AP under macro mobility

changes more than that under micro mobility. Client’s distance

can be estimated based on RSSI [2] or CSI [3]. However, it was

shown that RSSI and CSI are unreliable [4]. Instead, we utilize

ToF [4, 5]. ToF is defined as the round trip propagation time of a

signal transmitted between the AP and the client, which is pro-

portional to the distance between them. The Atheros chipset can

precisely compute the Time-of-Departure (ToD) of a data packet

when it is sent out from the PHY layer. On correct reception of

the packet, the client waits for a fixed SIFS duration and starts

responding with an ACK. The chipset also reports an estimated

Time-of-Arrival (ToA) of the ACK at the AP. The difference be-

tween the ToA and ToD contains the ToF between the AP and the

client.

Figure 1(c) plots the ToF values over time for two different de-

vice mobility scenarios. For the micro mobility scenario, when

the user naturally moves the device only within a small area,noisy

ToF values can sometimes wrongly indicate changes in distance.

However, the change in noisy ToF values in the micro-mobility

case is quite random, while for the macro mobility scenario the

ToF either steadily increases or decreases. This happens because

within a reasonable time interval a walking user may either ap-

proach or move away from the AP, without changing her orien-

tation. Therefore, we maintain a moving window of ToF values

to detect macro mobility. Only if all the ToF values in the moving

window suggest an increasing (moving away) or decreasing (mov-

ing towards) trend, we declare that the client is under macro mo-

bility, otherwise the client is under micro mobility.

2.4 Evaluation of Mobility Classification
We implement our mobility detection scheme on the AP. We

sample the CSI of the client every 500ms from existing data packet

transmissions and maintain a moving average of the similarity

between consecutive CSI values in 3 seconds. We compare the

CSI similarity values with empirically chosen thresholds to dis-

tinguish between static, environmental and device mobility. If

the CSI similarity indicates device mobility, we further consult

ToF values to distinguish between micro and macro mobility (in-

cluding moving directions). To deal with measurement noise [4],

we sample the client’s ToF readings every 200ms and aggregate

them every second using a median filter.

We evaluate our scheme at more than 100 locations for over 24

hours. At each location we subject the client to different forms

of mobility. Table 1 presents our overall performance results. We
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Figure 2: (a) Comparison of controller-based client roaming scheme with existing protocols. (b) Average throughput vs. CSI feedback

period in different mobility scenarios with beamforming. (c) CDF of throughput gain for 300 different links subjected to a variety of

mobility modes with beamforming.

find that the accuracy of our mobility detection scheme is more

than 92% in all scenarios.

Table 1: Evaluation of mobility classification.

Ground truth
Detection result (%)

Static Environmental Micro Macro

Static 99.7 0.3 0 0

Environmental 4.55 92.78 2.67 0

Micro-mobility 0 3.58 95.59 0.83

Macro-mobility 0 0 1.7 98.3

3. MOBILITY-AWARE PROTOCOL DESIGN
Client roaming. We first demonstrate how the knowledge of the

client’s moving direction at the AP can optimize client roaming.

By default, a client associates with the AP with the strongest RSSI

value and will trigger a handoff only when RSSI falls below a pre-

defined threshold. Such a scheme is agnostic of the user’s mo-

bility; a moving client often remains wrongly connected to a far

away AP, adversely affecting its own as well as the overall network

performance. In [1], the authors proposed to use phone sensors

to detect client mobility and request the phone to scan for better

APs more aggressively. However, frequent scanning is time con-

suming and wastes energy and prevents the client from transmit-

ting or receiving data (impacting throughput). To address this

issue, rather than designing a scheme that requires changes at

the client, we propose a controller-based protocol that roams the

client to the appropriate AP whenever necessary.

In our scheme, the current AP of the client continuously deter-

mines the client mobility mode and shares it with the controller.

If the current AP indicates that the client is moving away from it,

the controller instructs the neighboring APs to periodically send

NULL data frames to the client and compute the client’s distance,

RSSI, and heading information to themselves. If the client is mov-

ing towards another AP whose signal strength is similar or higher,

we add that AP in the candidate set. If the controller finds at least

one such better AP, it instructs the current AP to disassociate the

client and asks only the APs in the candidate set to respond to the

client’s probe request. Consequently, the client roams to a better

AP, ultimately improving performance. We evaluate our scheme

on a 6-AP testbed in a 50x50 meter office by walking along its cor-

ridors. Figure 2(a) shows that our proposal performs better than

the phone-sensor based scheme and improves median through-

put by 31% over the default scheme.

Beamforming. Secondly, we studied how knowledge of client

mobility can improve the performance of beamforming. Effec-

tive beamforming relies on timely CSI feedback from clients. In-

frequent feedback will result in performance loss. However, too

frequent feedback will be harmful because packets are transmit-

ted at lower bit-rate in the feedback procedure which consumes

more channel time. We use an AP as a client because we found

none of the popular phones support explicit beamforming. Fig-

ure 2(b) shows that the optimal CSI feedback period decreases

as the intensity of mobility increases and the default 200ms only

benefits the static scenario. Therefore, we modified the WiFi driver

at the AP to vary the feedback period based on the mobility mode

of the client – 200ms for static, 50ms for environmental mobil-

ity, 10ms for micro-, and 5ms for macro-mobility. We conducted

device-mobility experiments on 300 links and compared the per-

formance of the adaptive feedback scheme with the default scheme

which uses a statically configured 200ms feedback period. Fig-

ure 2(c) shows that our scheme outperforms the default scheme

by 33% in the median case.

Client roaming and beamforming are not the only two wireless

protocols that can benefit from client mobility. Currently, we are

working on exploiting knowledge of client mobility to improve

rate adaptation, frame aggregation, and MU-MIMO.
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