In Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99)

The Role of Lexicalization and Pruning
for Base Noun Phrase Grammars

Claire Cardie and David Pierce
Department of Computer Science
Cornell University
Ithaca, NY 14853
cardie, pierce@cs.cornell.edu

Abstract

This paper explores the role of lexicalization and prun-
ing of grammars for base noun phrase identification.
We modify our original framework (Cardie & Pierce
1998) to extract lexicalized treebank grammars that
assign a score to each potential noun phrase based
upon both the part-of-speech tag sequence and the
word sequence of the phrase. We evaluate the mod-
ified framework on the “simple” and “complex” base
NP corpora of the original study. As expected, we find
that lexicalization dramatically improves the perfor-
mance of the unpruned treebank grammars; however,
for the simple base noun phrase data set, the lexical-
ized grammar performs below the corresponding unlex-
icalized but pruned grammar, suggesting that lexical-
ization is not critical for recognizing very simple, rel-
atively unambiguous constituents. Somewhat surpris-
ingly, we also find that error-driven pruning improves
the performance of the probabilistic, lexicalized base
noun phrase grammars by up to 1.0% recall and 0.4%
precision, and does so even using the original pruning
strategy that fails to distinguish the effects of lexical-
ization. This result may have implications for many
probabilistic grammar-based approaches to problems
in natural language processing: error-driven pruning is
a remarkably robust method for improving the perfor-
mance of probabilistic and non-probabilistic grammars
alike.

Introduction

Base noun phrase identification (see Figure 1) is a
critical component in many large-scale natural lan-
guage processing (NLP) applications: it is among the
first steps for many partial parsers; information re-
trieval systems rely on base noun phrases as a pri-
mary source of linguistic phrases for indexing; base
noun phrases support information extraction, a vari-
ety of text-mining operations, and distributional clus-
tering techniques that attempt to relieve sparse data
problems. As a result, a number of researchers have
targeted the problem of base noun phrase recogni-
tion (Church 1988; Bourigault 1992; Voutilainen 1993;
Justeson & Katz 1995).

Copyright (©1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

[The survival] of [spinoff Cray Computer Corp.]
as [a fledgling] in [the supercomputer business]
appears to depend heavily on [the creativity] —
and [longevity] — of [its chairman] and
[chief designer], [Seymour Cray].

Base noun phrases: simple, nonrecursive noun
phrases — noun phrases that do not contain other noun
phrase descendants.

Figure 1: Base NP Examples

Only recently, however, have efforts in this area at-
tempted the automatic acquisition of base noun phrase
(base NP) parsers and their automatic evaluation on the
same large test corpus: Ramshaw & Marcus (1998) ap-
plied transformation-based learning (Brill 1995); Arga-
mon, Dagan, & Krymolowski (1998) devised a memory-
based sequence learning (MBSL) method; previously
we introduced error-driven pruning of treebank gram-
mars (Cardie & Pierce 1998). All three methods for
base NP recognition have been evaluated using part-
of-speech tagged and base NP annotated corpora de-
rived from the Penn Treebank (Marcus, Marcinkiewicz,
& Santorini 1993), thus offering opportunity for more
direct comparison than algorithms that have been eval-
uated by hand.

Ramshaw & Marcus’s noun phrase bracketer learns a
set of transformation rules. Each transformation locally
updates the noun phrase bracketing associated with a
single word based on nearby features, such as neigh-
boring words, part-of-speech tags, and bracket bound-
aries. After the training phase, the learned transfor-
mations are applied, in order, to each novel text to
identify base NPs. Argamon et al. develop a variation
of memory-based learning (Stanfill & Waltz 1986) for
base NP recognition. During training, their MBSL al-
gorithm saves the entire raw training corpus. General-
ization of the implicit noun phrase rules in the training
corpus occurs at application time — MBSL searches
the novel text for tag sequences or combinations of tag
subsequences (tiles) that occurred during training in a
similar context.

Our corpus-based algorithm for noun phrase recogni-

tion uses a simpler representation for the base NP gram-
mar, namely part-of-speech tag sequences. It extracts
the tag sequence grammar from the treebank training
corpus, then prunes it using an error-based benefit met-
ric. To identify a base NP in a novel sentence, a simple
longest-match bracketer scans input text from left to
right, at each point selecting the longest sequence of
tags matching a grammar rule (if any) to form a base
NP. The approach has a number of attractive features:
both the training and the bracketer are very simple;
the bracketer is very fast; the learned grammar can
be easily modified. Nonetheless, while the accuracy
of the treebank approach is very good for applications
that require or prefer fairly simple base NPs, it lags
the alternative approaches when identifying more com-
plex noun phrases. This can be explained in part by
examining the sources of knowledge employed by each
method: The treebank approach uses neither lexical
(i.e. word-based) information nor context; MBSL cap-
tures context in its tiles, but uses no lexical informa-
tion; the transformation-based learner uses both lexical
information and the surrounding context to make deci-
sions about bracket boundary placement. Context and
lexicalization have been shown to be important across
a variety of natural language learning tasks; as a result,
we might expect the treebank approach to improve with
the addition of either. However, lexicalization and its
accompanying transition to a probabilistic grammar has
at least one goal similar to that of pruning: to reduce
the effect of “noisy” rules in the grammar. Therefore,
it is not clear that lexicalization alone will improve the
error-driven pruning treebank approach to base noun
phrase recognition.

This paper explores the role of lexicalization and
pruning of base noun phrase grammars. More specifi-
cally, we modify our original framework to extract lex-
icalized treebank grammars that assign a score to each
potential noun phrase based upon both the tag sequence
and the word sequence of the phrase. In addition, we
extend the noun phrase bracketer to select the combi-
nation of brackets with the highest score. We evaluate
the modified framework on the “simple” and “complex”
base NP corpora of the original study.

As expected, we find that lexicalization dramatically
improves the performance of the unpruned treebank
grammars, with an increase in precision and recall of
approximately 70% and 50%, respectively. However,
for the simple base NP data set, the lexicalized gram-
mar still performs below the unlexicalized, but pruned,
grammar of the original base NP study, suggesting that
lexicalization is not critical for recognizing very sim-
ple, relatively unambiguous constituents. For the sim-
ple base NP task, pruning serves much the same func-
tion as lexicalization in that both suppress the appli-
cation of bad rules. Pruning, however, allows the sim-
plicity of the grammar and bracketing procedure to re-
main intact. In contrast, for more complex base NPs,
the lexicalized grammar performs comparably to the
pruned unlexicalized grammar of the original study.

Thus, the importance of lexical information appears
to increase with the complexity of the linguistic task:
more than just the tag sequence is needed to determine
the quality of a candidate phrase when the targets are
more ambiguous. For many applications, however, the
added complexity of the lexicalized approach may not
be worth the slight increase in performance.

There were a couple of surprises in our results: both
the longest-match heuristic of the original bracketer
and the original error-driven pruning strategy improved
the performance of the lexicalized base NP grammars.
First, the longest-match heuristic proved to be more
useful than lexical information for the unpruned gram-
mar on both corpora. Second, we found that prun-
ing improves bracketing by up to 1.0% recall and 0.4%
precision, and does so even using the original strategy
that fails to distinguish the effects of lexicalized rules.
This result may have implications for many probabilis-
tic grammar-based approaches to problems in natural
language processing: error-driven pruning is a remark-
ably robust method for improving the performance of
probabilistic and non-probabilistic grammars alike.

The next section of this paper defines base noun
phrases and reviews the basic framework used to ex-
tract, prune, and apply grammars using a treebank base
NP corpus. The following section extends the frame-
work to include lexicalized grammars. We then evalu-
ate the modified framework and conclude with a discus-
sion and comparison of approaches to base noun phrase
identification.

The Treebank Approach to Base Noun
Phrase Identification

In this work we define base NPs to be simple, non-
recursive noun phrases — noun phrases that do not
contain other noun phrase descendants. The bracketed
portions of Figure 1, for example, show the base NPs
in one sentence from the Penn Treebank Wall Street
Journal corpus. Thus, the string the survival of spinoff
Cray Computer Corp. as a fledgling in the supercom-
puter business is too complex to be a base NP; instead,
it contains four simpler noun phrases, each of which is
considered a base NP: the survival, spinoff Cray Com-
puter Corp., a fledgling, and the supercomputer busi-
ness. This section reviews the treebank approach to
base noun phrase identification depicted in Figure 2.
For more detail, see Cardie & Pierce (1998).

Grammar Extraction

Grammar extraction requires a corpus that has been
annotated with base NPs. More specifically, we as-
sume that the training corpus is a sequence of words
wy,ws, ..., along with a set of base NP annotations
b(i1,51)s D(is,jo), - - -» Where b(; ;) indicates that the noun
phrase includes words ¢ through j: [np wi, ..., wj].
The goal of the training phase is to create a base NP
grammar from this training corpus:

Grammar Extraction

Training Corpus

[The survival] of [spinoff Cray Computer Corp.] as[afledgling] in
[the supercomputer business] appears to depend heavily on [the
creativity] -- and [longevity] -- of [its chairman] and [chief designer] ,
[Seymour Cray] .

Part of Speech Tagger

Tagged Text

[The/DT survival/NN] of/IN [spinoff/NN Cray/NNP
Computer/NNP Corp./NNP] as/IN [a/DT fledgling/NN] in/IN
[the/DT supercomputer/NN businessNN] appears/VBZ to/TO
depend/VB heavily/RB on/IN [the/DT creativity/NN] --/: and/CC
[longevity/NN] --/: of/IN [its/PRP$ chairman/NN] and/CC
[chief/NN designer/NN] ./, [Seymour/NNP Cray/NNP] ./.

Base Noun Phrase | dentification

Novel Text

Documents filed with the Securities and Exchange Commission on the
pending spinoff disclosed that Cray Research Inc. will withdraw the
almost $100 million in financing it is providing the new firm if Mr.
Cray leaves or if the product-design project he heads is scrapped.

Part of Speech Tagger

Tagged Text

Documents/NNS filed/VBN with/IN the/DT Securities NNPS and/CC
Exchange/NNP Commission/NNP or/IN the/DT pending/VBG
spinoff/NN disclosed/VBD that/IN Cray/NNP Research/NNP
Inc./NNP will/MD withdraw/VB the/DT almost/RB $/$ 100/CD
million/CD in/IN financing/NN it/PRP is'VBZ providing/VBG the/DT
new/JJ firm/NN if/IN Mr./NNP Cray/NNP leaves/VBZ or/CC if/IN

the/DT product-design/JJ project/NN he/PRP heads/'VBZ is’'VBZ

NP Grammar scrapped/VBN /.
DT NN
NN NNP NNP NNP
. . DT NN NN i
Extraction & Pruning NN — Noun Phrase Bracketing
PRP$ NN
NN NN
NNPNNP
Bracketed Text

[Documents] filed with [the Securities and Exchange Commission] on

[the pending spinoff] disclosed that [Cray Research Inc.] will withdraw
[the almost $ 100 million] in [financing] [it] is providing [the new
firm] if [Mr. Cray] leaves or if [the product-design project] [he] heads
isscrapped .

Figure 2: The Treebank Approach to Base NP Identification

1. Using any available part-of-speech tagger, assign a
part-of-speech tag t; to each word w; in the training
corpus.

2. Extract from each base noun phrase b ;) in the
training corpus its sequence of part-of-speech tags
tiy...,t; to form base NP rules, one rule per base
NP.

3. Remove any duplicate rules.

The resulting grammar can then be used to identify
base NPs in a novel text using a “longest-match” heuris-
tic:

1. Assign part-of-speech tags ty,ts,...
words wy, wa, . ..

to the input

2. Proceed through the tagged text from left to right,
at each point matching the NP rules against the re-
maining part-of-speech tags t;,¢;11,... in the text.

3. If there are multiple rules that match beginning at
t;, use the longest matching rule R. Add the new
base noun phrase b(; ;4 r|—1) to the set of base NPs.
Continue matching at #; g

Unfortunately, these extracted grammars pick up
many “bad” rules due to noise in the training data
(including annotation errors, part-of-speech tagging er-
rors, and genuine ambiguities). The framework there-
fore includes a pruning phase whose goal is to eliminate
bad rules from the grammar.

Error-Driven Pruning

At a high level, the pruning phase estimates the ac-
curacy of each rule in the grammar using an unseen
base NP corpus (the pruning corpus); it then eliminates
rules with unacceptable performance. This process is
illustrated in Figure 3. Like the training corpus, the
pruning corpus is annotated with base noun phrases.
Initially ignoring the NP annotations, the pruning al-
gorithm first applies the bracketing procedure to the
pruning corpus to identify its NPs. The proposed NPs
are then compared to the original NPs. Performance of
the rule set is measured in terms of labeled precision
(P):

of correct proposed NPs

of proposed NPs

We then assign to each rule a score that denotes the
“net benefit” achieved by the rule during parsing of the
pruning corpus. The benefit of rule r is given by

BT - Cr - Er

where C,. is the number of NPs correctly identified by
r, and E, is the number of precision errors for which
r is responsible. This benefit measure is identical to
that used in transformation-based learning (Brill 1995)
to select an ordered set of useful transformations. The
benefit scores from evaluation on the pruning corpus
are used to rank the rules in the grammar. With such a
ranking, we can improve the rule set by discarding the
worst rules. The pruning procedure is then repeated on
the resulting rule set.

P =

Training
Corpus

Extract Rules

Initial | Rule Set

Pruning
Corpus Evaluate Rules
Improved

Ranked |Rule Set Rule Set

Discard Rules

Final Rule Set

Figure 3: Pruning the Base NP Grammar

We have investigated two iterative approaches for dis-
carding rules, a thresholding approach and an incre-
mental approach. At each pruning iteration, threshold-
ing discards rules whose score is less than a predefined
threshold T'. For all of our experiments, we set T' =1 to
select rules that propose more correct bracketings than
incorrect. Threshold pruning repeats until no rules have
a score less than T'. For our evaluation, this typically
requires only four to five iterations. Incremental prun-
ing is a more fine-grained method of discarding rules.
At each iteration, incremental pruning discards the N
worst rules. In all of our experiments, we set N = 10.
Incremental pruning repeats until it finds the rule set
that maximizes precision on the pruning corpus.

Lexicalization

As noted in the introduction, lexicalized representations
have been shown to uniformly increase the accuracy of
automated approaches to a variety of natural language
learning tasks including syntactic parsing (e.g. Collins
(1996), Charniak (1997)), part-of-speech tagging (e.g.
Brill (1995)), named entity identification (e.g. Bikel et
al. (1997)), and word-sense disambiguation (e.g. Ng &
Lee (1996)). Ramshaw & Marcus (1998), for example,
find that lexicalization accounts for a 2.7% increase in
recall and precision for base noun phrase identification.
As a result, we believe that lexicalization will also im-
prove the accuracy of the base NP bracketer described
above. This section describes lexicalization of the tree-
bank approach to base noun phrase identification.

At a high level, lexicalization uses information about
the words in each potential noun phrase bracket to
decide how reasonable the bracket is. In our frame-
work, the most straightforward means for incorporating
lexical information is to extract a word-based gram-
mar from the training corpus rather than a tag-based
grammar. The word-level rules, however, exhibit severe
sparse data problems: matching on an exact sequence
of words is too strict. Instead, we propose to first find
potential brackets using the tag-based grammar, and
then use lexical information to further inform the final

bracket choices.

More specifically, the goal of the lexicalized bracketer
is to use lexical information to assign to each candi-
date NP bracket b a score S(b), meant to loosely indi-
cate the bracket’s likelihood of occurrence.! The set of
candidate brackets with their scores can be viewed as
a weighted graph. Figure 4 shows such a graph (but
without arc weights) for the short sentence Stock prices
increased 5 percent yesterday morning.

e Vertices denote inter-word boundaries. Since the sen-
tence contains seven words, the graph contains eight
vertices.

o Weighted “bracket” arcs denote potential NP brack-
ets. For example, stock is contained in two bracket
arcs: one for the bracket [stock] from vertex 0 to 1
and another for [stock prices] from 0 to 2.

e Weighted “nonbracket” arcs denote individual words
that are not part of any noun phrase bracket. For
example, the word stock also has a nonbracket arc
stock/NN from 0 to 1. This allows for the possibility
that the word is better off in no NP bracket at all.

In this bracket graph, any path from the source to the
sink represents a base NP bracketing of the sentence.
For the best combination of brackets, we find the path
having the maximum product of arc weights.

Note that the role of pruning for the lexicalized gram-
mars is unclear: both pruning and lexicalization are at-
tempts to increase the performance of a tag sequence
grammar. The addition of probabilities to rules — the
norm for most lexicalized grammars is generally be-
lieved to preclude the need for pruning rules from the
grammar. We investigate the role of pruning for the
lexicalized grammars in the Evaluation section.

In the paragraphs below, we provide the remaining
details for lexicalizing the treebank approach to base
noun phrase identification: the scoring functions used
to weight bracket and non-bracket arcs; parameter se-
lection for the lexicalization scoring; and the algorithm
for finding the best path through the graph.

Computing a Score for Base NP Bracket Arcs.
To score a potential base NP bracket, we consider both
the tag sequence r (the rule), and the word sequence
p (the phrase), that comprise the bracket. Further,
we assume that the first and last words, u and v, of
a bracketed phrase are the most informative; thus we
drop other words and use (u, v) to approximate p.2 The
score S(b) of a bracket is then a linear combination of
several scoring functions that employ frequencies de-
rived from the training corpus. First, there is a score

!In future work it may be appropriate to formulate a true
probabilistic model of the likelihood that a candidate b is or
is not an actual NP; in this work we consider only the much
simpler scoring function presented here.

2In fact, this simplified instance representation b =
(r,u,v) performs comparably to one that considers all the
words in a phrase as a set of modifiers M with head h.

[5 percent yesterday morning]

oe

pnoes/NNs

[yesterday morning]
[morning]

[5 percent yesterday]

C—— =)

[percent yesterday morning]

Figure 4: Possible Bracketings of Stock prices increased 5 percent yesterday morning

for the rule r.
S(r) =

Second, there is a score for the words u, v.

of base NPs with tag sequence r

of occurrences of tag sequence r

of base NPs with tag sequence r,
first word u, and second word v

of base NPs with tag sequence r

Sr(u,v) =

Since there are not very many training occurrences of
brackets with the same rule, first, and last words, we
combine S, (u,v) with similarly computed scores Sy (u)
and S, (v), considering u and v each with r individually.

Last, motivated by the surprising success of the
longest-match heuristic, we add a length score |r|/R,
where R is the maximum rule length. The complete
score function is as follows.

r
[Sr(u,v) + Sp(u) + Sr(v)] +)\l%
Note that the three parameters allow us to determine
the right contribution for each source of information.
The parameters are constrained to sum to 1.

S(b) = AS(r) + Ay

Computing a Score for Non-Bracket Arcs. The
score of a nonbracket arc n is a similar combination of
scores for the arc’s tag ¢ and word w.

S(n) = AS(t) + Ay St (w)
where the tag and word scores are as follows.

of times tag t appears
S(t) outside of a base NP
of occurrences of tag t

of times tag t and word w
Si(w) = appear outside of a base NP
t # of times tag t appears
outside of a base NP

Parameter Selection. The values for ., Ay, A, A¢,
and)\, were selected automatically by comparing the
performance of 44 selected combinations of parameter
settings on the pruning corpus. The following combi-
nations of bracket parameters (11) and nonbracket pa-
rameters (4) considered.

Ar | 0.80.10.10.60.50.50.30.40.50.40.33
Ap 1 010.80.10.20.30.20.20.20.10.10.33
A 010.10.80.20.20.30.50.40.40.50.33
At | 0.250.50 0.75 0.85
Ay | 0.750.50 0.25 0.15

Finding the Best Base NP Bracketing. We find
the best path through the bracket graph using standard
dynamic programming techniques. However, since dif-
ferent paths in the graph have different lengths (mea-
sured in number of arcs), each bracket arc score is first

normalized for length: '1/S(b). This essentially makes
a bracket that contains five words look like five single
word arcs; thus it can be fairly compared to paths con-
taining more but shorter arcs.

Compared to the quick linear time longest-match
bracketer, the lexicalized bracketer is theoretically
slower, since it compares multiple bracketings of the
sentence. In practice, however, the number of alter-
native bracketings at any point is quite small and the
lexicalized bracketer is only two or three times slower
than the longest-match version.

Evaluation

We evaluated the lexicalized treebank grammars us-
ing the base NP corpora from our original study. The
“Complex” corpus attempts to duplicate the base NPs
used in the Ramshaw & Marcus study. The “Simple”
corpus contains slightly less complicated base NPs —
ones that may be better suited for use in some NLP
applications, e.g., information extraction and informa-
tion retrieval. In short, each Complex base NP corre-
sponds to a non-recursive noun phrase in the Treebank
parse. The Simple corpus further simplifies some of the
Treebank base NPs by removing ambiguities that other
components of the NLP system can be expected to han-
dle: base NPs that contain conjunctions, prepositions,
and leading or trailing adverbs and verbs are simplified.

The training, pruning, and testing sets are derived
from the 25 sections of Wall Street Journal distributed
with the Penn Treebank II. All experiments employ 5-
fold cross validation. More specifically, the 25 sections
are divided into five folds (sections 00 04, 05 09, and
so on). In each of five runs, a different fold is used for
testing the final, pruned rule set; three of the remaining

Unpruned

Unlexicalized
Pruned

Lexicalized
Corpus Unpruned
Complex | 88.7P/90.1R
Simple | 91.5P/92.6R

18.3P/35.3R 88.7P/90.AR
22.1P/45.7TR 92.1P/93.1R

Table 1: Performance of the Initial Lexicalized Grammar

Corpus Unpruned Threshold

Lexicalized
Incremental

Unlexicalized

Baseline Incremental

Simple

Complex | 88.7P/90.1R _ 87.4P/90.5R_ 89.0P/90.0R _ 88.4P/90.5R | 88.7P/90.4R
91.5P/92.6R 90.8P/93.2R 91.9P/93.6R 91.4P/93.1R | 92.1P/93.1R

Table 2: The Effect of Pruning on the Lexicalized Grammar

folds comprise the training corpus (to create the initial
rule set); and the fifth fold is the pruning corpus (which
is also used for parameter selection). All results are
averages across the five runs. Performance is measured
in terms of precision and recall. Precision was described
earlier — it is a standard measure of accuracy. Recall,
on the other hand, is an attempt to measure coverage:
of correct proposed NPs

of proposed NPs

P =

of correct proposed NPs
of NPs in the annotated text

We first evaluate the performance of the initial (i.e.
unpruned) lexicalized grammars in Table 1. Not sur-
prisingly, the lexicalized grammar (first column of re-
sults) is much more accurate than the initial unlexi-
calized grammar (column two) for both base NP data
sets. When compared to the much simpler, unlexical-
ized grammars that were pruned using the incremental
method (column three), however, we see slightly differ-
ent results from the two corpora. For the Simple cor-
pus, the lexicalized grammar performs somewhat below
(—0.6P/—0.5R) the unlexicalized, but pruned, gram-
mar of the original base NP study.® For the Complex
corpus, the lexicalized grammar performs just compara-
bly (+0.0P/—0.3R) to the unlexicalized pruned gram-
mar. In general, these results suggest that lexicalization
is not critical for recognizing very simple, relatively un-
ambiguous constituents: For the simple base NP task,
pruning appears to serve much the same function as lex-
icalization, in that both suppress the application of bad
rules. Pruning, however, preserves the simplicity of the
grammar and bracketing procedure. But as the com-
plexity of the linguistic task increases, the importance
of lexical information increases as well.

Given the strong performance of the initial lexical-
ized grammar, it is especially unclear whether prun-
ing will have any effect for the lexicalized grammars.
No existing statistical parsers for probabilistic context-
free grammars, for example, include a grammar pruning

R =

3The results in the second and third columns of Table 1
differ slightly from those given in Cardie & Pierce (1998),
due to changes in the training data.

step: it is assumed that the rule and lexical probabil-
ities will effectively ignore “bad” rules. Table 2 shows
our results for pruned lexicalized grammars. First, we
see that the coarser threshold pruning (column two of
results) performs worse than incremental pruning (col-
umn three) for both corpora. Not surprisingly, we orig-
inally showed that this result also holds for the unlex-
icalized grammars. When compared to the unpruned
grammar (column one), threshold pruning lowers pre-
cision (—1.0) but raises recall (+0.5) for both corpora.
Incremental pruning, on the other hand, increases both
precision and recall (up to +0.4P/41.0R) for both cor-
pora, making the lexicalized grammar slightly better
(for Complex) or just below (for Simple) the unlexi-
calized grammar (column five). Finally, incremental
pruning yields better grammars than a baseline pruning
strategy (column four) that discards all rules occurring
only once during training as Charniak (1996) does.

That pruning can improve lexicalized grammars was
unexpected: pruning considers each rule as an atomic
source of errors it does not prune the lexicalized ver-
sions of each rule independently. We believed that this
might ultimately harm overall performance since lex-
icalized rules may vary in accuracy depending on the
lexical content of the candidate bracket. Indeed, the
more coarse-grained threshold pruning caused a drop
in precision, while the finer-grained incremental prun-
ing ultimately yielded an increase in performance. This
suggests that a still more fine-grained pruning strat-
egy — one that distinguishes the effects of the lexical
content of candidate phrases — could be successfully
employed with the lexicalized grammars.

The results in Table 2 were obtained using the param-
eter settings automatically selected on the pruning cor-
pus. The final settings for all folds and for both corpora
were A, = 0.5,\, = 0.1,y = 0.4, \s = 0.75, \,, = 0.25.
Note that the value for A, — the lexical weight — is
surprisingly low. In particular, A, indicates that the tag
sequence rule scores are more important than the lex-
ical information; while \; suggests that the “common-
wisdom” heuristic of longest-match is actually quite rel-
evant for this task. Accordingly, we evaluate the overall
contribution of different sources of information in Ta-

Corpus | + Word Score

Rule Score Rule Score Rule Score
+ Length Score + Length Score Only

Complex 88.7P/90.1R 88.2P/89.8R 84.7TP/88.7TR
Simple 91.5P/92.6R 91.6P/92.7R 88.5P/91.5R

Table 3: The Contribution of Sources of Information to a Lexicalized Base NP Grammar

Yes Memory-Based Transformation-Based
91.6P/91.6R 93.1P/93.5R,
Context No Treebank-LM Treebank-Lex
88.7P/90.4R 89.0P/90.9R
No Yes

Lezxical Information

Table 4: Comparison of error-driven pruning of treebank grammars, transformation-based learning, and memory-
based learning in terms of available knowledge sources for local context and lexical information

ble 3. The first column repeats the unpruned lexicalized
grammar results. The second column shows results for
the grammar without lexical information (A, = A; = 0).
Then in the third column, the length term is also re-
moved (A, = 0), leaving just the rule scores. The ta-
ble shows that the longest-match heuristic contributes
more to performance (more than 3.1P/1.1R) than lexi-
cal information (up to 0.5P/0.3R) for both corpora.

We conclude this section with examples from the
Complex corpus that indicate the qualitative difference
in performance between the unlexicalized (U) and lex-
icalized (L) versions of the base NP bracketer. The
correct bracketing (C) is shown first for each example.
In particular, note that the lexicalized bracketer cor-
rectly handles ambiguities that fool the original brack-
eter, such as some gerunds and conjunctions. And in
cases where both bracketers err, the lexicalized one may
produce more reasonable brackets.

C: representing [general and administrative expenses|
U: [representing general and administrative expenses]
L: representing [general and administrative expenses|

C: [his previous real-estate investment and
asset-management duties]

U: [his previous real-estate investment] and
[asset-management duties]

L: [his previous real-estate investment and
asset-management duties]

C: [president] and [chief operating officer]
U: [president and chief] operating [officer]
L: [president and chief operating officer]

Comparison with Competing
Approaches and Conclusions

To our knowledge, four different approaches to
base noun phrase recognition have now been eval-
uated with respect to similar base NP corpora de-
rived from the Penn Treebank — Ramshaw & Mar-

cus’s transformation-based bracketer, Argamon et al.’s
MBSL, and the original and lexicalized versions of the
treebank approach. As a result, we are now able to
compare more or less directly a collection of train-
able, corpus-based bracketing algorithms. In general,
each method relies on slightly different information
from the training corpus as depicted in Table 4. The
Transformation-Based learner uses both lexical infor-
mation and the surrounding context to make decisions
about bracket boundary placement. MBSL’s Memory-
Based approach captures context in its tiles, but uses
no lexical information. Our new lexicalized treebank
grammar (Treebank-Lex) uses lexical information to
score potential brackets, but no context. Finally, the
simplest longest-match bracketer (Treebank-LM) uses
neither lexical information nor context.

The results in Table 4 were not obtained on the same
breakdown of training and test data; nevertheless, we
can still attempt to glean from the table the role of con-
text and lexicalization for base noun phrase identifica-
tion. As we might expect, methods that employ lexical
information perform better than those that do not; and
methods that employ contextual information perform
better than those that do not. The Transformation-
Based bracketer, employing both, performs best in this
group of algorithms. Comparing MBSL with Treebank-
Lex, we might conclude that contextual information is
more important than lexical information for base NP
identification. However, MBSL has the added advan-
tage of its ability to generalize its training data at recog-
nition time.

In addition to performance differences, the four
methods also vary in practical ways. For example,
the Transformation-Based bracketer requires the most
training time, with one pass through the training data
for each candidate template for each new transforma-
tion. The Treebank methods need only a handful to a
few hundred passes for pruning, while MBSL trains in
a single pass over the training data. Regarding runtime

speed, the Treebank-LM bracketer is the fastest, using a
quick linear time algorithm. The Transformation-Based
bracketer can be equally fast, provided that the trans-
formation rules are precompiled into a single finite-state
transducer (Roche & Schabes 1997). The Treebank-Lex
bracketer is theoretically much slower than Treebank-
LM due to its strategy of comparing multiple bracket-
ings; but in practice it is only two to three times as slow.
We believe MBSL to be the slowest bracketer, compar-
ing multiple tiling covers to score each potential NP. In
addition, the runtime space burden for MBSL is very
large because the memory-base stores the entire train-
ing corpus. In contrast, the Transformation-Based and
Treebank bracketers store only a few thousand transfor-
mation or grammar rules at runtime. Finally, in terms
of portability, the two Treebank approaches are the only
ones of the four that construct a grammar that may be
modified for new genres of text without retraining.

In conclusion, we began with a simple and practical
approach — treebank-derived tag-sequence grammars
— for identifying simple syntactic phrases such as base
noun phrases. We adapted this approach to incorporate
lexical information into the selection of NP brackets,
demonstrating its effectiveness for improving the accu-
racy of such grammars. We also showed that grammar
pruning independently fulfills much the same function
as lexicalization, reducing the impact of the noisiness
of the training corpus, and in some cases proving to
be more useful than lexical preferences. Somewhat sur-
prisingly, we found that lexicalization and pruning can
even be applied together with slightly increased perfor-
mance over using them separately. Finally, we inves-
tigated the contributions of knowledge sources for the
base noun phrase recognition task. For simple phrases,
lexical information plays less of a role than expected;
for complex phrases, lexicalization is more important;
and the longest-match heuristic is quite useful for both
simple and complex noun phrases. Although we focused
only on base noun phrase recognition, we believe our re-
sults have implications for other probabilistic grammar-
based approaches to natural language processing.

Acknowledgments. This work was supported in part
by NSF Grants IRI-9624639 and GER-9454149. We thank
Mitre for providing their part-of-speech tagger.

References

1996. Proceedings of the 34th Annual Meeting of the Asso-
ciation for Computational Linguistics.

1998. Proceedings of the 36th Annual Meeting of the ACL
and COLING-98.

Argamon, S.; Dagan, I.; and Krymolowski, Y. 1998.
A Memory-Based Approach to Learning Shallow Natu-
ral Language Patterns. In Proceedings of the 36th Annual
Meeting of the ACL and COLING-98 (1998), 67-73.
Bikel, D.; Miller, S.; Schwartz, R.; and Weischedel, R.
1997. Nymble: A high-performance learning name-finder.
In Proceedings of the Fifth Conference on Applied Natural
Language Processing, 194 201.

Bourigault, D. 1992. Surface grammatical analysis for
the extraction of terminological noun phrases. In Pro-
ceedings of the 15th International Conference on Compu-
tational Linguistics, 977-981.

Brill, E. 1995. Transformation-based error-driven learning
and natural language processing: A case study in part-of-
speech tagging. Computational Linguistics 21(4):543-565.
Cardie, C., and Pierce, D. 1998. Error-driven prun-
ing of treebank grammars for base noun phrase identifi-
cation. In Proceedings of the 36th Annual Meeting of the
ACL and COLING-98 (1998), 218-224. Available as cmp-
1g/9808015.

Charniak, E. 1996. Treebank grammars. In Proceedings
of the Thirteenth National Conference on Artificial Intel-
ligence, 1031-1036.

Charniak, E. 1997. Statistical parsing with a context-
free grammar and word statistics. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence,
598-603.

Church, K. 1988. A stochastic parts program and noun
phrase parser for unrestricted text. In Proceedings of the
Second Conference on Applied Natural Language Process-
ing, 136—143. Association for Computational Linguistics.

Collins, M. 1996. A new statistical parser based on bigram
lexical dependencies. In Proceedings of the 34th Annual
Meeting of the Association for Computational Linguistics
(1996), 184-191.

Justeson, J. S., and Katz, S. M. 1995. Technical termi-
nology: Some linguistic properties and an algorithm for
identification in text. Natural Language Engineering 1:9—
27.

Marcus, M.; Marcinkiewicz, M.; and Santorini, B. 1993.
Building a large annotated corpus of english: The penn
treebank. Computational Linguistics 19(2):313-330.

Ng, H., and Lee, H. 1996. Integrating multiple knowledge
sources to disambiguate word sense: An exemplar-based
approach. In Proceedings of the 34th Annual Meeting of
the Association for Computational Linguistics (1996), 40—
47.

Ramshaw, L. A., and Marcus, M. P. 1998. Text chunking
using transformation-based learning. In Natural Language
Processing Using Very Large Corpora. Kluwer. Originally
appeared in WVLC95, 82 94.

Roche, E., and Schabes, Y. 1997. Deterministic part-of-
speech tagging with finite-state transducers. In Roche, E.,
and Schabes, Y., eds., Finite-State Language Processing.
The MIT Press. chapter 7, 205-239.

Stanfill, C., and Waltz, D. 1986. Toward memory-based
reasoning. Communications of the ACM 29:1213-1228.

Voutilainen, A. 1993. Nptool, a detector of english noun
phrases. In Proceedings of the Workshop on Very Large
Corpora, 48-57. Association for Computational Linguis-
tics.

