Combining Error-Driven Pruning and Classification
for Partial Parsing

Claire Cardie, Scott Mardis and David Pierce
Department of Computer Science
Cornell University
Ithaca, NY 14853
cardie, mardis, pierce@cs.cornell.edu

Abstract

We present a new approach to partial pars-
ing of natural language texts that relies on
machine learning methods. The approach
combines corpus-based grammar induction
with a very simple pattern-matching algo-
rithm and an optional constituent verification
step. The grammar induction algorithm ac-
quires a set of rules for each level of linguis-
tic analysis using a new technique for error-
driven pruning of treebank grammars. The
constituent verification step employs stan-
dard inductive learning techniques as an ad-
ditional precision-enhancing device. We eval-
uate the approach on four data sets and find
that performance is very good (93% preci-
sion and recall) for applications that require
or prefer fairly simple constituent bracket-
ing. As the complexity of the partial parsing
task increases, however, our approach lags
the performance of competing approaches.
We explain these differences in terms of the
knowledge sources employed by each method
and describe a number of features that make
the approach attractive for large-scale, prac-
tical NLP applications.

1 Introduction

Partial natural language parsers provide a shallow
analysis of the syntactic relationships that exist in a
sentence. Figure 1, for example, compares one possi-
ble partial parse of a sentence with its full syntactic
analysis as provided in the Penn Treebank Wall Street
Journal (WSJ) corpus (Marcus et al., 1993). Partial
parsers produce a fairly flat parse tree in comparison

to their full-parse counterparts, omitting some levels
of linguistic analsysis or leaving them for subsequent
modules of the natural language processing (NLP) sys-
tem. Nevertheless, the linguistic relationships that
can be identified by partial parsers are rich enough to
support a number of large-scale natural language pro-
cessing applications including information extraction,
phrase identification in information retrieval, named
entity identification, and a variety of text-mining op-
erations. In addition, partial parsers are typically very
fast when compared to full parsers.

For the most part, shallow parsers (e.g., Abney (1996),
Hobbs et al. (1997)) rely on finite-state pattern-
matching techniques to recognize all syntactic and se-
mantic entities in a sentence (Roche, E. and Schabes,
Y., 1997). Parsing proceeds in stages: Each stage can
be viewed as a finite-state transducer that regroups
or relabels the tokens or constituents produced in one
or more preceding levels. The initial stages perform
relatively simple tasks including tokenization, part-of-
speech tagging, and simple noun phrase identification;
all linguistic relationships that require higher-level at-
tachment decisions are identified in subsequent stages
and rely on output from earlier levels.

The patterns, or grammars, that drive each stage of
processing traditionally have been designed by hand
such as the lexicon in Voutilainen’s NPTo01(1993) or
the grammar in Bourigault (1992). Also, it has been
difficult to directly compare partial parsing techniques
since most were evaluated by hand on a small test
set. Recent work, however, has attempted the auto-
matic acquisition of partial parsers and their evalu-
ation on a large test corpus annotated with correct
parses by an impartial third party. Ramshaw & Mar-
cus (Ramshaw and Marcus, 1998), for example, ap-
plied transformation-based learning (Brill, 1995) to
the problem of noun phrase chunking, a basic step

Full parse:

(S (NP-SBJ South Korea)
(VP registered

(NP (NP a trade deficit) (PP of (NP $101 billion)))

(PP-TMP in (NP October)) ,

(S-ADV (VP reflecting (NP (NP the country) ’s economic sluggishness)))) .)

Partial parse:

[subject [np South Korea]] [v registered] [object [np a trade deficit]] of [xp $101 billion]
in [xp October], [y reflecting] [xp the country|’s [object [Np economic sluggishness]].

Figure 1: Comparison of a Partial vs. a Full Syntactic Parse for the sentence: South Korea registered a trade
deficit of $101 billion in October, reflecting the country’s economic sluggishness. The partial parse marks the
subject, verb, direct object, and noun phrase information only.

for most partial parsers. Their noun phrase brack-
eter learns a set of transformation rules. Each trans-
formation locally updates the noun phrase bracketing
associated with a single word based on nearby fea-
tures, such as neighboring words, part-of-speech tags,
and bracket boundaries. After the training phase, the
learned transformations are applied in order to each
new text to identify base NPs in a novel text. Arg-
amon et al.(1998) developed a variation of memory-
based learning (Stanfill and Waltz, 1986) for two par-
tial parsing tasks — base noun phrase identification
and verb-object recognition. During training, their
MBSL algorithm saves the entire raw training corpus,
which has been annotated with parts of speech, and
noun phrase and verb-object brackets. Generalization
of the implicit partial parsing rules in the training cor-
pus occurs at application time — MBSL searches the
novel text for tag sequences or combinations of tag
subsequences (tiles) that occurred during training in a
similar context.

This paper presents a new approach to partial pars-
ing that relies on machine learning methods. The
approach is implemented in a shallow parser called
Empire' that combines corpus-based grammar induc-
tion with a very simple pattern-matching algorithm
and an optional constituent verification step. The
grammar induction algorithm acquires a set of rules
for each level of linguistic analysis using a new tech-
nique for error-driven pruning of treebank grammars.
The constituent verification step employs standard in-
ductive learning techniques as an additional precision-
enhancing device. The current work extend previously
published work by applying Empire to verb-object

! The name refers to our focus on empirical methods for
development of the system.

identification and the addition of the constituent ver-
ification step. Also in this paper we have included
evaluations on the same data sets as competing ap-
proaches in order to provide direct comparisons.

We evaluate our approach on four data sets that com-
prise two partial parsing tasks base noun phrase
identification and verb-object identification. Quan-
titative comparisons between approaches are compli-
cated by varying definitions of the parsing tasks and
also by evaluations performed on differing corpora. We
have tried to closely duplicate both the relationship
definitions and the test data of previous evaluations
of the transformation-based and memory-based ap-
proaches and present these direct comparisons in addi-
tion to our full evaluation on larger data sets. We find
that the performance of our treebank approach is very
good (93% precision and recall) for applications that
require or prefer fairly simple constituent bracketing.
As the complexity of the partial parsing task increases,
however, the treebank approach lags the performance
of competing methods. We explain these differences
in terms of the knowledge sources employed by each
method. Nevertheless, our approach has a number of
features that make it attractive for large-scale, practi-
cal NLP applications:

e both the grammar induction algorithm and the
pattern-matching parser are exceedingly simple;

e the parser is very fast operating in time linear in
the length of the text when the constituent veri-
fication phase is not used;

e the learned grammars can be easily modified for
use with corpora that differ from the training
texts;

e the approach is very flexible in that it allows sys-
tem developers to choose a performance metric

(e.g., precision, recall, F-measure) with which to
tune the grammar that best supports the goals of
the larger NLP application.

Finally, we believe that the approach may be general
enough to tackle other natural language learning tasks
including the acquisition of patterns for information
extraction and for higher-level text-mining operations.
It might also be applied to tasks outside of natural lan-
guage processing applications including learning sim-
ple languages for agent communication or in grammar-
based biology problems. The next section provides a
definition for and examples of the two partial parsing
tasks. Sections 3 and 4 describe and evaluate the basic
grammar induction approach. Section 5 presents the
optional constituent verification step. Section 6 eval-
uates the entire approach. We compare Empire with
related work in Section 7.

2 Base Noun Phrase and Verb-Object
Identification

We focus on two shallow parsing tasks: base noun
phrase identification and verb-object identification. In
this work we define a base noun phrase (base NP) to be
a simple, nonrecursive noun phrase — a noun phrase
that does not contain other noun phrase descendants.
In the partial parse of Figure 1, for example, a trade
deficit of $101 billion and the country’s economic slug-
gishness are too complex to be base NPs; instead, they
contain four simpler noun phrases, each of which is
considered a base NP: a trade deficit, $101 billion, the
country, and economic sluggishness. For base NP iden-
tification then, the goal of Empire is to take a sentence
as input and produce a version of the sentence in which
all base NPs are bracketed.

Verb-object recognition amounts to identifying the
main verb and direct object head of each clause in
a sentence. Verb-object identification is performed
on a tag sequence in which the base noun phrases
have already been identified. Here the goal for Em-
pire is to bracket potential verb-object constituents
starting with the main verb token and ending with
the base noun phrase that contains the object token:
South Korea [yo registered a trade deficit] of $101 bil-
lion in October, [vo reflecting the country’s economic
sluggishness]. Following the application of the parser,
a small set of rules is applied to the verb-object “con-
stituent” bracket to extract the verb and object. The
above verb-object bracketing, for example, would pro-
duce the following output where registered/deficit and
reflecting/sluggishness are the verb-object pairs: South

Korea [vo v registered] a trade [o deficit]] of $101 bil-
lion in October, [vo [v reflecting] the country’s eco-
nomic [o sluggishness||.

3 Grammar Induction

Figure 2 depicts Empire’s approach to shallow parsing
using the base noun phrase (base NP) relationship as
a running example. To learn to identify a particular
linguistic relationship, REL, Empire requires a corpus
that has been annotated with brackets indicating that
relationship. More specifically, we assume that the
training corpus is a sequence of elements (either words
or constituents) ey, ey, ..., along with a set of annota-
tions or brackets b, j,),0(i,,5,)5- - -» Where b(; ;) indi-
cates that elements ¢ through j represent an instance
of REL: [rEr €5, ..., €.

The goal of the training phase is to create a grammar
for REL based on the training corpus:

1. Run all required lower levels of Empire to assign a
tag, ti, to each element e; in the training corpus. For
the base NP relationship, this amounts to assigning a
part-of-speech tag to every token in the corpus. Verb-
object recognition, on the other hand, requires both
part-of-speech and base NP information: Each ele-
ment in the training corpus is assigned either an NP
label (for sentence elements recognized as base NPs)
or a part-of-speech tag (for all tokens outside of base
NPs).

2. Extract from each REL b(; ;) in the training corpus its
sequence of tags ti,...,t; to form a grammar. In Fig-
ure 2, for example, the first base NP in the corpus,
[xp 7], produces the tag-sequence rule (PRP); verb-
object rules contain both part-of-speech and NP tags.

3. Remove duplicate rules from the grammar.

The resulting grammar can then be used to identify the
linguistic relationship in a novel text in the application
phase.

1. Run all required lower levels of the parser to assign
tags t1,%2,... to the elements ey, es,... in the input
text.

2. Proceed through the tagged text from left to right, at
each point matching the rules against the remaining
tags t;,ti+1,... in the text.

3. If there are multiple rules that match beginning at %,
use the longest matching rule R. Continue matching
at ti‘HR\ -

‘With the rules stored in an appropriate data structure,
this greedy “parsing” of constituents is very fast. Un-
fortunately, grammars extracted in this fashion pick up

Training Phase: Grammar Induction

Training Corpus

When [it] is [time] for [their biannual powwow] ,
[the nation] 's [manufacturing titans] typically jet
off to [the sunny confines] of [resort towns] like
[Boca Raton] and [Hot Springs] .

Lower Level Taggers

and/or Parsers

Tagged Text

When/WRB [it/PRP] is/VBZ [time/NN] for/IN [their/PRP$| |
biannual/JJ powwow/NN] ,/, [the/DT nation/NN] 's/POS !
[manufacturing/VBG titans/NNS] typically/RB jet/VBP |
off/RP to/TO [the/DT sunny/JJ confines/NNS] of/IN
[resort/NN towns/NNS] like/IN [Boca/NNP Raton/NNP]
and/CC [Hot/NNP Springs/NNP] .

Application Phase: Relationship I dentification

Novel Text :

)
Not this year. National Association of Manufacturers setfled
on the Hoosier capital of Indianapolis for its next meeting. '
And the city decided to treat its guests more like royalty dr
rock stars than factory owners.

Lower Level Taggers

and/or Parsers

Tagged Text

Not/RB this/DT year/NN ./. National/NNP
Association/NNP of/IN Manufacturers/NNP settled/VBD
on/IN the/DT Hoosier/NNP capital/NN of/IN
Indianapolis/NNP for/IN its/PRP$ next/JJ meeting/NN ./.
And/CC the/DT city/NN decided/VBD to/TO treat/VB
its/PRP$ guests/NNS more/JJR like/IN royalty/NN or/CC|

Grammar Extraction

Grammar

! <PRP>
| <>
' | <PRP$ 33 NN>
' <DT NN>
<VBG NNS>

' <DT JJ NNS>
! <NN NNS>
<NNP NNP>

rock/NN stars/NNS than/IN factory/NN owners/NNS ./.

Bracketer

Bracketed Text

Not [this year]. [National Association] of [Manufacturers]
settled on [the Hoosier capital] of [Indianapolis] for [its nq
meeting]. And [the city] decided to treat [its guests] morg
like [royalty] or [rock stars] than [factory owners].

3

Figure 2: Shallow Parsing in Empire. The base noun phrase relationship is used as an example throughout.

many “bad” rules due to noise in the training data (in-
cluding annotation errors, part-of-speech tagging er-
rors, and genuine ambiguities). As a result, it has be-
come common practice to assign probabilities to the
rules based on their frequency of occurrence and then
use a probabilistic parser to apply the grammar to un-
seen text (Charniak, 1996). Our grammar induction
framework employs a much simpler solution: we in-
clude a pruning phase to eliminate bad rules from the
grammar and retain the longest-match heuristic.

3.1 Error-Driven Pruning

Empire’s grammar pruning procedure is shown in Fig-
ure 3. First, we divide the training corpus into two
parts: an extraction corpus and a pruning corpus. The
initial grammar for the linguistic relationship is de-
rived from the extraction corpus as described above.
Next, the pruning corpus is used to evaluate the gram-
mar and produce a ranking of the rules in terms of
their utility in identifying the linguistic relationship.
More specifically, we use the rule set and the longest
match heuristic to find all instances of the relationship
in the pruning corpus. Performance of the rule set is
measured in terms of labeled precision (P):

of correct proposed RELs

P =
of proposed RELs

Extraction
Corpus

Training
Corpus

Extract Rules

Initial G

Pruning

Corpus Evaluate Rules

Improved
Grammar

Discard Rules

Final Grammar

Figure 3: Error-Driven Pruning of Treebank Gram-
mars

We then assign to each rule a score that denotes the
“net benefit” achieved by using the rule during parsing
of the pruning corpus. The benefit of rule r is given
by B, = C, — E, where C, is the number of RELs
correctly identified by r, and E, is the number of pre-
cision errors for which r is responsible. Alternatively, a
frequency-based benefit measure can be employed: We
scale B, by the rule frequency to prune low-frequency
low-precision rules before high-frequency rules with
the same precision.

The benefit scores from evaluation on the pruning cor-
pus are used to discard the worst rules from the gram-
mar. In the experiments below, we use two types of
pruning. Each iteration of threshold pruning discards
rules whose score is less than a predefined threshold
T it halts when all rules have a score above T'. In-
cremental pruning discards the N worst rules in each
iteration and then selects the grammar that yields ei-
ther the maximum precision or the maximum recall
on the pruning data, depending on the goals of the
NLP application. For a more detailed description of
error-driven pruning, see Cardie & Pierce (1998).

4 Evaluation of Error-Driven Pruning

Data Sets. In spite of the definitions in Section 2,
there can be substantial differences in how base noun
phrase and verb-object relationships can be encoded
in any corpus. As a result, we created two data sets
for each linguistic relationship, one data set that re-
flects a simple implementation of each relationship,
and one that incorporates additional linguistic com-
plexities. All are derived from the Penn Treebank
WSJ. In the Complex Base NP data set, each base
NP corresponds to a non-recursive noun phrase in the
Treebank parse. In particular, this data set is meant to
duplicate the data used in Ramshaw & Marcus (1998)
except for our handling of possessives. The Simple
Base NP data set further simplifies Treebank base NPs
that contain: (1) nominal conjunctions, (2) preposi-
tions, (3) possessives, or (4) leading and trailing ad-
verbs and verbs.

In the Complex Verb-Object data set, there is a verb-
object pair for every verb and direct object component
in the Treebank parse. In particular, if the object is
a conjunctive phrase, the data set encodes separate
verb-object pairs for each component of the conjunc-
tion. The Simple Verb-Object data set is meant to du-
plicate the Argamon et al. (1998) data and: (1) simpli-
fies direct objects that are conjunctions or appositives,
(2) simplifies conjunctive verbs, (3) simplifies ditran-
sitives, and (4) omits objects marked by verb particles
and copular verbs. By evaluating on both data sets
for each linguistic task, we can explore the effect of
linguistic relationship complexity on parser accuracy.
Methodology. All experiments are performed on
the 25 sections of the WSJ portion of the Penn Tree-
bank IT corpus. Performance is measured in terms of
precision (P) and recall (R):

of correct proposed RELs

P =
of proposed RELs

_ # of correct proposed RELs
" # of RELs in the annotated text

All results are averages using five-fold cross-validation
at the document level; the same fold divisions are em-
ployed across all experiments. All experiments use the
original (Treebank) segmentation for sentences and to-

kens.

For both base NP and verb-object recognition, part-
of-speech tags were generated using Mitre’s version of
the Brill tagger (Brill, 1995). For verb-object identifi-
cation, Empire itself identifies the base noun phrases.
The threshold pruning experiments use 7" = 1; the
incremental pruning experiments use N = 3 for verb-
objects and NV = 10 for base NPs. The verb-object ex-
periments use recall-based pruning; incremental prun-
ing for verb-objects uses the frequency-based benefit
measure and threshold pruning employs the standard
benefit measure.?

Results. Table 1 summarizes the performance of the
Empire parser on both the Complex and Simple cor-
pora for each linguistic relationship using incremental
and threshold pruning. The first row of results for
each data set shows the performance of the initial, un-
pruned grammars. The next two rows show the per-
formance of the automatically pruned rule sets using
the longest-match heuristic. As expected, the initial
rule set performs quite poorly. For base NPs, both
automated approaches provide significant increases in
recall and precision. Note also the relatively small dif-
ference between the threshold and incremental prun-
ing methods. For some applications, the minor drop
in performance for threshold pruning may be worth
the decrease in training time. For the remainder of
the paper, we will use threshold pruning for base NP
experiments.

For verb-object identification, the pruning results are
less consistent. Both methods substantially increase
precision; the finer-grained incremental pruning also
increases recall. Threshold pruning, however, provides
mixed results. For verb-object recognition, there are a
few high-frequency, low-precision rules and the coarser
threshold pruning is not consistent in its handling of
them: results vary widely on a per-fold basis depend-
ing on whether these rules survive pruning. For the
remainder of the paper, we will use incremental prun-
ing for verb-object experiments.

Table 1 also clearly indicates the effects of linguistic
*The frequency-based benefit measure and threshold

pruning with 7' = 1 are not compatible since all rule ben-
efits would be below 1.

Table 1: Evaluation of Error-Driven Pruning for Base NP Identification and Verb-Object Recognition

(P = precision; R = recall)

Linguistic Relationship

Simple Corpus

Complex Corpus

Base NP

unpruned

threshold pruning
incremental pruning

Verb-Object

unpruned

threshold pruning
incremental pruning

221P/.457TR .183P/.353R
920P/.932R .870P/.896R
932P/.934R .893P/.905R
.199P/.863R. .209P/.681R
661P/.612R .650P/.7T19R
569P/.895R .619P/.789R

relationship complexity. As expected, results for the
Complex base NP data set are much lower than those
for the Simple corpus (-5%P/-3.6%R). Since the two
data sets share about 91% of their NPs, this perfor-
mance drop is caused by errors in the remaining 9%,
of which possessives account for 3.6%, conjunctions,
2.3%, and leading and trailing adverbs and verbs,
2.4%. Ambiguities introduced by allowing conjunc-
tions and adverbs/verbs appear to be more difficult
than those introduced by possessives.

Although the verb-object task is more difficult than
the base NP task it subsumes, the results for the Sim-
ple and Complex verb-object data sets appear to con-
tradict the expected trend — there is a large drop in
recall (-10.6%) for the Complex verb-objects, but pre-
cision increases by 5%. One reason for this is that
verb-object pairs with copular verbs are identified in
both experiments but are considered errors for the sim-
ple data set. In addition, the complex data set yields
many more rules (typically longer rules to handle con-
junctions and appositives) that are low-frequency, but
high-precision.
heuristic, these long rules prevent Empire from iden-
tifying some erroneous verb-objects that would be se-
lected by shorter, less accurate rules.

Because of Empire’s longest match

Table 2: Direct Comparison to Previous Work (P =
precision; R = recall)

WSJ Section 20
Ramshaw & Marcus || .931P/.935R
Argamon, et.al. || .916P/.916R
Empire(incremental pruning) || .889P/.900R

WSJ Section 00
Argamon, et.al. || .771P/.898R
Empire(incremental pruning) || .584P/.903R

For two of the four data sets, our results can be com-
pared to those obtained in evaluations of other ap-
proaches to partial parsing on the Penn Treebank. We
ran an evaluation using as test data, the same sections
of the Treebank as previous experimenters; the results
are in Table 2. Our results on Complex Base NP cor-
pus we lag the best published results (Ramshaw and
Marcus, 1998) by 3-4%. Note, however, that we make
no use of context or lexical (word-level) information;
the best results on this data set were obtained using
transformation-based learning, which employs both.
By controlling for lexicalization in transformation-
based learning, Empire performs more comparably (-
1.2%P/-0.2%R). Empire also falls short of the best re-
sults to date on the Simple Verb-Object corpus. Arg-
amon et al. (1998), however, make use of context to
determine verb-object brackets. We address this issue
in the next section.

5 Constituent Verification

Although the role of context and lexicalization has not
been fully explored for shallow parsing, both knowl-
edge sources are known to improve the performance of
a number of language learning tasks. The accuracy of
Empire’s shallow parsing algorithm is therefore likely
to improve if context and lexical information can be
suitably exploited. This section describes one method
for extending Empire to incorporate context and lex-
icalization without sacrificing the overall simplicity of
the shallow parsing approach. We use standard induc-
tive learning techniques in a constituent verification
step to evaluate the correctness of each proposed lin-
guistic relationship: Those deemed correct will remain
in the bracketed output of the shallow parser; those
deemed incorrect are discarded. This post-processing
stage is clearly a precision-enhancing device: For cas-

Table 3: Sample Verb-Object Constituent Verification Case for Many traders predict the U.S. currency will

remain stuck in the near term.

Sentence Elements

[xp Many traders|

[vo [v predict] [xp the U.S. [o currency]]]

will
remain
stuck in ...

Attribute Value
tag-prev2 nil
tag-prevl NP
verb-tag VB
object-tag NN
tag-foll MD
tag-fol2 VB

Class: bad

caded partial parsers, it is important that each level of
analysis be as accurate at possible. In addition, some
NLP applications will benefit more from output that
has high precision and reasonable recall than the con-
verse, e.g., identification of linguistic relationships for
information retrieval.

We have examined three machine learning algorithms
for constituent verification: decision tree induction us-
ing C4.5 (Quinlan, 1992), an unweighted k-nearest
neighbor (K-NN) classifier (Aha et al., 1991), and a
K-NN classifier that uses the value-difference metric
as the similarity measure (Stanfill and Waltz, 1986).
The goal of the training phase is to produce a set of
training cases, each of which describes one proposed
linguistic relationship and its context. A sample verb-
object constituent verification case is shown in Table 3.
Each case is a set of six features: the tags for the two
elements that precede and that follow the bracket; and
tags for the main verb and direct object head. A simi-
lar case representation is used for base NPs. Note that
the current case representation contains no lexical in-
formation — the actual word tokens that comprise the
bracket and its context are not included in the cases.
It should be clear, however, that lexical information
is easy to incorporate in addition to the tags used
in the current representation, cases would also include
the token that represents the element. Finally, each
training case has a class label (“good” or “bad”) indi-
cating the correctness of the proposed relationship.

Training instances are created automatically from the
pruning corpus. For the K-NN variations, the value
for k is learned automatically during training: during
testing, we use a simple majority vote to determine
the class label.

Table 4 shows the performance of the three learning
algorithms on data sets of 1000 cases derived from each
of the linguistic relationship corpora. In terms of rel-

ative accuracy, the three learning algorithms perform
comparably on each data set.® Since the goal for con-
stituent verification is to increase precision, however,
we hypothesize that the learning algorithm with best
combination of a high accuracy and low false positive
rate would provide the greatest improvement in pre-
cision for the partial parsing tasks: the K-NN4+VDM
alternative has this property for the data sets studied
here. We also believe that classification for constituent
verification can be improved by controlling the char-
acteristics of the training set — the training data for
both linguistic tasks is skewed w.r.t. class distribution,
and no attempt was made to balance the data sets for
the experiments reported here.

6 Combining Pruning and Constituent
Verification

Table 5 shows the effect of constituent verification on
base NP and verb-object identification. For these ex-
periments, the learning algorithms for constituent ver-
ification were trained on 1000 cases derived from the
associated pruning corpus. As hypothesized, the in-
crease in precision is greatest for the K-NN4+VDM
variation. The results also show that constituent verifi-
cation is a more effective way to integrate context and
improve precision for verb-object identification than
for base NP identification: For both the Simple and
Complex verb-object data sets, more precision was
gained than recall lost (+12.0% precision vs. -9 and
-6% recall, respectively). Constituent verification pro-
vides much smaller precision gains for base NP recog-

3Chi-square and two-tailed ¢ tests indicate that K-NN
and K-NN+VDM outperform C4.5 (p = .01;p = .10) for
the Simple Base NP corpus; K-NN+VDM outperforms K-
NN and C4.5 (p = .10) for the Simple Verb-Object corpus;
and K-NN+VDM outperforms K-NN and C4.5 (p = .10)
for the Complex Verb-Object corpus.

Table 4: Performance of Inductive Learning Algorithms for Constituent Verification. Results are shown in terms
of accuracy (% correct) and standard deviation. False positive rates are provided in italics.

Data Set C4.5 K-NN K-NN + VDM
Simple Base NP 90.5+22 919426 91.6+1.8
false positive rate 7.4 8.1 6.8
Complex Base NP 86.7+3.3 874429 87.0+2.1
false positive rate 10.3 12.3 9.0
Simple Verb-Object 68.6 5.2 68.1%4.7 70.6 £4.9
false positive rate 19.0 24.4 19.4
Complex Verb-Object || 74.1+2.5 73.7+4.0 75.9+3.1
false positive rate 15.9 22.0 15.5

Table 5: Effect of Constituent Verification (P = precision; R = recall)

Data Set No Constituent | Constituent Verification Using
Verification C4.5 K-NN K-NN+VDM
Simple Base NP .920P/.932R | .922P/.925R .920P/.931R .928P/.919R
Complex Base NP .870P/.896R | .879P/.877TR .872P/.893R .896P/.830R
Simple Verb-Object .569P/.895R | .678P/.750R .655P/.796R .690P/.806R
Complex Verb-Object .619P/.789R | .727P/.701R .692P/.758R .741P/.728R

nition. One explanation is that the skewed training
data for constituent verification limited performance.
It is also likely that accurate verb-object identification
simply requires more context, e.g., to distinguish di-
rect objects from subjects of subordinate clauses as in
the examples below.

Table 6 shows the direct comparison of the constituent
verification algorithms to previous work using the
same Treebank sections as test data. In spite of the
addition of context, Empire still falls below the best
reported results on the verb-object task: Argamon et
al. (1998) assume perfect tags rather than generate
them using a part-of-speech tagger, but even after re-
training Empire using perfect tags, precision remains
8-9 precision points lower at the same level of recall
(83%). Only by assuming both perfect tags and per-
fect NPs can Empire surpass their results. We would
expect to recover some of this discrepancy by replac-
ing the longest-match heuristic with one that chooses
the best combination of possible bracketings. For base
NP identification, precision gains are modest, leaving
Empire still shy of Argamon et al.’s results.

We conclude this section with an example of the con-
stituent verification step in action: Table 7 shows a
proposed verb-object pair that is correctly discarded

along with the top-ranked retrieved case.

7 Related Work and Conclusions

In the evaluation sections above, we compared Em-
pire to two other machine learning methods that have
been applied to partial parsing Ramshaw & Mar-
cus’s transformation-based bracketer and Argamon, et
al’s MBSL. In addition to performance differences,
the methods also vary in practical ways. For exam-
ple, the Transformation-Based bracketer requires the
most training time, with one pass through the train-
ing data for each candidate template for each new
transformation. Empire needs only a handful to a
few hundred passes for pruning (for threshold and in-
cremental pruning, respectively), while MBSL trains
in a single pass over the training data. Regarding
runtime speed, the Empire longest-match bracketer is
the fastest, using a quick linear time algorithm. The
Transformation-Based bracketer can be equally fast,
provided that the transformations are precompiled
into a single finite-state transducer (Roche and Sch-
abes, 1997). The increase in runtime for constituent
verification depends on the learning algorithm used.
We believe MBSL to be the slowest bracketer, compar-
ing multiple tiling covers to score each potential NP. In

Table 6: Constituent Verification Comparison to Previous Work (P = precision; R = recall)

Test-Data Base Result | Constituent Verification Using

Algorithm C4.5 K-NN K-NN+VDM
WSJ Section 20

Ramshaw & Marcus .931P/.935R

Argamon, et.al. .916P/.916R

Empire(threshold pruning) .869P/.895R | .882P/.871R .877P/.893R .906P/.801R

Empire(incremental pruning) || .889P/.900R | .894P/.887R .889P/.900R .898P/.649R
WSJ Section 00

Argamon, et.al. .771P/.898R

Empire(incremental pruning) || .584P/.903R | .696P/.785R .659P/.875R .707P/.826R

Table 7: Sample Verb-Object Constituent Verification Case for Two Japanese scientists said they discovered an

antibody that. . ..

Test Case Retrieved Case

Sentence Elements Attribute Value | Value
tag-prev2 nil | nil

[vp Two Japanese scientists] tag-prevl NP | NP

[vo [v said] [np [o they]]] verb-tag VBD | VBD
object-tag PRP | PRP

discovered tag-foll VO | VO

[xp an antibody] tag-fol2 IN | IN

that ...

Class: bad

addition, the runtime space burden for MBSL is very
large because the memory-base stores the entire train-
ing corpus. In contrast, the Transformation-Based and
Empire bracketers store only a few thousand transfor-
mation or grammar rules at runtime. Finally, Empire’s
main training product, a grammar, can be modified for
new genres of text without retraining — something im-
possible with MBSL and something that would likely
yield unpredictable results with the Transformation-
Based bracketer.

In conclusion, we presented a new approach to partial
parsing of natural language texts that combines error-
driven pruning of treebank grammars and an optional
classsification-based constituent verification step. In
an evaluation on four data sets, we find that error-
driven pruning provides substantial increases in recall
and precision over the unpruned rule sets; constituent
verification provides additional increases in precision,
but works especially well for the harder partial pars-
ing tasks. Furthermore, the approach has a number of
attractive features: the grammar induction algorithm
and the pattern-matching parser are exceedingly sim-

ple; the parser is very fast; the learned grammars can
be easily modified for use with corpora that differ from
the training texts. In addition, the approach is very
flexible in that it allows system developers to choose
a performance metric with which to tune the gram-
mar that best supports the goals of the larger NLP
application.

Finally, we believe that there are a number of exten-
sions and improvements that could be made to ob-
tain additional performance gains at the possible ex-
pense of some added complexity: The naive longest-
match heuristic can be replaced by a dynamic pro-
gramming algorithm that considers all combinations
of constituent brackets; machine learning algorithms
could be used to correct, rather than discard, erro-
neous bracketings; lexicalized features can be added
to the case representation; the constituent verification
phase could be incorporated directly into the prun-
ing algorithm; training data for constituent verifica-
tion can be better balanced with respect to positive
and negative instances.

References

(Abney, 1996) Abney, Steven. 1996. Partial Parsing via
Finite-State Cascades. In Workshop on Robust Parsing.
8-15.

(Aha et al., 1991) Aha, D.; Kibler, D.; and Albert, M.
1991. Instance-Based Learning Algorithms. Machine
Learning 6(1):37-66.

(Argamon et al., 1998) Argamon, S.; Dagan, L.; and Kry-
molowski, Y. 1998. A Memory-Based Approach to
Learning Shallow Natural Language Patterns. In Pro-
ceedings of the 36th Annual Meeting of the ACL and
COLING-98. Association for Computational Linguis-
tics. 67-73.

(Bourigault, 1992) Bourigault, D. 1992. Surface Gram-
matical Analysis for the Extraction of Terminological
Noun Phrases. In Proceedings, COLING-92. 977-981.

(Brill, 1995) Brill, Eric 1995. Transformation-Based
Error-Driven Learning and Natural Language Process-
ing: A Case Study in Part-of-Speech Tagging. Compu-
tational Linguistics 21(4):543-565.

(Cardie and Pierce, 1998) Cardie, C. and Pierce, D. 1998.
Error-Driven Pruning of Treebank Grammars for Base
Noun Phrase Identification. In Proceedings of the 36th
Annual Meeting of the ACL and COLING-98. Associa-
tion for Computational Linguistics. 218-224.

(Charniak, 1996) Charniak, E. 1996. Treebank Gram-
mars. In Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence, Portland, OR. AAAI
Press / MIT Press. 1031-1036.

(Hobbs et al., 1997) Hobbs, J.; Appelt, D.; Bear, J.; Is-
rael, D.; Kameyama, M.; Stickel, M.; and Tyson, M.
1997. FASTUS: A Cascaded Finite-State Transducer for
Extracting Information from Natural-Language Text.
In E. Roche and Y. Schabes, , editor, Finite-State Lan-
guage Processing. MIT Press, Cambridge, MA. 383-406.

(Marcus et al., 1993) Marcus, M.; Marcinkiewicz, M.; and
Santorini, B. 1993. Building a Large Annotated Corpus
of English: The Penn Treebank. Computational Lin-
guistics 19(2):313-330.

(Quinlan, 1992) Quinlan, J. R. 1992. C4.5: Programs for
Machine Learning. Morgan Kaufmann, San Mateo, CA.

(Ramshaw and Marcus, 1998) Ramshaw, Lance A. and
Marcus, Mitchell P. 1998. Text chunking using
transformation-based learning. In Natural Language
Processing Using Very Large Corpora. Kluwer. Origi-
nally appeared in WVLC95, 82-94.

(Roche and Schabes, 1997) Roche, Emmanuel and Sch-
abes, Yves 1997. Deterministic Part-of-Speech Tagging
with Finite-State Transducers. In Finite-State Language
Processing. The MIT Press. 205-239.

(Roche, E. and Schabes, Y., 1997) Roche, E. and Sch-
abes, Y., , editor. Finite State Devices for Natural Lan-
guage Processing. MIT Press, Cambridge, MA.

(Stanfill and Waltz, 1986) Stanfill, C. and Waltz, D. 1986.
Toward Memory-based Reasoning. Communications of
the ACM 29:1213-1228.

(Voutilainen, 1993) Voutilainen, A. 1993. NPTool, A De-
tector of English Noun Phrases. In Proceedings of the
Workshop on Very Large Corpora. Association for Com-
putational Linguistics. 48-57.

