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Abstract—
Tiered sensor network architectures are gaining currency.
In contrast with flat networks of impoverished nodes (the
hitherto common assumption in sensor networking), such
systems offer the promise of migrating computational load
from sensing nodes to higher capability ’master’ nodes.
We argue that for certain data fusion-based services this
means that compute intensive algorithms, often shunned
as impractical for sensor networks, are in fact a viable
possibility. Using localization as an example, we show how
accurate results may be obtained by leveraging this capability
without the use of specialized hardware or high configuration
detail; both of which are standard approaches to the problem
when computation is at a premium. Specifically, we propose a
mathematical optimization-based framework for localization
based on proximity constraints. Most variants of localization
can be cast into this framework depending on the kinds
of input available (e.g. ranging). We show accurate results,
and exploit a technique from distributed optimization to
divide the problem into pieces suitable for computation at
the master-level nodes. We conclude with remarks on the
general implications of this example for tiered systems, with
pointers on how it is likely to be applicable to other problems
such as power-aware routing. 1

I. INTRODUCTION

Tiered sensor network architectures are a natural platform
on which to build compute-intensive systems where the
computational load is resident on the higher capability
’master’ nodes, rather than the simpler impoverished sensor
nodes. Data fusion-based services such as localization,
tracking, coverage, power-aware routing are all compute-
intensive.

The Tenet architecture [1] provides a vision of the
level of support future sensor network deployments will
enjoy. The basic idea is to have a large number of ’mote-
class’ systems providing high density in sensing and a
smaller number of ’master’ nodes with more powerful
radios and processors. This is clearly different from earlier
approaches [2] which thought in terms of large numbers
of mote-class systems deployed in a ’flat’ manner. Tiered
systems are finding their way into field deployments. As
examples consider the Great Duck Island [3] and the James
Reserve [4] deployments. In each case the number of
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master nodes is about 1-2 orders of magnitude smaller than
the motes. Roughly, each master is ’responsible’ for 10-100
motes.

Tiered networks have several advantages: they are easier
to program and debug [1] because there is very little
application logic in the mote-class system; they are easier
to manage since there are few master-level nodes where the
logical complexity resides; they constrain network diameter
to minimize wireless link loss [5]; there is evidence that
they lead to longer lifetimes when the master nodes are
carefully placed [6]; Finally, and most importantly for us,
tiered sensor networks are not limited by the processing
available at each mote-class device, the master nodes do
computation on behalf of the impoverished nodes.

Based on this background, we ask the following two
questions.

• Can one demonstrate that intensive computation at
the master nodes, coupled with extremely simple
data collection at sensor nodes, produces data-fusion
performance comparable to systems where the sensor
nodes have been outfitted with specialized sensing
hardware, or carefully configured, yet have access to
relatively poor computational resources ?

• Are there convenient and efficient ways to distribute
and manage computation across the master nodes ?

We answer both questions in the affirmative, in the
special yet representative case of localization. We also
sketch a preliminary example from power aware routing
using the same formulation. In sensor networks the focus
is on developing lightweight computationally tractable al-
gorithms for data-fusion services suitable for a collection
of computationally constrained nodes. In some cases, such
as localization, several approaches rely on the use of
specialized hardware either for ranging [7], beacons [8], or
a ’super-node’ which assists the nodes in the network for
localization [9]. Other approaches carefully calibrate radio
frequencies [10] along with accurate time synchronization
to obtain accurate localization results.

Inspired by the computation available in tiered systems,
we propose an approach to localization which requires
no special hardware nor any configuration. The input to
our system is strictly radio-based proximity. Based on
these proximity constraints, we propose a mathematical
optimization-based framework for localization. Our results



are accurate; and techniques from distributed optimization
are available to divide the problem into coarse pieces
suitable for computation at the master-level nodes. Our
system thus trades off computation to achieve localization
accuracy with simple inputs.

Having established the technical details for a specific
problem (localization), we argue that this result is promis-
ing for data fusion-based services in general because it
provides evidence that compute intensive algorithms, often
shunned as impractical for sensor networks, are in fact a
viable possibility in tiered sensor networks. Specifically
we give arguments to show how other forms of localization
(e.g. using ranging) are easily dealt with in our framework.
We also give a rationale for how other data fusion services
such as power-aware routing could be implemented using
our formalism.

In the next section we present a generic framework
for low level services in tiered networks distributed based
on mathematical optimization. In section III, we give the
technical details for proximity-based localization as an
example data fusion service which can be solved using our
framework. Following that we discuss generalizations to
other data fusion problems. We conclude with a summary
and a sketch of ongoing and future work.

II. GENERAL FRAMEWORK

This section describes the generic framework of our ap-
proach. We give specific examples of formulations of local-
ization (Section III) and power-aware routing(Section IV)
in later sections.
Consider the following optimization problem -

min f (X)
subject to h(X) = 0 and

g(X) ≤ 0

where h and g are matrices and X ∈ Rn.
This problem can easily be solved in a centralized manner
by collecting all the relevant information at a single point.

We would like to split the computation among the
master-class nodes in a tiered network while retaining a
fixed number of constraints corresponding to each lower-
tier node that spans multiple master nodes. This form of
distribution has been previously studied in the context of
parallel computing. One such paradigm called Hierarchical
Overlapping Coordination [11] has been studied in the sys-
tems engineering and mathematical optimization literature.
We adopt it here, with a minimal description of how it
works reproducing a condensed version of the treatment
in [11].
Represent the above equations using a Functional Depen-
dence Table (FDT). In the FDT, the (i, j)-th entry of this
table is one if the i-th constraint depends on the j-th
variable, and zero otherwise. Efficient heuristic techniques
exist [12] to partition the graph and thereby rearrange

this FDT into a set of pα decoupled blocks. Each block
corresponds to a sub-problem.

The problem (denoted α) can be rewritten as

min fα0(Xα0)+∑pα
i=1 fαi(Xα0 ,Xαi)

subject to h(Xα0 ,Xαi) = 0 i = 1,· · · ,pα
and g(Xα0 ,Xαi) ≤ 0 i = 1,· · · ,pα

Xα0 is the vector of linking variables. If we fixed the linking
variables Xα0 = dα , dα ∈ Rnα , then we have pα problems
of the form -

For each i = 1,· · · ,pα ,
minxαi

fαi(dα ,xαi) subject to
hαi(dα ,xαi) = 0,
gαi(dα ,xαi) ≤ 0,

Assume that we could perform another graph partition-
ing in a similar fashion and call that problem β .

The HOC algorithm [11] is as follows:

• Step 1: Fix linking variables Xα0 , and solve problem α
by solving pα independent sub-problems given above.

• Step 2: Fix linking variables Xβ0
to their values as

determined in step 1 and solve problem β by solving
pβ independent problems.

• Goto Step 1 with the fixed values of α-linking vari-
ables determined in Step 2

• Repeat until convergence is achieved

In previous work, a hypergraph mapping has been pro-
posed to partition the graph into numerous partitions [12].
However, one of the advantages of using this framework
in the context of sensor networks is that we already have
a graph based on connectivity. The partitions could be
constructed by a simple flood initiated by the master nodes.
Each mote picks as its master, the master node that is
closest to it (in terms of number of hops). Ties could be
resolved arbitrarily. Thus, a protocol could be designed to
partition the graph suitably and easily. We can resolve ties
in two possible ways to create the two different partitions
(α and β ) that are needed in the optimization.

III. CASE STUDY: PROXIMITY-BASED LOCALIZATION

We now study the simple case of proximity-based lo-
calization. We will later relax some of the assumptions
made and generalize to incorporate other forms of input
like ranging.

A. Assumptions

We assume that there are N sensor nodes that are deployed
in a square field in a uniform random fashion such a path
exists in the network graph between any two nodes. We
assume that a rough initial estimate of the locations of these
nodes (this could be because the nodes were deployed by a
human, robot or aerial vehicle which knows roughly where
they were deployed). As we shall see, these initial estimates
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(X0,Y0) need not be very accurate. Every node is assumed
to have a unique ID. In the process of communicating with
other nodes, each node assembles a list of its neighbors. We
assume that the radio power levels are the same across all
the nodes, and this determines the range of communication
of each node. Let the radius of communication be R. Let
us also assume that in the network graph the set of nodes
is denoted V and the set of edges is denoted E.

B. Problem Formulation

Given nodes (i, j), ∀(i, j) ∈ E we have a connectivity
constraint of the form

(xi − x j)
2 +(yi − y j)

2 ≤ R2 (1)

If the degree of i is di, we can have (N−di) constraints
for every node that is not a neighbor of i of the form

(xi − x j)
2 +(yi − y j)

2 ≥ R2 (2)

We formulate the optimization problem as an uncon-
strained minimization. In such a formulation, each neigh-
bor constraint of the form Eqn. [1] contributes cost
max(((xi−x j)

2 +(yi−y j)
2−R2),0) and each constraint of

the form Eqn. [2] contributes cost max((R2 − (xi − x j)
2 −

(yi − y j)
2), 0).

We minimize the following total cost.

min















∑N
i=1 max((xi − x j)

2 +(yi − y j)
2 −R2),0)

∀(i, j) ∈ E
+∑N

i=1 max(R2 − ((xi − x j)
2 +(yi − y j)

2),0))
∀(i, j) /∈ E















(3)

C. Scaling by Tiering

The second set of constraints (Eqn. 2) are over-
constraining. An intelligent choice of a subset of these con-
straints could reduce the computational load significantly
while preserving accuracy. We exploit this in the distributed
version of the optimization. In the formulation (Eqn. 3),
each new node added to the network adds N constraints.
Hence, the number of constraints scales as N2. Assume
now, that there are k master-class nodes in the network.
The network is divided into k partitions, each roughly
containing N/k nodes. Now, each such node has (N/k)2

constraints. This is a significant reduction in workload and
also forms a trade off between the number of master-class
nodes deployed and the computational load on each of
them. We now apply the HOC algorithm to the problem
and solve the distributed optimization problem across k
partitions. For the simulations, we assumed k = 4.
Fig. 1 shows the localization error achieved with the
distributed technique. The x-axis is the average degree of
the network, and the y-axis shows the average localization
error (distance of the localized position from the actual po-
sition). Although there is some improvement with increase

Fig. 1. Average error vs. average degree of connectivity. Localization
error is measured as the magnitude of the distance between the estimated
location of a node and its actual location. This is averaged over all nodes.
The average degree of connectivity is the sum of the degree of each node
in the network divided by the total number of nodes.
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Fig. 2. Edge Effects: For a specific instance (with Num nodes = 150 and
Radius of communication = 20) the empty circles denote nodes localized
within (R/3) distance from actual location and the stars denote nodes
localized with error greater than (R/3)

in average network degree, it is interesting to note that good
localization is achieved even in networks with low average
degree of ≈6 (error ≈0.2*R). Empirical observation has
led us to believe that much of this error is due to edge
effects.
The second graph (Fig. 2) shows these edge effects. For
a specific trial (with avg degree ≈8), it shows the nodes
that were localized with error ≥ 0.33 * R as asterisks. As
can be seen, they are at the periphery, and we intend to
incorporate additional information (like signal strength) to
mitigate this error in future work.
The third figure (Fig. 3) plots the decrease in localization
error as a function of the optimization time (measured in
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Fig. 3. Localization error vs. number of optimization iterations shown
for the case R=20 and degree 8

iterations). The point corresponding to iteration zero is the
error in the initial estimate and converges quickly. The
error decreases with iterations. This shows that there is
a trade off between computation and accuracy that can be
exploited depending on the exact application at hand.
We have chosen a simple proximity-based localization
example to illustrate two ideas. The first is that with no
network configuration, and no special sensors, one can
perform accurate localization if one is prepared to use
compute-intensive methods such as optimization. Second,
such methods are a natural fit to tiered systems since tech-
niques exist to distribute them efficiently across multiple
nodes. We now extend our model to incorporate other
forms of input like ranging and radio interferometry for
completeness.

D. Other Localization Techniques

If nodes i and j have ranging equipment using which
they estimate their separation to be d, this includes a
constraint in our optimization formulation

(xi − x j)
2 +(yi − y j)

2 = d2 (4)

This is easily added to our framework as a quadratic equal-
ity constraint and the optimization can proceed as before.
Radio Interferometry is similar to ranging. It provides a
linear combination of ranges as opposed to individual ones.
They can be incorporated into our formulation similar to
the above constraint. Finally, it is possible to tune the
neighborhood (Eqn. 1) and non-neighborhood constraints
(Eqn. 2) if signal strength measurements are present. This
is likely to lead to better localization accuracy and may
need fewer constraints to achieve the same accuracy as
our present setup.

IV. POWER-AWARE ROUTING

There is a wealth of literature on power-aware routing
in wireless networks [13] examining various trade-offs. We
show how this can be represented in our framework.

A. Assumptions

We assume that there are N sensor nodes (say motes) that
are deployed in a square field in a uniform random fashion
such that a path exists in the network graph between any
two nodes. Let the set of edges on this network graph be
denoted by A. The neighbor set of a node i is denoted
by Bi. We assume that there are k master-class nodes also
uniformly deployed in the network. Let us call the set of
masters M and the set of motes V . Each mote produces
sensor readings periodically (every t seconds) which it
wants to relay to any of the master nodes (over multiple
hops if need be). Each mote has a fixed amount of energy
(battery capacity Ei for node i) which depletes over time.
Let each mote consume er energy units to receive a packet
and et energy units to transmit. The masters are assumed
to have an infinite supply of energy (they have a renewable
energy source like solar power, or are powered externally).
From our assumptions, it is clear that shortest path routing
will deplete the energies of nodes closest to the masters first
(since they have to carry a bulk of the traffic), thus leading
to disconnection of nodes farther away from the masters
and the masters themselves. Ideally, we would want the
network to gracefully deplete energies of all motes so that
data collection lifetime is maximized.

B. Problem Formulation

We adapt the multicommodity flow formulation of the
above problem [14]. Let us assume that q(i, j) is the flow
from node i to node j where (i, j) are neighbors. Let T be
the time interval for which the routes are calculated. Let
each node generate Q packets of data during that time. By
principle of conservation,

∑
j:i∈B j

q( j,i) +Q = ∑
j∈Si

q(i, j)∀(i, j) ∈ A and for every i ∈V

The lifetime of a node i is defined as

Ti =
Ei

∑ j∈Bi
et .q(i, j) +∑ j∈Bi

er.q( j,i)

The system lifetime is

Tsystem = min(Ti) ∀i = 1, . . . ,N

Our objective is to maximize Tsystem. Hence the problem
is of the form

maxTsystem

such that

∑
j:i∈B j

q( j,i) +Q = ∑
j∈Si

q(i, j)∀(i, j) ∈ A and for every i ∈V

q(k,i) = 0 ∀k ∈ Mand∀i ∈ Bk

q( j,i) ≤ 0
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∑
j∈Bi

et .q(i, j) + ∑
j∈Bi

er.q( j,i) ≤ Ei

This is very similar to our formulation of localization
in eqn. 3. We can distribute the computation using the
framework described in section II. Assuming we have k
master nodes in the network, we can allocate the motes
to “belong” to a master each. Let the set of masters be
called M. Let Sl be the set of motes that belong to master
l. Let L be the set of links that connect motes between
sets. We could split the problem into k smaller problems,
and rewrite the formulation as follows -

For α = 1, . . . ,k

max T α
system

such that

∑
j:i∈B j

qα
( j,i) +Q = ∑

j∈Si

qα
(i, j)∀(i, j) ∈ A and ∀i ∈ Sα

qα(k, i) = 0 ∀k ∈ M

qα
( j,i) ≤ 0 ∀(i, j) ∈ A and ∀i ∈ Sα

∑
j∈Bi

et .q
α
(i, j)+ ∑

j∈Bi

er.q
α
( j,i) ≤Ei ∀(i, j)∈A and ∀i∈ (Sα −M)

We can now use the algorithm discussed in section II to
solve the above problem iteratively.

V. CONCLUSIONS

We have presented a framework for low-level services
in sensor networks based on the idea that one can trade-
off computation to achieve accuracy in tiered networks.
We showed a simple proof-of-concept proximity-based
localization study, and argued how we can extend it readily
to other kinds of localization, as well as other services such
as power-aware routing.
Our immediate goal is to implement our framework on
a real network and ensure its feasibility. We also intend
to investigate formally rigorous ways of partitioning the
network to evenly distribute the load among master nodes.
This is particularly relevant when the mote distributions are
not uniform. One of the biggest problems in localization
is that of graph isomorphism. Our initial formulation
side-stepped this problem by overconstraining the system.
Ultimately, it is important to make an educated choice of
the constraints to avoid degrees of freedom which will
cause error. We are embarking on a detailed study of the
accuracy of our algorithm under various scenarios with
real data from a network of motes/masters (thus violating
the random placement assumption and the disc commu-
nication model). We also plan to compare the accuracy
of this method with known range-free and range-aware
localization techniques. In addition to localization, we
intend to systematically study power-aware routing using
our framework in simulation and on a mote/master testbed

and compare it to existing power-aware routing techniques.
Finally, we believe that our results may ultimately influence
decisions about tiered network architecture design.
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