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Abstract—We introduce an algorithm which detects and For the latter case to be viable, the re-deployment needs
traces a specified level set of a scalar field (a contour) on agile. to be autonomous in that the network nodes should be
A network of static sensor nodes with limited communication 4 tically mobile (not human portable). For true unateesd
and processing are deployed in a planar environment along L .
with a mobile node which can both sense and move As the f_unctlomng, the_ network of nodes needs to ef_fectlvely func
mobile node moves through the environment, it computes the tion as a collection of autonomous robots, moving themselve
local spatial gradient of the field by communicating with in accordance with task requirements. In other words, the

its immediate neighbors in the static sensor network. The jdea of adaptive fidelity [6] is to be extended to physical
algorithm causes the mobile node to perform gradient descén mobility of nodes.

on the scalar field till it arrives at a location on the desired
contour. From this point onwards, the algorithm drives the Consider an example from environmental monitoring. We
mobile node to trace the desired contour without departing would like to detect the presence, and measure with relgtive
ffOﬂ: itEprerimgntStri]n simulatti)?n indicate t?gttthe reggi;gg/) high accuracy the concentration of certain kinds of marine
contour is found with reasonable accuracy (between 80-90%) - : - -

for networks with node degree of 6 or grea){er. Our results ale mlcroprganlsms in the ocean. We imagine that we have at
indicate that the paths generated by our algorithm are near- OUr disposal nodes that can sample the water, detect and
optimal in terms of the distance traversed by the mobile node measure algal concentration, as well as measure temperatur

Our preliminary experimental results with a physical robot  The nodes can also communicate with each other using radio.

show that our algorithm is feasible. Fortuitously, certain algae are hypothesized to bloom
I. INTRODUCTION near regions of sharp temperature gradients (thermoglines

Sensor networks are quickly evolving into powerful t()()|§.Jnd§rwater._Th(?rmocllnes occur at different depths antl wit
for environment monitoring. Their use is [15] particulaglgt  V&rYing proflles in the ocean. T_he problem for the network of
for environments which are remote, hostile, or inaccessiblSENSOrS is to locate a thermocline and to sample the water for
In such environments infrastructure does not exist, and f9ae in the region near the thermocline. Given little prior
hard to build and maintain. information about the location of the thermocline, and the

There are several key requirements that a sensor netwciReer size of such domains, over deployment of sampling
needs to satisfy to be viable in unstructured environmeénts.N0des is difficult. We propose to use a strategy based on
needs to function unattended and conserve energy to exteifguation [14].
lifetime. The applications developed for such a network The ideais to allow some of the nodes in the network to be
need to scale to large sizes. This is particularly difficulautonomously mobile. We deploy static nodes at relatively
since individual nodes of the network usually have meagéew density over a wide area, and a (smaller) number of
computation, storage and communication capabilities [5]. robotically mobile nodes that will spatially re-deploy as

To address scalability, a major area of research in sensaeeded depending on where the thermocline is located. The
networks has focused on distributed algorithms [6] whictiobotic nodes will use information from the static network
rely on local communication among network nodes. Tdo facilitate their own re-deployment. One can think of
facilitate this, processing at nodes is designed to opevitiie  similar problems for a variety of environmental phenomena,
local data input as much as possible since the energy costibéluding finding the edge of a forest fire, the boundary of
moving bits across the network is relatively high compared chemical spill and so on.

to the cost of computation [12]. The paper is structured as follows. Section Il states the
It has been noted that spatio-temporal irregularity is ongroblem (contour finding) and our assumptions. Section Il
of the inherent characteristics of sensor networks [7].r&hejs a brief review of related work and Section IV provides the
are two ways to approach this problem: theoretical background for our work. Section V elaborates
« The deployment could be assumed to be fixed anour approach. Section VI describes the simulation setup
algorithms that incorporate the spatio-temporal irreguand Sections VII discusses simulation results. Section VII
larity [7] might be utilized. describes our experimental setup, the validation expettisne
« Adapt the deployment by relocating deployed sensongerformed and their results. We conclude with a summary
as and when required. This approach needs mobility.and a discussion of open issues.



[I. PROBLEM FORMULATION AND ASSUMPTIONS |75 e i

We are interested in the detection of level sets of a scalar L e
field being sensed (e.g.: isotherms if the sensed phenomenon i ORI
is temperature) using one or more mobile sensor nodes and ; o o
a network of stationary sensor nodes. Note that we use the R .-
termsLevel Set and Contour interchangeably. Both refer to [
the set of points that have scalar field values equal to the i '
desired level. We also make the assumption that the scalar R
field being detected has a measurable gradient in all regions Fooe
(including those far from the contour under consideration) :
Note that certain classes of boundaries (e.g: step furgtion
do not possess this property. However many real physical
phenomena ( phenomena that can be modeled by diffusion
processes) do have gradients that can be detected by sensors

Static sensor nodes of limited communication range are

assumﬁq I:O ﬁe ?nli;o.rm(;yfr.anc;or%l]y derl)loyedfinhth?_ 2|(IjD spal nsisting of points in space where the scalar field values
over which the field is defined. The values of the field coulq equal to some prespecified desire level using the mobile

correspc()jnd to light, tempera.ture etc._Each sensor nc;]degggae(s). Each mobile node is provided with the level that
assumed to possess appropriate sensing to measure the nes the contour to be traced. In Figure 1, 2, 3, the mobile

illong .tW.'th compu;at;ﬁnt "‘t‘L‘d co;nmunlcaltlonI_cagalrglmesn%de starts at an arbitrary position and is given the desired
S0, LIS assume at the nodes are localized. SEeVeNd{,q| of the scalar field that describes the desired conttsur.

techniques existin the literature to provide node lociltira task is to locate the contour and to trace it. The other nodes

we use the one n [1] for our exper!m.ental validation. an the picture can sense the value of the field but cannot
addition to the static sensor nodes, it is assumed that o

or more autonomously mobile nodes (e.g. [4]) are randomly
deployed in the environment. I1l. RELATED WORK

A. Edge Detection

Boundary or edge-finding has received some attention in
the sensor networking community. There are various schemes
proposed using techniques from varied backgrounds e.g.
computational geometry, image processing and statistics.

The dual-space approach to tracking boundaries [9] at-
tempts to track/detect simple boundaries (approximated by
straight lines) of physical phenomena by bounding them
by certain nodes in the sensor network. The approach is
to map the problem of detecting lines using points (sensor
nodes) to a dual where lines are transformed into points and
vice versa. A topological sweep is performed to detect the
Fig. 1. Initial deployment and a particular level set to bacéd by the boundary nodes of the phenomenon and only those nodes
mobile node are kept active. To move out of the region bounded by these
nodes, it is shown that the boundary has to cross one or
more of the active nodes. The algorithm in [9] monitors for
such crossings and activates nodes appropriately. Timesrli
boundaries are localized in an energy-efficient manner.

Another paper on localized approaches to edge detection
in sensor fields [2] introduces three algorithms to solve the
problem of edge detection using static sensor nodes. The
statistical approach tries to statistically estimate ifigeg
sensor is an edge sensor by probing the neighborhood. There
is a trade off between the amount of information communi-
cated amongst nodes in a neighborhood to the certainty of the
solution. The second technique in [2] is inspired by image
processing. The idea is to use a high-pass filter to filter out
noise and only retain the prominent differences (the edge)
Fig. 2. The mobile node moves towards the level set from the sensed data. Also, unlike images, since sampling is
not possible at regular intervals, the authors provide htsig

Fig. 3. The mobile node traces the locus of the contour

The objective is to detect and possibly trace a contour




for the sensors based on a continuous version of the filter.
The third technique discussed is a classifier-based approac .| Voronoi
inspired by pattern recognition. The idea is to classifyssen j Graph
readings into two partitions. This scheme seems to provide
the best results. All three schemes rely on what is called @ -—-----—-—----—--—--—- .
the Probing Radius which is the range around a sensor from |
which it can get other sensor information. Increase in prgbi \
radius increases the certainty of the decision of a sensor. !
However, the communication cost rises roughly as the square !
of the probing radius which constitutes an energy-quality 1
trade off. a)

A third proposed solution to boundary estimation [11]
attempts to use clusters and their hierarchical structore t Fig. 4. The Voronoi Graph
minimize communication and thus reduce the overall en- !
ergy consumption. The key idea is to devise a hierarchical .| Voronoi
processing strategy that enables nodes to collaboratively j Graph
determine a non-uniform rectangular partition of the senso )
domain that is adapted to the boundaries. This partition di S
will have a fine resolution along the boundary and low -
resolution in homogeneous regions. The resultstacase-
like approximation to the boundary. The main motivation Mobile |
behind this work is that such algorithms have been explored Node
in image processing and theoretical frameworks exist to
analyze such strategies. Also, it provides a method of tunin
the trade-off between accuracy of boundary estimate and
energy consumption of the network.

All the above edge detection techniques ar€ig. 5. The robot navigating towards the Voronoi Graph basedocal
mathematically-inclined and adopt techniques fron§ensor measurements
well-researched fields for edge detection. One of the main ‘
underlying motivations for these approaches is reduction Mobile i Voronoi
in energy consumed. Our approach is inherently different Node j _Gmph
in that we attempt to use mobile nodes and actively
search for the required level set (using physical actugtion
Our algorithm indirectly attempts to minimize energy
consumption due to actuation by minimizing the distance
traveled. Contour parallel to |

[10] studies distributed coverage control and proposes the voronoi graph
a distributed algorithm to redeploy mobile sensor nodes
depending on the sensory function. This is the closest to
our work. The authors propose a control law to move the ©)
robot to the centroid of the voronoi region formed based on
the sensory function. This work is different from our work Fig. 6. Contour parallel to the Voronoi Graph.
in that their objective is coverage control. Our objectige i
to detect a particular level set and quickly drive the mobil
node to this level set.

Obstacles

b)

?ocationx in a workspac&V, populated by convex obstacles
C1, ..,Cy. The distance between a pointind an obstacle is
IV. BACKGROUND defined as the distance betweerand ¢y, the nearest point

We are inspired by previous work in sensor-based pIar?—n th_e _obstacle o
ning [3]. For simplicity we consider only the situation in a This is represented by
plane. The Voronoi Graph of a planar environment consisting di(z) = min ||z —co || (1)
of obstacles and free space is the locus of points in free c0€Ci
space that are equidistant from neighboring obstacles Thi The “gradient” of this function is defined as
is schematically shown by the dotted line in Figure 4.

In [3] the authors propose and prove the convergence of Vd;(x)
a control law to drive a robot such that it traces the Voronoi
Graph. We re quote the definition of the control law as Assuming a coordinate syste(w, \) such that\ points
applicable to two dimensions. Assume that the robot is @ong the tangent of the Voronoi Graph edge and g¢he

Tr —C

(2)
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coordinate span¥’, the hyperplane orthogonal to the VG, The mobile node collects the sensed values of the scalar

G(x) is defined as field from all its neighbors within communication range
along with their location. Using these data, it identifie® tw
G(z) =di(y, \) — da(y, N) (3) neighbors, one with the highest gain increase ratio and one

with highest gain decrease ratio (with respect to distance
from itself). Having identified these two nodes, two unit
gradient vectorsVd,; (z) and Vdy(z) are defined in the

The control law ( [3]) is given by:

& = aNull(VG(@)) + fVG(2)f () direction of each of the two chosen neighbors
where o, 5 are scalar gainsNull(VG(z)) is the null
space ofVG(z), andVG(z)t denotes the Penrose pseudo- VG(x) = Vdi(z) — Vda(x) (5)

inverse of VG(x). _

This law basically solves the roots of the equation 'N€Se two vectors are used to compuigr) (using
VG(z) = 0. For the example shown in 5, this results infduation 5) andvG(z)(using equation 5). Botlt:(x) and
balancing vectorsl; (z) andd»(z) thus resulting in a path YG(2) are then used to computgusing equation 4. This
that is equidistant from both the obstacles. Using thisradnt IS the velocity that is commanded to the actuators. In our
law, a robot dropped anywhere in a 2D environment will : i i
move towards the nearest point on the Voronoi line as showj90rithm 1 : Algorithm for the Mobile Node
in Figure 5. Once on the Voronoi line it will stay on the line 100p
since the term orthogonal to the Voronoi line goes to zero.  for @ € {Current neighbor list of mobile nodledo

We make the observation that this law allows a robot locli] <« Location ofi
to trace arbitrary contours that are parallel to the VG by senseli] < Sensor reading of
rewriting G as G(z) = dy(z) — do(z) — K where K is a end for

constant that determines the distance of the new contomr fro ~ n1 < Node with best gain increase gradignsingloc(]
the VG. In other words, by setting the appropriate value of and sensel] }
K a robot can trace the contour shown in Figure 6. Any such  n2 < Node with best gain decrease gradigusing
contour which is the level set of a fixed offset from the VG loc[] and sensel]}
can be traced. Compute d; (z) anddz(z)

The control law has interesting features: Compute VG(z) and G()

« It is based on local sensor measurement Compute &
« It is memory less and does not need to much memory ~C0mmand i to actuators
to implement end loop
« It does not attempt to estimate the field it is measuring
« It is provably convergent system, it is assumed that there is a low-level controller on
« Its path is critically damped i.e. the robot does noboard the mobile node which is able to achieve the velocity
overshoot the VG contour and oscillate about it commanded by the algorithm above. In this paper, we do not
« Lastly, it is designed to trace the contour of interest concern ourselves with the details of how that is done.
As a baseline, we also implemented simple gradient de-

V. OUR APPROACH : . )
. . ) scent based on local query. In this technique, the mobile nod
We adapt the control law given in Equation 4 to performy eries its neighbors for their locations and sensor valties

contour tracing in a sensor field. A key difference betweefhary chooses the maximum intensity gradient towards the
our setting and the environment described in the previoys, nqary. It then compares this value with the previously
section, is that we deploy nodes at random discrete poinigytained gradient (if any). It then moves one unit towards th
Although we do not havenalls in our setting which the ,nqyrin the direction of the node with the highest gradien
robot can range to, there is a continuous scalar field whicfyjs process continues until the boundary is reached or the
can be sensed at discrete points where stationary nodes @fgile node cannot move any further. We implemented this
deployed. This is the field whose level set we want the rOb%‘imple gradient descent as a baseline so we could compare

to find and trace. , , _ our algorithm with it.
We recast the functioriz from the previous section as

follows: VI. SIMULATION
The simulation setup consists of a set of nodes placed
G(x) = (sensor reading at the mobile node) - uniformly randomly in an area of 100x100 units. The trans-

ission range of all nodes is arbitrarily assumed to be 20
nits. The mobile node is placed at a random location. We
This is appropriate since the control law tries to ditver)  vary the number of stationary nodes placed to study the
to 0. When the algorithm converges, it results in equalizingehavior of the algorithm for different average degree @alu
the sensor reading at the mobile node and the desired levietjor research has shown that 6 is a good number for the
which is our objective. average degree for the sensor network to be connected [16].

(threshold reading defining the contour to be traced



The second metric is indicative of the quality of the solu-
tion. For each successful trial (where the contour is found)
we measure theatio of the distance traveled by the mobile
: node to the minimum straight line distance between the
mobile node's initial location and the contour. This metric
] has a lower-bound of 1. Values close to 1 are good, and
F values significantly higher than 1 indicate poor perfornganc
(i.e. long paths).

Using these metrics we examine the impact of two param-
eters on our algorithm. These are the independent variables
in the experimental trials. The first gatic network density

(as measured by the number of neighbors of each node), and
the second igrror.
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We study the behavior of our algorithm for networks varying
the average degree from 6 to 12.

The simulation setup allows us to randomly instantiate ©%<—

networks of varying densities. It also allows us to study th i
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performance of the algorithm when error exists in variougor the
parameters - sensor measurement error, localization error
and actuation error at the mobile node. A trial consists of
initializing a particular static network, an arbitrarilgitial- 100
ized mobile node, a particular setting for sensor noise, and
the execution of the control law by the mobile node. For a A
particular deployment we perform 100 trials differing only * '
in the initial placement of the mobile node and the stochasti
noise. We experimented with a number deployments which /
differed in the density of the network (as measure by the /

simple gradient descent technique)

node degree). Each deployment was tested with and without
sensor noise. We also varied the behavior of the phenomenoryo -—#-
being sensed. We attempted to capture any variation in the \/

behavior of the algorithm for gradients whose fields had al
different types of decay. Experiments were performed with ® \/
five different types: Linear, Square, Logarithmic, Square i
Root and Gaussian.
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VII. SIMULATION RESULTS

We measure the performance of our algorithm using two
metrics. The first is thpercentage of success. This is defined Figure 9 shows the performance of our algorithm by plot-
as the percentage of the trials in which the node succegsfuting percentage of successful trials as a function of nekwor
found the contour. This metric is a rough guide to thelensity for varying levels of sensor noise. Figure 8 measure
feasibility of our approach. We would like to note that mosthe performance of the simple gradient descent algorithm
failure was due to boundary conditions and lack of statiasing the same metric. As mentioned earlier, we studied
neighbors. five different types of decay functions for the fading of the

Fig. 9. Percentage of Completion vs. Node Degree (Our Algaor)



scalar phenomenon - Linear, Inverse Square, Log, Inverse **
square root and Gaussian. The performance did not vary

significantly across the different functions. Hence, fdufe

results we pick inverse square decay as a representati
function. It is to be noted that our algorithm has more thal

80% success rate for network densities greater than 6
gets better as the network density goes higher.

B. Effect of sensor error on algorithm success

Fig. 10 shows the effect of sensor noise on the baselin

algorithm. From Fig. 10 it is clear that the algorithm’s poerf

mance deteriorates rapidly when the sensors are erroneods.*?

The error introduced is zero mean gaussian noise.
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Fig. 10. Effect of sensor error on success percentage
(Simple gradient descent algorithm)
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Fig. 11. Effect of sensor error on success percentage(@origim)

However, our algorithm is fairly resilient to sensor noise.
Even in the presence of the same levels of noise, its perfor-

mance is comparable to the noiseless case (Fig. 11).

C. Optimality of successful routes

Our second metric of performance is the optimality of

route taken to the contour.

The performance of the simple gradient descent algorithm 2)
is suboptimal in comparison with our algorithm (Fig. 12 13).
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Fig. 12. Optimality of route for trials with sensor error
(simple gradient descent algorithm)

There is a lot of variance in the performance of the base-
line algorithm. However,our algorithm nicely converges to
optimality as the static network density increases (Fig. 13

N
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Fig. 13. Optimality of route for trials with sensor error(Qaigorithm)

o

Ratio of actual path length to shortest path length to contour for successive trials

In conclusion, our algorithm is fairly resilient against
sensor error and has a graceful loss of success with increase
in error.

Based on our extensive simulations, we draw the following
empirical conclusions about our algorithm:

1) Saturation: The general behavior of our algorithm is
such that the percentage of successful trials increases
and then saturates with increased network density
irrespective of sensor noise. This saturation occurs at
relatively low network densities (node degree approxi-
mately 6-8). For a network aof nodes, a node degree
of 6 is needed to preserve connectivity [16]. For the
network sizes we experimented with, the saturation
we observe is at values less than or equal to those
needed for connectivity. Given that without assured
connectivity, the sensor network is not of much use
for other applications, this seems reasonably practical.
Sensitivity to Noise: The simple gradient de-
scent algorithm is extremely sensitive to noise (Fig-



ures[ 8](a)[8](b)). This is because the mobile node

bases its decisions on the readings of one sensor.
Sensing error thus dramatically skews the boundary
detection mechanism. Our algorithm is nowhere near
as sensitive to noise (Figure 11).

We measured the effectiveness of our algorithm when
it terminates successfully. We measure the ratio of the
distance traveled by the mobile node to the straight
line distance from the start point to the nearest point
on the boundary. The optimality gradually increases

with increase in network density(Fig. 13.

3) Type of Gradient: We observe that the algorithm is
independent of the type of decay experienced by the
scalar field (Fig. 9). This advocates in favor of the
algorithm as it is very hard to determine the exact
model of decay of the scalar field in advance.

The results regarding solution quality (Fig. 13) follow a
similar trend to the percentage completion graphs discusse
earlier. However, they seem to follow two distinct but ex-
pected trends.

1) Dependency on node density For node degrees

greater than six, the ratio of actual distance traveled
to straight line distance saturates to approximately 1.1,
which is very close to the best possible value (1). Thus Fig. 14. (a)The Testbed (b) The Robomote

our approach is near optimal if the sensor network has

a reasonable average node degree.

2) Dependency on sensor noiseAs the percentage of traveled to the optimal distance is higher than that obthine
sensor noise increases in the network, the ratio dfy simulation, the feasibility of our algorithm is evident.

distance traveled also increases. This is coupled with Optimal Distance | Traveled Distance | Ratio
an increase in the variance of this ratio. This indicates 55 33 1.509
that in high noise scenarios our scheme might perform 5 6.1 127
sub optimally, causing the mobile node to travel a 5 76 150
longer distance than needed to reach the boundary. 3 55 183

VIIl. EXPERIMENTAL RESULTS 5 7.8 1.56

Our experimental setup uses the Robomote [4](Figure 14Ye are in the process of performing experiments with sensor
on a table-top testbed [13](Figure 14). The testbed is a 4foards and using light as the scalar field.
by 10ft table. The Robomote is a small mobile robot which
interfaces with the mote [8]. Components have been written
in TinyOS such that only the mote needs to be programmedWe described an algorithm which detects and traces a
to control the Robomote. We use a laptop connected tocntour of a scalar field. A network of sensor nodes is
mote via serial port as a base-station. We interface througleployed in a planar environment along with a mobile node
java and matlab to simulate parts of the experiment. which can both sense and move. Our algorithm causes the

robotic node to move in a way which positions it on the

The first hardware experiment tests the validity of oudesired contour, and keeps it there. The algorithm use$ loca
algorithm in the presence of odometry error. We simulatedommunication between the robotic node and its immediate
the static node deployment and the scalar field in matlab. Weeighbors. Simulation results indicate that the paths gen-
simulated 20 nodes deployed in 4ft by 8 ft area. erated by our algorithm are near-optimal in terms of their
Based on the current robomote location, its local sensolsngths. Simulation results also indicate that the conteur
are queried for their values(assuming a radio range of 2 ftiound reliably. Comparison with a simple gradient follogin
These readings are then used along with the locations of thi&gorithm indicates that our algorithm is significantly raor
sensors to compute the control law. This determines the nextbust to sensing noise. The algorithm is demonstrated to
destination for the robomote. It is observed that the rodemowork reliably at network densities where each node has 6 or
converges to the boundary with good consistency. Listehore neighbors.
below are the distance traveled and the optimal distance ofPreliminary experimental results show the feasibility of
travel to the boundary for five cases when the robomothe algorithm. Future work will include an analysis of the
converged to the boundary. Although the ratio of distancenergy consumption and study of convergence properties

IX. CONCLUSIONS



of the modified control law. One of the assumptions ofi6] F. Xue and P. R. Kumar. The number of neighbors needed for
our algorithm is that the decay function is monotonically ~ connectivity of wireless networks. IMreless Networks, 2003.
decreasing. However, this might not be the case in reality.
This introduces the possibility of local minima in the sewgsi
which might prevent the mobile node from driving to the
contour. It is also possible for the mobile node to drive to a
location with no neighbors. This would result in breaking of
the algorithm.
We are working on improving our algorithm to avoid both
the above cases.
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