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Abstract—WiFi activity is a major source of power con-
sumption in today’s smartphones. Consequently, accurately WiFi
power consumption models are extremely useful for researchers
and app developers. Among a large number of models proposed
recently, a model introduced by Serrano et al. was the first to add
a new component – a per-frame energy toll incurred as a frame
traverses the protocol stack – to the power consumption of the
wireless NIC. The authors called this new component cross-factor
and validated the accuracy of the model on a large number of
devices, mostly 802.11g wireless routers and APs.

This paper examines the validity of the model introduced
by Serrano et al. on today’s smartphones. We try to answer
two questions: (i) Can the model accurately estimate the power
consumption due to WiFi activity in today’s smartphones given
the complexity of modern smartphone architectures? (ii) Does the
model remain valid in the case of 802.11n/ac interfaces, and if yes,
can it reflect the impact of the new MAC features (e.g., MIMO,
channel bonding) on the WiFi power consumption? Additionally,
we study the impact of the power saving mode (PSM) which was
ignored in the original model and show that ignoring PSM results
in significant overestimation of the total power consumption at
low frame generation rates. Accordingly, we propose a new model
that works across the full range of frame generation rates and
verify its accuracy for a wide range of parameters and devices.

I. INTRODUCTION

The proliferation of mobile devices (smartphones, tablets)
has significantly increased the amount of data carried over
wireless networks. Although the average cellular data rates
have increased with the deployment of LTE, 802.11 WLANs
still remain a primary choice for broadband Internet access
due to their wide deployment and low or often zero cost to
end users. With applications like Voice-over-IP (VoIP) gaining
popularity and new proposals to offload LTE traffic to WiFi,
the traffic carried over 802.11 networks is bound to grow.

Network connectivity through WiFi often incurs a major
energy cost, which is a serious concern for battery-limited
devices like smartphones. The problem is further exacerbated
by the fact that the most popular smartphone applications need
network access to function. It is hence not a surprise that a lot
of research efforts have been targeted towards making 802.11
energy-efficient. Towards this end, 802.11 power consumption
models are extremely useful for researchers/developers to help
them and design power saving schemes or energy efficient
applications. Over the past few years, many such power
models have been proposed [1]-[2]. A common characteristic

of most of them is that they treat the active (Tx or Rx) 802.11
power consumption as a sum of two components: a constant
baseline one, plus a second one which reflects the power
consumption of the 802.11 NIC.

The work by Serrano et al. [3] was the first to question
this classical model, showing that there is an additional en-
ergy component incurred by the device itself when a packet
traverses the protocol stack. This extra component, referred
to as cross-factor, is independent of the packet size and the
WiFi transmission parameters but accounts for a significant
portion of the total power. The authors proposed a fine-grained
power model for 802.11 devices that takes into account both
the power consumption by the 802.11 NIC and by the protocol
stack itself. Although the model was evaluated on a variety of
WiFi devices, the focus was on routers/APs equipped with
802.11g interfaces. Only two 802.11g mobile devices were
used and one 802.11n router.

Today, devices supporting the new IEEE 802.11n/ac stan-
dards have become much more common that those equipped
with legacy WiFi interfaces (802.11a/b/g). These new stan-
dards offer much higher data rates by leveraging a MIMO-
based PHY, coupled with Channel Bonding (CB), frame ag-
gregation (FA), and more aggressive modulation and coding
schemes (MCS). However, most of these high-throughput
features also incur higher power consumption [4], [5], [6].
Additionally, today’s smartphones have evolved and have
a much more complex architecture, with more components
bundled as part of a single System-On-Chip (SOC), compared
to devices when the model was originally proposed. In the
light of these changes, it becomes necessary to ask whether
the original model can still act as an accurate power estimator
across a range of today’s mobile devices.

Additionally, battery-constrained mobile devices typically
implement a Power Save mode (PSM); they remain at a very
low power (sleep) state and they only switch to a high power
state to transmit or receive packets. With low frame generation
rates (common in smartphones where background processes
typically contact their remote application servers to report
status and get updates), it is expected that the NIC in such
devices will remain in sleep state most of the time. Serrano et
al. ignored PSM (a natural choice in the case of APs/routers,
indeed the focus of [3]) and evaluated the model only for rates
higher than 100 fps.
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model from [3] to check its validity on today’s smartphones.
We experiment with a variety of 802.11g and 802.11n phones,
in order to ensure that we are not profiling a single device.
We make the following contributions:
• We show that the model accuracy remains very high across

devices, network types (802.11g vs. 802.11n), and 802.11n
configurations (combination of MCS, channel width, and
number of spatial streams (NSS)).

• We investigate whether the trends w.r.t. the model param-
eters observed in [3] are still valid in the case of today’s
smartphones and whether they hold across devices and
across 802.11 types. Additionally, in the case of 802.11n-
equipped smartphones, we explore the impact of 802.11n
MAC features (FA, CB, NSS) on the model parameters.

• We evaluate the original model for frame generation rates
lower than 100 fps and show that the accuracy decreases
significantly at very low rates, for both 802.11g and 802.11n
devices. Additionally, we observe and report for first time,
to our best knowledge, a non-standard sleep behavior of
802.11n NICS in a number of different smartphones; due
to this behavior, the accuracy of the original model in the
case of 802.11n is reduced even at relatively higher frame
generation rates.

• Building upon the original model and our observations, we
propose a new model that is applicable over the entire range
of frame generation rates and across different network types.

II. BACKGROUND

Power model The work in [3] modeled the total device power
consumption due to WiFi transmissions as:

P = ρid + Ptx + Pxg(λg) = ρid + ρtxτtx + γxgλg (1)

• ρid is a platform-specific baseline power consumption.
In [3], it is defined as “the power consumed in the “idle”
state”.

• Ptx = ρtxτtx is the power consumption of the 802.11
NIC which grows linearly with the transmission airtime
percentage τtx = λgTL, where λg is the frame generation
rate (kept below saturation) and TL = TPLCP +(H+L)/R
is the time required to transmit a frame of size L at a PHY
bitrate R, accounting for the PLCP preamble TPLCP and
the MAC overhead H . [3] showed that ρtx increases with
MCS, Tx power, and CPU frequency, in a large number of
devices.

• Pxg(λg) = γxgλg is the cross-factor, i.e., the power con-
sumption incurred as the frames traverse the protocol stack,
which depends only on the frame generation rate λg . The
parameter γxg (in mJ/frame) is the per-frame processing
energy toll as the frame crosses the protocol stack. [3]
showed that γxg increases with CPU frequency but it is
independent of the radio transmission parameters.
[3] developed a similar model for the total power con-

sumption during WiFi reception. Additionally, the model was
extended to account for retransmissions and ACKs. Since
the Tx power consumption is higher than the Rx power
consumption, especially in smartphones [3], [6], in this paper,

we focus on the Tx power consumption. Further, we ignore
ACKs and retransmissions, since [3] showed that they have a
negligible impact on the radio power consumption and they
do not affect the cross-factor.
PSM A WiFi radio in PSM switches between the sleep and
the awake state. It remains in sleep state when there is no
network activity and wakes up only at the beginning of every
beacon period and any time it has a packet to transmit. In this
paper, we focus on the most popular Dynamic PSM, which is
used by all the devices in Table I. In Dynamic PSM, instead
of entering the sleep state right after transmitting/receiving,
the radio stays awake for a pre-defined duration called PSM
timeout PSM TO. The radio uses an inactivity timer and
resets it to the PSM TO value after every packet transmis-
sion/reception. The device notifies the AP of any transition to
the awake or sleep state by sending a NULL data frame with
the Power Management bit set to 0 or 1, respectively.

Clearly, for frame generation rates lower than a threshold
λTH = 1/PSM TO, the packet inter-arrival time is longer
than the PSM timeout. Thus, after each packet transmission,
the radio will spend PSM TO time idle and then it will
switch to the sleep state. In contrast, when λg ≥ λTH ,
the radio always remains in the awake state, as each packet
transmission resets the inactivity timer before its expiration.
Note that, based on the above description, we distinguish
two sub-states in the awake state; active state (when the
radio is transmitting or receiving) and idle state (the time
between a packet transmission/reception and the expiration of
the inactivity timer).

III. EXPERIMENTAL METHODOLOGY

Our study was performed using five different smartphones
(see Table I). We performed detailed power measurements
with three of them – Nexus S, Galaxy S3, Galaxy S5. We
used Nexus S for experiments with 802.11g, Galaxy S5 for
experiments with 802.11n, and Galaxy S3 for experiments with
both 802.11g and 802.11n. All these three phones are from
one manufacturer: Samsung. In order to verify some important
observations in Section V-B, we used two additional devices
– G4 and Nexus 5X. First, to remove any H/W specific bias,
we used a phone (G4) from a different manufacturer (LG).
Finally, since the WiFi NICs in the Samsung and LG phones,
although different, are all from the same chipset manufacturer
(Broadcom Corporation), to further remove any S/W, driver, or
WLAN card based biases, we also used another very recently
released Nexus 5X phone that has a Qualcomm WiFi NIC.

We used a laptop running a Linux distribution (Ubuntu
12.04, kernel 3.6) as AP. The laptop was equipped with a
Half Mini PCI-e Atheros AR9380 802.11a/b/g/n 3x3 WiFi
adapter controlled by the open source ath9k [7] driver. All our
experiments were done with Long Guard Interval (LGI); [8]
found that SGI and LGI exhibit very little difference in terms
of throughput and power consumption. To fix the MCS on
the phones, we forced the AP to advertise support of a single
MCS index in the 802.11n beacons.



TABLE I
SMARTPHONES USED IN OUR STUDY.

Manufacturer Google [Samsung] Samsung Samsung LG Google [LG]
Model Nexus S Galaxy S3 Galaxy S5 G4 Nexus 5X

OS Android 2.3.7 (CM 7.1) Android 4.2.2 (CM 10.1.3) Android 4.4.4 (CM 11.20) Android 6.0 Android 6.0
Chipset Broadcom BCM4329 Broadcom BCM4330 Broadcom BCM4354 Broadcom BCM4339 Qualcomm QCA6174

802.11g/802.11n 802.11g Both 802.11n 802.11n [verify] 802.11n [verify]
802.11n features N/A 40 MHz 40 MHz, MIMO 2x2 80 MHz, MIMO 2x2 80 MHz, MIMO 2x2

We measured power consumption on the phone using a
Monsoon Power Monitor [9]. The power measurements were
taken with the screen on, Bluetooth/GSM/3G radios disabled,
and minimal background application activity, ensuring that the
phone’s base power is low and does not vary significantly over
time. Each experiment involved a 10-second iperf session. The
phone and the AP were placed very close to each other and
we made sure there was no external interference.
CPU and Tx Power We wanted to minimize the impact
of both the CPU frequency selection and Tx Power in our
power measurements. Towards this end, we followed a simple
strategy to select the appropriate CPU frequency. For each
device and each WiFi configuration (802.11g/n, channel width,
NSS), we started with the smallest CPU frequency offered
by the device and then incremented it until we found the
one that provides throughput at the maximum possible MCS
(54 Mbps for 802.11g, MCS 7 for 802.11n/20SS and 40SS,
MCS 15 for 802.11n/20DS and 40DS) comparable to what we
could get with the highest CPU frequency setting available.
This method guaranteed that the CPU does not become a
bottleneck but at the same time it does not contribute any more
to the phone’s power consumption, than required to support
the maximum possible throughput. Once CPU frequency is
fixed, we used a similar strategy to select the lowest TX power
setting that can support the highest throughput possible with
a given configuration.

IV. MODEL APPLICABILITY IN SMARTPHONES

In this section, we study the applicability of the model in
the case of 802.11g- and 802.11n-equipped smartphones. We
only consider frame rates λg ≥ 100 fps, similar to in [3].

A. Model construction and validation

Calculating the Tx airtime percentage The main challenge
in building the model in the case of 802.11n is calculating
the channel airtime percentage τtx. The time required to
transmit a frame TL can no longer be estimated as TL =
TPLCP +(H+L)/R, because each transmitted frame may be
of different frame size due to FA. Ignoring FA and assuming a
constant frame size L can result in significant underestimation
of τtx. On the other hand, using the maximum allowed
AMPDU size may also result in large estimation errors; lower
frame generation rates often yield lower AMPDU sizes, since
typically WiFi drivers specify a maximum AMPDU size but
they do not enforce it by delaying packets. Although one
could capture the traffic on the receiver side and estimate the
average aggregation size, we prefer a much simpler approach.
In 802.11a/b/g, we have:

τtx = λgTL =
λg

1/TL
=

Lλg
L/TL

(2)

where Th = Lλg is the application layer throughput and L/TL
is the MAC layer data rate which is also equal to the maximum
possible application layer throughput (λg ≤ 1/TL). Hence, we
can approximate the airtime percentage as

τtx =
Th

Thmax
(3)

where Thmax is the maximum possible application layer
throughput which we measure by saturating the link with UDP
traffic of maximum packet size.
Measurements For 802.11g devices, we considered 3 different
PHY bitrates (12 Mbps, 24 Mbps, and 48 Mbps). For each
bitrate, we took measurements of the total device power con-
sumption for combinations of 8 frame sizes L ∈ [100, 2000]
bytes and 7 frames rates λg ∈ [100, 1800] fps. For 802.11n
devices, we built the model separately for each supported
channel width and NSS. For each combination (20SS, 40SS,
20DS, 40DS), we considered 3 different MCS (1, 4, and 6
in the case of SS and 9, 12, and 14 in the case of DS). For
each MCS, we measured the total device power consumption
for the same 8 frame sizes as in the case of 802.11g and 15
frame generation rates λg ∈ [100, λmaxg ] fps, where λmaxg is
the maximum supported frame rate, different for each (channel
width, NSS, MCS) combination. To build the model, we used
simple linear regression following the methodology of [3].
Evaluation Figure 1 shows the cumulative distribution func-
tions (CDFs) of the model’s relative errors with each phone in
802.11g and 802.11n. The relative error is defined as Erel =
|Pmodel−Pmeasure|

Pmeasure
, where Pmeasure is the power consumption

measured with Monsoon and Pmodel is the estimated value
from equation (1) using the parameters from Table II. We
observe that the errors remain very low for all three phones and
all WiFi configurations. In particular, in the case of 802.11g,
the errors remain below 3% with Nexus S and below 8%
with Galaxy S3. In the case of 802.11n, the errors with S3
increase only sightly. The errors with Galaxy S5 are higher
– the maximum error is lower than 17% (23%) at 20 MHz
(40 MHz) – but the 90th percentile still remains below 14%
with all 4 configurations. Overall, we conclude that the model
remains valid for modern smartphones in both 802.11g and
802.11n. Interestingly though, the error tends to increase for
configurations that support higher throughputs. This raises a
concern for 802.11ac that supports even wider channels.

B. Model parameters

We now take a closer look at the model parameters and
study their properties and their impact on the total power
consumption. Table II lists the values of the model parameters
for each device.



(a) 802.11g. (b) 802.11n (channel width 20 MHz). (c) 802.11n (channel width 40 MHz).
Fig. 1. CDFs of the relative error with Nexus S, Galaxy S3, and Galaxy S5 for λg ≥ 100 fps.

TABLE II
POWER MODEL PARAMETERS FOR ALL THE DEVICES UNDER STUDY.

ρid(mW ) ρtx(mW ) γxg(mJ)
Nexus S (802.11g)

12M 794.79± 0.93% 753.64± 3.45% 0.14± 5.64%
24M 792.97± 0.94% 796.03± 3.68% 0.12± 8.24%
48M 794.55± 0.94% 1009.74± 4.83% 0.10± 11.35%

Galaxy S3 (802.11g)
12M 934.22± 0.21% 750.84± 0.96% 0.05± 4%
24M 936.25± 0.15% 746.72± 0.78% 0.04± 5.28%
48M 955.86± 0.21% 734.63± 1.95% 0.06± 4.91%

Galaxy S3 (802.11n, 20 MHz, SS)
MCS1 968.71± 0.31% 606.13± 1.38% 0.12± 3.37%
MCS4 977.52± 0.34% 558.45± 1.42% 0.09± 2.32%
MCS6 973.38± 1.7% 493.49± 9.87% 0.08± 11.96%

Galaxy S3 (802.11n, 40 MHz, SS)
MCS1 1233.16± 0.19% 613.51± 1.14% 0.14± 2.15%
MCS4 1258.36± 0.34% 465.19± 3.2% 0.11± 1.84%
MCS6 1276.97± 0.49% 370.6± 6.68% 0.09± 2.12%

Galaxy S5 (802.11n, 20 MHz, SS)
MCS1 1053.91± 0.87% 1208.34± 1.78% 0.22± 4.95%
MCS4 1063.1± 0.62% 816.26± 1.88% 0.12± 3.23%
MCS6 1088.8± 0.8% 750.56± 3.57% 0.10± 4.03%

Galaxy S5 (802.11n, 40 MHz, SS)
MCS1 1140.83± 1.17% 872.22± 4.06% 0.14± 9.77%
MCS4 1275.51± 1.39% 797.25± 8.07% 0.06± 11.17%
MCS6 1310.96± 1.34% 704.55± 10.05% 0.04± 11.45%

Galaxy S5 (802.11n, 20 MHz, DS)
MCS9 1055.97± 0.69% 830.1± 2.27% 0.17± 4.82%
MCS12 1153.65± 1.02% 597.31± 6.82% 0.07± 7.65%
MCS14 1153.7± 1.08% 625.73± 8.08% 0.06± 6.84%

Galaxy S5 (802.11n, 40 MHz, DS)
MCS9 1225.91± 0.61% 665.31± 3.32% 0.13± 3.1%
MCS12 1327.49± 1.07% 647.9± 10.21% 0.06± 6.31%
MCS14 1394.82± 1.23% 692.89± 11.4% 0.04± 9.11%

Idle power Table II shows that the idle power is different
across different devices and across different 802.11 modes
for the same device (higher in 802.11n than in 802.11g).
Additionally, for devices in 802.11n mode, the idle power with
a 40 MHz channel is higher than with a 20 MHz channel for
a given MCS and NSS (27-31% in Galaxy S3 and 8-21%
in Galaxy S5); this finding was also reported in [5], [6]. On
the other hand, activating a 2nd spatial stream has a minimal
impact on the idle power consumption (at most 8%); this rather
counter-intuitive result was also reported in [6].
Properties of γxg One of the main findings in [3] was that γxg
is constant for a given device (and a fixed CPU frequency),
independent of the WiFi transmission parameters. Table II
shows that this is no the case for the devices we study in this
paper. For a given device, γxg differs among different MCS by
2 mJ/frame (Galaxy S3, 802.11g) up to 12 mJ/frame (Galaxy
S5, 802.11n/20SS). Further, γxg is higher in 802.11n than in
802.11g for the same device (Galaxy S3), and for 802.11n

devices, it takes different values across different combinations
of channel width and NSS. We also observe that there is no
clear trend across devices. In Galaxy S3, γxg is slightly higher
at 40SS than at 20SS. In contrast, in Galaxy S5, it takes the
highest values at 20SS and the lowest ones at 40DS.

In spite of the discrepancy in the γxg values for the same
device, we note that these values are order of magnitudes
smaller than the values of ρtx and hence, their impact on the
total power consumption may be limited. If that is the case,
then one could still use one γxg value for all MCS (e.g., the
average γxg across all MCS) without affecting the accuracy.
To investigate this, Table III shows the average relative error
of the power model for each MCS when we replace in the
model the γxg value of that MCS with the γxg values of other
MCS as well as with the average γxg value across the 3 MCS
we consider in Table II. The diagonal cells (in bold font) show
the errors with the correct γxg values.

Table III shows that using a different γxg in 802.11g does
not affect the accuracy; the maximum value for the average
relative error is only 3.9% (Nexus S, 48 Mbps with γxg12M ).
In fact, the error with γxgavg

is always less than 3%. Hence,
we can use γxgavg

in equation (1) and be consistent with [3],
i.e., have a single γxg independent of the MCS. On the other
hand, in 802.11n, the average relative error can sometimes be
as high as 20% with standard deviations of similar levels (e.g.,
Galaxy S5, 40DS, MCS 14 with γxg9 ). However, the errors
with γxgavg

never exceed 11% (with a standard deviation of
up to 9.55%) and, in many cases, they remain lower than 5%.
Hence, depending on the desired level of accuracy, we can
still use γxgavg in equation (1).
Properties of ρtx The authors in [3] found that for a large
number of 802.11g devices including routers, APs, tablets, and
smartphones, and one 802.11n wireless router, ρtx increased
with the MCS. In contrast, Table II shows that the relationship
between ρtx and MCS is very different for different devices.
Among all the devices in Table II, only the oldest Nexus S
phone exhibits the same trend with ρtx increasing from 753
mW to 1009 mW as the bitrate increases from 12 Mbps to
48 Mbps. On the other hand, in Galaxy S3 (both in 802.11g
and 802.11n mode) and in Galaxy S5 (at 20SS and 40SS),
ρtx decreases with the MCS. The same device (S5) exhibits a
different trend in the case of DS (both 20DS and 40DS) with
both MCS 9 and 14 having a higher ρtx than MCS 12.



TABLE III
SUMMARY OF RELATIVE ERRORS (AVERAGE AND STANDARD DEVIATION) WITH DIFFERENT γxg VALUES.

802.11g smartphones
BitRate γxg12M

γxg24M
γxg48M

γxgavg

Nexus S
12M 1.69% ± 1.34% 1.96%± 1.79% 3.17%± 2.73% 2.02%± 1.83%
24M 2.53%± 2.14% 1.99% ± 1.74% 2.36%± 2.18% 2%± 1.73%
48M 3.9%± 3.41% 2.8%± 2.48% 2.23% ± 1.75% 2.75%± 2.42%

Galaxy S3
12M 0.47% ± 0.4% 0.95%± 0.73% 0.83%± 0.69% 0.48%± 0.4%
24M 0.94%± 0.67% 0.39% ± 0.31% 1.72%± 1.14% 0.92%± 0.65%
48M 0.99%± 0.78% 1.79%± 1.31% 0.59% ± 0.5% 1.01%± 0.79%

802.11n smartphones
MCS γxg1 / γxg9 γxg4 / γxg12 γxg6 / γxg14 γxgavg

Galaxy S3
20 MHz, SS

1 0.71% ± 0.51% 2.2%± 1.47% 2.86%± 1.9% 1.77%± 1.22%
4 4.17%± 2.38% 1.05% ± 0.71% 1.77%± 1.08% 1.27%± 0.97%
6 5.8%± 4.79% 1.74%± 1.89% 1.73% ± 1.2% 2.27%± 2.62%

Galaxy S3
40 MHz, SS

1 0.5% ± 0.37% 1.92%± 1.33% 2.77%± 1.87% 1.6%± 1.13%
4 4.03%± 2.72% 1.34% ± 0.9% 2.49%± 1.33% 1.39%± 1.08%
6 6.94%± 5.01% 2.59%± 2.37% 2.09% ± 1.37% 3.25%± 2.8%

Galaxy S5
20 MHz, SS

1 1.76% ± 1.33% 5.15%± 3.06% 6.18%± 3.8% 4.13%± 2.38%
4 10.42%± 5.42% 1.7% ± 1.55% 3.46%± 1.61% 2.96%± 2.06%
6 16.21%± 9.49% 3.87%± 3.08% 2.82% ± 2.1% 6.81%± 4.27%

Galaxy S5
40 MHz, SS

1 2.68% ± 2.2% 5.79%± 3.54% 6.78%± 4.22% 4.79%± 2.85%
4 13.47%± 8.39% 5.61% ± 5% 6.85%± 4.77% 6.48%± 5.06%
6 20.79%± 15.35% 7.55%± 5.69% 6.39% ± 5.39% 10.58%± 6.97%

Galaxy S5
20 MHz, DS

9 1.67% ± 1.25% 6.81%± 3.89% 7.21%± 4.16% 4.95%± 2.71%
12 16.55%± 11.17% 4.4% ± 3.37% 4.66%± 3.39% 6.49%± 4.67%
14 21.86%± 16.37% 5.25%± 3.57% 5.08% ± 3.57% 8.6%± 7.04%

Galaxy S5
40 MHz, DS

9 2.09% ± 1.63% 8.04%± 3.7% 10.1%± 4.88% 6.41%± 2.86%
12 13.96%± 11.42% 5.28% ± 3.63% 7.44%± 3.93% 5.87%± 4.47%
14 22.51%± 19.68% 8.08%± 6.57% 6.63% ± 5.11% 10.52%± 9.55%

(a) λg = 100 fps. (b) λg = λmax
g . (c) Average power decomposition.

Fig. 2. Total power decomposition for different devices, WiFi configurations, and packet sizes. The PHY bitrate is set to 48 Mbps in 802.11g and the MCS
is set to 6/14 in 802.11n SS/DS.

In the case of 802.11n devices, we are also interested in the
relationship between ρtx and the other two WiFi transmission
parameters, channel width and NSS for a given MCS. As far
as the channel width is concerned, Table II shows that ρtx is
lower at 40 MHz than at 20 MHz in both devices (S3 and S5)
with a SS. On the other hand, in the case of Galaxy S5 with
DS, it decreases substantially (from 830 mW to 665 mW) only
for MCS 9 but increases sightly for MCS 12 and 14. As far
as the NSS is concerned, ρtx decreases when we move from
SS to DS for any MCS and channel width.

Summarizing, a general trend appears in Table II: In modern
smartphones, higher throughput configurations (higher MCS,
wider channels, higher NSS) appear to have (with a few
exceptions) lower ρtx. Consequently, contrary to the common
belief, such configurations contribute less to the WiFi power
consumption and to the overall device power consumption.
However, remember that 40 MHz channel can contribute a
significant amount to the idle power consumption, which often
dominates the total power consumption (Figure 2). The same
conclusion was reported in a measurement study in [5] for
802.11ac. This result shows the need for new power saving

schemes that can reduce the power consumption of the idle
mode operation in wider channels.
Power consumption breakdown In order to gain insights on
the contribution of each of the three power components on the
total power consumption in different devices, we examine in
Figure 2 how the total power consumption in each device is
decomposed into three parts: the base (idle) power ρid, the
cross-factor Pxg(λg) = γxgλg , and the WiFi transmission
power Ptx = ρtxτtx. We show the results for 802.11g with
a PHY bitrate of 48 Mbps and 802.11n with MCS 6/14,
and two different packet sizes: 100 bytes and 1470 bytes. To
understand the impact of λg on the cross-factor and the WiFi
transmission power, we plot the result for λg = 100 fps in
Figure 2(a), λg = λmaxg (different for each WiFi configuration)
in Figure 2(b), and the average result over all λg ∈ [100, λmaxg ]
in Figure 2(c).

A first observation from Figures 2(a), 2(b), 2(c) is that the
idle/base power is the largest component of the total power
consumption. On average (Figure 2(c)), pid contributes 80-
93% of the total power in the case of 100-byte packets and
70-82% in the case of 1470-bytes packets. More importantly,



(a) Nexus S (12 Mbps). (b) Nexus S (24 Mbps). (c) Nexus S (48 Mbps).

(d) Galaxy S3 (12 Mbps). (e) Galaxy S3 (24 Mbps). (f) Galaxy S3 (48 Mbps).
Fig. 3. Comparison of measured and calculated power in Nexus S and Galaxy S3 (802.11g) for λg ∈ [0, 100].

in the case of low frame generation rates (Figure 2(a)) the
contribution of pid increases to 96-99%, making the contri-
bution of both the cross-factor and the WiFi transmission
power negligible. On the other hand, in the case of high frame
generation rates (Figure 2(b)), the weight of pid is lower,
although it still constitutes 50-85% of the total power. If we
ignore pid for a moment and focus on the relative contribution
of the other two components, we observe that the cross-factor
dominates with small packet sizes and the WiFi Tx component
dominates with large packet sizes. The same observation was
made in [3] for a smartphone and a tablet device. Specifically,
in the average case, the cross-factor contributes 7-15% of the
total power consumption with 100-byte packets and 5-12%
with 1470-byte packets. In the case of high λg , its contribution
increases up to 33% in 802.11n but remains low in 802.11g.

V. IMPACT OF PSM
In the last section, we limited our study to frame generation

rates λg ≥ 100 fps. In practice, low frame generation rates are
possible and generally occur when the smartphone screen is
off but background processes are actively communicating with
their remote servers for regular reporting of status and fetching
of updates. Since such background processes can account for
a large portion of the total battery drain in a day [?], it is
important to understand the power consumption in the low
activity region. Hence, in this section, we take a look at the
applicability of the original model for λg < 100 fps, in both
802.11g and 802.11n.

A. 802.11g

Figure 3 plots the measured and calculated (using the origi-
nal model (1)) power for Nexus S and Galaxy S3 respectively,
as a function of λg ∈ [0, 100] fps, for three PHY bitrates and

two packet sizes (100B and 1470B). We observe that, for each
of the three bitrates and any of the two packet sizes (for both
Nexus S and Galaxy S3), the model has very minimal or zero
deviation from the measured power for 5 < λg ≤ 100 fps. In
contrast, the measured power below the 5 fps threshold drops
much more sharply as we lower the frame generation rate.
As a result, the original model overestimates significantly the
power consumption for λg ∈ [0, 5) and the error increases as
λg decreases. In the worst case, the error can be as high as
330 mW for Nexus S and 240 mW for Galaxy S3. Note that,
although we only show plots for two packet sizes, we have
confirmed that other packet sizes exhibit the same trend, only
differing marginally in their absolute values.

1) Understanding power consumption for λg < 5 fps: By
looking at packet traces collected from all the experiments
involving frame generation rates λg < 5 fps, we observed that
both devices use the 802.11 Dynamic PSM (see Section II).
As we described in Section II, the radio switches to the sleep
state when the packet inter-arrival time is longer than the
PSM timeout PSM TO. 802.11 does not specify the value
of PSM TO. By analyzing packet traces, we empirically
found that, for both 802.11g devices used in our experiments,
PSM TO is set to 200 ms, which corresponds to a frame
generation rate λTH = 5 fps. Hence, for λg < λTH = 5 fps,
the radio spends an amount of time at the low power sleep
state instead of the high power idle state; this behavior is not
captured by the original model, resulting in low accuracy. In
contrast, for λg ≥ λTH , a new packet is always scheduled
for transmission before the completion of the PSM timeout,
resetting the inactivity timer (indeed, we found no NULL
frames with the power management bit set to 1 in our traces
for λg ≥ 5 fps). As a result, the radio never switches to the



(a) The radio switches to the sleep state for λg = 4 fps.

(b) The radio remains always awake for λg = 6 fps.
Fig. 4. Illustration: PSM in 802.11g for λg < λTH and λg ≥ λTH fps.

sleep state and the original model can estimate correctly the
power consumption.

Figure 4 illustrates a typical sleep/transmission time-line for
λg = 4 < 5 fps (4(a)) and λg = 6 > 5 fps (4(b)). The arrows
represent packet transmissions from the phone to the AP. For
λg = 4 fps, the inter-arrival time between the two consecutive
packets is 250 ms, greater than the PSM timeout of 200 ms.
Thus, the device goes to sleep after 200 ms and wakes up
when the next packet is ready for transmission (after 50 ms
in this example). Contrast this to the case with λg = 6 fps,
where the packet inter-arrival time is reduced to 166.66 ms.
This causes the timer to be reset before its expiration and the
device never enters the sleep state.

2) Corrected power model: We now modify the original
power model Porig (equation (1)) to provide a corrected model
Pcorrected, which takes into account PSM behavior. To account
for the reduced power consumption cased due to sleeping, we
first calculate the number of sleep intervals ns in a given time
interval T as

ns = bT · λgc (4)

and the amount of time Ts the interface sleeps in each such
interval as

Ts =
1

λg
− 1

λTH
(5)

Given the sleep power Psleep, obtained experimentally for
each device, we model the power consumption as:

Pcorrected =
Porig(T − ns · Ts) + Psleep(ns · Ts)

T

= Porig ·
λg
λTH

+ Psleep · (1−
λg
λTH

)
(6)

Equation (6) is valid only when PSM comes into play, for
λg < λTH . In contrast, when λg ≥ λTH , the original model
(1) does not require any correction. The two equations can be
combined into one that works with the entire range of frame
generation rates as

Pcorrected = Porig ·min(1,
λg
λTH

)+Psleep ·(1−min(1,
λg
λTH

))

(7)
3) Accuracy of Pcorrected (802.11g): Figure 5 compares

the average relative error of the original model (1) and the
corrected model (7), Eoriginal and Ecorrected, respectively,
with each of the two 802.11g phones for three PHY bitrates
and 0 ≤ λg < 5 fps (the two models are identical for λg ≥
5 fps). The average is taken over many different λg values

and two different packet sizes (100B and 1470B). We observe
that the original model fails to accurately estimate the power
consumption in the low λg region with average errors as high
as 19% for Nexus S and 13% for Galaxy S3. In contrast, our
corrected model accounting for the time spent in the sleep state
achieves very high accuracy, keep the average error lower than
4% for Nexus S and lower than 1.5% for Galaxy S3.

B. 802.11n

Figure 6 plots the measured and calculated (using the
original model) power as a function of λg ∈ [0, 100] fps for
Galaxy S3 (20SS, MCS 1, 4 and 6) and Galaxy S5 (40DS,
MCS 9, 12 and 14), for two packet sizes 100B and 1470B. The
behavior for Galaxy S3 (40SS) and Galaxy S5 (20SS, 40SS,
20DS) is similar – we omit these figures in the interest of
space. For both phones and all MCS, packet size, and channel
width combinations, we observe a behavior similar to that of
802.11g for 0 ≤ λg < 5 fps. However, different from 802.11g,
in Figure 6 we observe significant errors even for λg > 5 fps
all the way up to λg < 100 fps. Interestingly, for 5 ≤ λg < 30
fps, the measured power varies in a non-linear, zig-zag fashion,
increasing with λg for some regions and then decreasing at
certain frame generation rates. This zig-zag pattern diminishes
for higher λg but the disparity between the calculated (from
the model) and measured values remains even for the region
of 30 ≤ λg < 100 fps (in contrast, in Figure 3 we saw that
the error becomes negligible for λ ≥ 5 fps).

1) Understanding power consumption for λg < 100 fps:
To get a deeper insight into this behavior specific to 802.11n
devices, we looked again at their corresponding packet traces.
We observed again the devices spending time in the PSM sleep
state, similar to the 802.11g case. In fact, the PSM timeout
for Galaxy S5 is also equal to 200 ms. However, we further
observed and report for first time to our knowledge, that both
802.11n devices follow a different sleep strategy compared to
the standard strategy used by 802.11g devices (in particular,
Galaxy S3 implements different strategies in 802.11g and
802.11n mode). Specifically, the inactivity timer is not reset
after a packet transmission and the radio always enters the
sleep state after the timer expires regardless of the number
of packet transmissions during the PSM timeout interval (and
hence, regardless of the frame generation rate). In order to
make sure we were not observing an energy bug or H/W
platform specific issues, we confirmed this behavior with two
more devices: LG G4 and Nexus 5X. Both LG G4 and Nexus
5X indeed showed similar behavior and similar patterns for
the measured power for 0 ≤ λg ≤ 100 fps (although Nexus S
uses a much more aggressive PSM timeout of only 8 ms).

Figure 7 shows an example of the sleep behavior as ob-
served for a 802.11n device for λg = 6 fps. The device
sends a packet at t = 0 ms and starts its inactivity timer
(PSM TO = 200 ms). At t = 166.66 ms, another uplink
packet is scheduled but it does not reset the timer. The radio
enters the sleep state at t = 200 ms, when the inactivity
timer set after the first packet transmission (t=0) expires.
Compare this to 802.11g (standard) behavior for the same



(a) 12 Mbps (b) 24 Mbps (c) 48 Mbps
Fig. 5. Average relative error of the original and the corrected model for Nexus S and Galaxy S3 (802.11g) and three different bitrates. The error bars
represent the standard deviations.

(a) Galaxy S3 (20SS, MCS1). (b) Galaxy S3 (20SS, MCS4). (c) Galaxy S3 (20SS, MCS6).

(d) Galaxy S5 (40DS, MCS9). (e) Galaxy S5 (40DS, MCS12). (f) Galaxy S5 (40DS, MCS14).
Fig. 6. Comparison of measured and calculated power in Galaxy S3 (20SS) and Galaxy S5 (40DS) for λg ∈ [0, 100].

Fig. 7. Illustration: PSM in 802.11n for λg = 6 fps. Packet transmissions do
not cancel the inactivity timer. The radio goes to sleep although λg > λTH .

frame generation rate (Figure 4(b)), where the packet at
t = 166.66 ms resets the inactivity timer, preventing the radio
from entering the sleep state.

2) Adapting the corrected model for 802.11n: Based on
the observations described above, we adapt the power model
Pcorrected introduced in Section V-A2. Using the same nota-
tions, we update the definition of the number of sleep intervals
in a given time interval T to:

ns = b
T · λg
k
c (8)

where k is a positive integer defined as k = b λg

λTH
+ 1c.

The amount of time Ts the interface sleeps in each sleep
interval is now calculated as

Ts =
k

λg
− 1

λTH
(9)

Finally, we model the power consumption as

Pcorrected =
Porig(T − ns · Ts) + Psleep(ns · Ts)

T

= Porig ·
λg

k · λTH
+ Psleep · (1−

λg
k · λTH

)
(10)

Equation (10) holds for any λg for 802.11n devices im-
plementing the PSM behavior described in V-B1. Note that
for λg < λTH , (8) gives k = 1 and equation (10) becomes
identical to (7), i.e., the new model defaults to the 802.11g
model which describes the standard PSM behavior.

Figure 8 plots the number of sleep intervals and the duration
of the sleep interval (equations (8) and (9), respectively) as
a function of λ, for T = 10 sec (the duration of each
experiment). We observe that both ns and Ts exhibit a zig-
zag pattern which explains the zig-zag pattern of the measured



Fig. 8. Duration of sleep interval Ts and number of sleep intervals ns during
a 10-sec period as a function of λg . We assume λTH = 5 fps.

power consumption in Figures 6(a)-6(f). We also observe that,
for λg ≥ 100 fps, Ts becomes very short while ns remains
close to 50. Hence, the total time the NIC spends in the
sleep state approaches zero and the impact of PSM on the
total power consumption becomes negligible (In equation (10)
Pcorrected ≈ Porig when Ts ≈ 0).

3) Accuracy of Pcorrected(802.11n): Figure 9 compares
the average relative error of the original and the corrected
model (equation (10)) with Galaxy S3 and S5 for three
different MCS, all combinations of channel width and NSS,
and 0 ≤ λg < 100 fps. We observe that the average error with
the original model is even higher compared to the 802.11g
case, especially with Galaxy S5, often exceeding 60%, with
large standard deviations. Although the corrected model also
exhibits higher errors compared to the 802.11 case, it remains
much more accurate than the original model for all WiFi
configurations; its average error never exceeds 18% and the
standard deviations always remain low. Note that, in contrast
to 802.11g, here the two models exhibit large disparity in their
accuracy even for λg ≥ 5 fps, since the radio always enters
the sleep state. Also, note that the error of the corrected model
remains constant over the whole range of λg ∈ [0, 100] for a
given WiFi configuration. In contrast, the error of the original
model drops with λg , eventually approaching the error of the
corrected model. This is because, for higher values of λg , the
duration of each sleep interval gets shorter, finally approaching
zero (Figure 8) and the impact of PSM on the overall power
consumption finally becomes negligible.

VI. RELATED WORK

A number of recent works have developed models of the
WiFi power/energy consumption in smartphones [1]-[2]. The
majority of these works model the NIC power consumption
with a finite number of power states (e.g., Tx, Rx, idle, sleep),
and add a fixed amount (typically referred to as base power)
to account for the non-wireless power consumption of the
device, ignoring the impact of the packet generation rate.
Two notable exceptions (apart from [3]) are PowerTutor [10]
and PIMM [2]. PowerTutor models the WiFi active power
consumption as a function of both the packet generation rate
rdata and the PHY bitrate Rchannel: P = Pbase + (48 −
0.768×Rchannel)× rdata. However, the model does not offer
any intuition about the cross-factor and does not decouple the

WiFi and non-WiFi parts of the power consumption. PIMM,
similar to [3], decouples the non-WiFi from the WiFi power
consumption and models the former as a function of the packet
generation rate.

Additionally, several of these models [11], [12], [13], [14],
[15], assume constant power consumption at each power state;
this assumption does not hold true for the active power
state. Shye et al. [1] model the active power consumption
as a function of the percentage of the Tx/Rx airtime but
ignore other MAC/PHY layer factors such as MCS, number
of MIMO streams, channel width, or Tx power. Khan et
al. [16] take into account both the airtime and the number
of MIMO streams. Other works have considered the impact
of signal strength [17], packet size [18], and application
layer throughput [19], [20]. In [2], the WiFi active power
consumption is modeled as a power function of the total time
interval t (P = a · tbeta), with α, β adjusted for different
packet sizes and received signal strength (RSS) levels. Since
RSS indirectly accounts for the MCS, one could replace Ptx in
equation (1) with the power function from [2]. Nonetheless,
in this paper, we preferred to work with the original model
from [3], as one of our goals was to understand the impact of
different WiFi transmission parameters (MCS, NSS, channel
width) to the power consumption.

We also note that most of these works focus on the active
(plus idle) power consumption and ignore PSM. The authors
in [10] observed experimentally that in HTC Dream and
HTC Magic phones, WiFi transitions from a high to a low
power state when the packet generation rate drops below 8
packets/sec and from the low to the high power state when
the packet generation rate is higher than 15 packet/sec but
provided no explanation for this behavior. The only works
that model the total power consumption as a function of the
active, idle, and sleep power, based on the relationship between
the data rate and the PSM timeout, similar to our approach,
are [15], [18], [2]. [15] assumes a constant active power
consumption and [18] models the active power consumption
as a function of the packet size only; further, both these works
ignore the cross-factor. On the other hand, [2] assumes that the
NIC never goes to sleep mode when the packet inter-arrival
time is shorter than the PSM timeout, which is not true in
modern 802.11n smartphones, as we showed in Section V.

VII. CONCLUSION

In this paper, we revisited one of most comprehensive WiFi
power models [3], initially proposed for wireless APs/routers.
We re-evaluated the model for the current generation of
smartphones equipped with both 802.11g and 802.11n NICs
and found that it remains valid over a range of devices and
network types, although the model parameters exhibit different
trends compared to the ones reported in the original paper.
Further, we looked at how the model parameters are affected
by 802.11n’s new MAC features. Interestingly, we found that
the idle/base power is often the primary contributor to the
total power consumption except for very high frame generation
rates. Finally, we studied the impact of PSM which was



(a) 20 MHz, MCS 1/9. (b) 20 MHz, MCS 4/12. (c) 20 MHz, MCS 6/14.

(d) 40 MHz, MCS 1/9. (e) 40 MHz, MCS 4/12. (f) 40 MHz, MCS 6/14.
Fig. 9. Average relative error of the original and the corrected model for Galaxy S3 and Galaxy S5 for three different MCS. The error bars represent the
standard deviations.

ignored in the original model and showed that the model fails
to accurately estimate the power consumption for low frame
generation rates. Based on our observations, we developed
a new model that accurately models the power consumption
across the full range of frame generation rates and verified its
accuracy for a wide range of parameters and devices.
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