
jSwarm: Distributed Coordination in Robot Swarms

Daniel Graff, Jan Richling
Communication and Operating Systems Group

Technische Universität Berlin
10587 Berlin, Germany

Email: {daniel.graff,jan.richling}@tu-berlin.de

Matthias Werner
Operating Systems Group

Chemnitz, University of Technology
09111 Chemnitz, Germany

Email: mwerner@informatik.tu-chemnitz.de

Abstract—We present a runtime system for swarms of mobile
robots that manages distributed resources and provides a com-
mon programming interface for distributed swarm applications.
The programming abstraction follows a systemic view and allows
to specify the spatial-temporal behavior of applications. The
runtime system analyzes application code, creates a dependency
graph, extracts spatial-temporal actions and uses code rewriting
in order to realize a distributed execution coordinated in space
and time.

I. INTRODUCTION

Allowing a glance in the past, technical evolution has
shown that devices have become more powerful, use less
energy, are equipped with a variety of sensors and actuators
and have become strongly interconnected and mobile. This
has led to the emergence of cyber-physical systems (CPS)
that tightly interact with their physical environment “usually
with feedback loops where physical processes affect com-
putations and vice versa” [1]. Already in the near future,
there will be an enormous amount of wireless devices [2]
ranging from deeply embedded sensors and actuators over
intelligent gadgets to fully autonomously acting robots forming
sensing and actuating platforms featuring a variety of hardware
and software, different programming approaches and system
interfaces making, especially, the cooperation and coordination
a challenging task. Thus, our approach is to consider all
these devices as one emerging system (the swarm) and build
a distributed swarm runtime system on top of it that hides
heterogeneity and diversity, provides a common interface to the
outside and decouples swarm applications and their execution
in space and time. For this, we provide a programming abstrac-
tion featuring a systemic view to system resources together
with the possibility of attaching spatial-temporal constraints
to components of the application.

The remainder of the paper is structured as follows: Sec-
tion II sketches the approach and describes the programming
model for swarm applications that can be bound to space and
time. Section III shows an architecture of the swarm runtime
system that we currently develop according to the aforemen-
tioned approach. Finally, Section IV summarizes related work
and Section V concludes the paper.

II. APPROACH

Similar to the process concept (virtualization of the proces-
sor) in order to allow multi-program operation and a higher
utilization of the processor which is a standard in todays
operating systems, we propose the virtualization of the swarm

Fig. 1. Multi-program operation enabled by the use of virtual swarms (time-
varying mapping of virtual resources to physical resources) which provides
isolated execution

consisting of mobile devices such as robots. In contrast to ap-
proaches where only one program is executed and allocates the
entire swarm, we allow multiple parallel swarm applications by
executing each application on a separate virtual swarm which is
a subset of the real swarm as depicted in Figure 1. This is fully
transparent for applications and isolates execution from each
other. Applications do not access resources exclusively, but
in a time sharing manner coordinated by the runtime system.
According to this approach, applications define operations on
virtual resources that are mapped to physical resources. A
virtual swarm then is defined as a time-varying mapping of
virtual resources to physical resources.

Experience from distributed systems shows that program-
ming concurrent, parallel or even distributed applications is
already error-prone. Incorporating real-time and space as a
necessity for CPS makes things worse.

In [3], we have presented a programming abstraction based
on Distributed Active Objects that follows a systemic approach.
We call an interaction with the physical world by means of sen-
sors and actuators an action that can be restricted in space and
time. Actions are defined on virtual resources. Since the system
provides a systemic view to system resources, programmers do
not have to cope with distribution or concurrency, they are able
to access them in a local manner. Due to the introduction of
spatial-temporal constraints that can be attached to actions,
programmers implement applications sequentially that will
become distributed and concurrent implicitly at runtime.

With this concept, we are able to define high level goals
in an easy way. For instance, consider the example of a 3-
sided observation of an entity of the real world as depicted in

Fig. 2. 3-sided observation: neither quantitative nor qualitative aspects are
specified; the formation will emerge implicitly based on application constraints

Figure 2. Here the idea is to take pictures from three different
sides at the same point in time in order to compute a 3D
reconstruction afterwards. Doing this manually incorporates
selecting a subset of robots featuring a camera resource,
positioning the resources accordingly, synchronize under each
other, take the pictures and finally collect the resulting images.
According to our approach, we abstract from physical re-
sources and provide a systemic view in which virtual resources
can be constrained in space and time. The following shows
how spatial constraints can be expressed:

∀i ∈ {0, 1, 2} ∃j = (i+ 1) mod 3 |
(dist(Ci, Cj) == D1 ∧ // D1 ∈ [..]
dist(Ci, X) == D2) // D2 ∈ [..]

While the X value is the position of the entity that shall
be observed, the Ci parameters indicate positions for different
camera resources that have to be computed regarding X under
the restriction that each pair of cameras shall have a distance
of D1 and each camera shall have a distance D2 to X . This
expression results in the formation of an equilateral triangle
surrounding the observed entity. In addition the programmer
is able to define a temporal condition such that all pictures are
taken at the same point in time indicated by ti:

∀i ∈ {0, 1, 2} ∃ti == T // T ∈ [..]

Each position Ci is associated with a corresponding camera
object that is used for taking the pictures. Based on the
constraints, the programmer is now able to simply invoke
the takePic() method of the camera objects, get the re-
sulting image and perform the reconstruction afterwards in a
sequential manner as shown in Listing 1. All coordination,
synchronization, selection and movement of the distributed
resources is fully transparent to the programmer.

1 p u b l i c 3 dImage d o 3 d R e c o n s t r u c t i o n () {
2 P i c a = c1 . t a k e P i c () ; / / C1

3 P i c b = c2 . t a k e P i c () ; / / C2

4 P i c c = c3 . t a k e P i c () ; / / C3

5 r e t u r n r e c o n s t r u c t 3 d (a , b , c) ;
6 }

Listing 1. Code written by the programmer

III. RUNTIME SYSTEM

In order to execute swarm applications developed according
to the programming model, we present jSwarm as a distributed

Fig. 3. Architecture of the runtime system which consists of local (executed
on each device for node management) and distributed services (executed as
system-wide singleton for system management)

runtime system which follows a service-oriented architecture
approach. The system consists of distributed (global) and local
service as depicted in Figure 3. Global services are used for
system management while local services are used for local
node management. The system can be operated in two modes:
In static mode all applications are perfectly known in advance
and offline scheduling is applied in order to plan application in
space and time. In dynamic mode, applications can be started
during runtime requiring an online scheduler.

The distributed services are globally reachable system
services that are responsible for managing the system. During
system startup a leader election algorithm is used to determine
where the services shall be executed. Each service is replicated
as backup service in case of failures. Nodes autonomously
find each other using a discovery service that performs UDP
broadcasts. As soon as other nodes have been found, reliable
TCP connections are established to the explored nodes.

In order to deploy and start a new application it is possible
to connect to the swarm using the client interface. After the
code has been fully loaded into the swarm, the Analyzer parses
the applications code, extracts all space-time constraints and
constructs a dependency graph of the application as depicted
in Figure 4. In case of the 3-sided observation (Listing 1), the
code contains 3 actions attached with space-time constraints
in order to take the 3 pictures. For simplicity, it is assumed
that the application consists of two sequential parts (one
before taking the picture and one afterwards). The resulting
graph, thus, shows relation between the 3 actions for taking
the pictures (having the same timing constraint, but different
spatial constraints) and, thus, is executed in parallel while
computing the 3D reconstruction has to be done afterwards.

STC1 STC2 STC3

Code
Analysis pic() pic() pic()

Fig. 4. Code analysis: generating a precedence graph based on spatial-
temporal application constraints

After the code analysis, a code generator cuts out
spatial-temporal actions and hands them over (together with
the spatial-temporal constraints) to the SpaceTime-Scheduler
which consists of a job scheduler (plans actions in space and
time) and a path planner (computes spatial-temporal trajec-
tories for moving resources). The scheduler has to guarantee
correctness of a schedule, i.e., if new jobs arrive and shall
be scheduled, an existing correct schedule (containing already
scheduled actions) is always transformed into another correct
schedule. The scheduler uses the spatial-temporal constraints
as input values for the computation of the schedule and evalu-
ates their operators as given in Section II with respect to system
constraints (inaccuracies of locating system, inaccuracies of
sensors and actuators, e.g., engine control). Hence, the “==”
operator involves fuzziness to a certain degree that depends on
current system capabilities. In [4], we presented an approach
for modeling offline group scheduling problems in space and
time.

The scheduler uses an existing schedule (containing already
scheduled actions) and tries to update it. If the scheduler is
not able to find a schedule, the application is semi-rejected.
It is still possible to do a renegotiation with the application
to shrink resource usage. Finally, if the space-time scheduler
has successfully planned the actions, the SwarmCtrl updates
its run-queue accordingly. The SwarmCtrl is responsible for
assigning planned jobs (either spatial-temporal actions or tra-
jectories) to the respective nodes.

1 p r i v a t e P i c a , b , c ;
2 p u b l i c 3 dImage d o 3 d R e c o n s t r u c t i o n () {
3 w a i t () ;
4 r e t u r n r e c o n s t r u c t 3 d (a , b , c) ;
5 }
6 p u b l i c r e c e i v e (Message m) {
7 / / e x t r a c t p i c t u r e from message
8 / / and a s s i g n t o r e s p e c t i v e v a r i a b l e
9 i f (a && b && c) {

10 n o t i f y () ;
11 }
12 }

Listing 2. Code generated by the system

The remaining method body is then modified as depicted
in Listing 2. What happens now is that as soon as the code
of the modified application gets executed and an invocation of
do3dReconstruction is performed, the executing thread
will be blocked in wait() waiting for the pictures to arrive.
It is not necessary (for the application itself) to request the
pictures since the scheduler has already planned those actions
in space and time. Each time when a picture has been taken, it

will be send back to the waiting thread causing an invocation
of receive(..). As soon as all three pictures have arrived,
notify causes the blocked thread to be woken up which will
finally continue and call reconstruct3d(..).

In order to guarantee the proper execution, each node
owns the same set of local services. The NodeManager is the
central element and is responsible for local node management.
It receives new jobs (spatial-temporal actions or trajectories)
from the SwarmCtrl and puts them in its own queue sorted
according to time stamps (when to execute). Depending on the
jobs, it informs either the MotionCtrl or ActionCtrl which both
have their own thread of control. In case that a resource has
to be moved, the MotionCtrl is responsible for moving along
a spatial-temporal trajectory by engine control. The robots
hardware can be accessed using RoboCtrl. In case of a spatial-
temporal action, the code is handed over to the ActionCtrl—a
wrapper for actions—for execution. Finally, the CommCtrl is
used in order to send return values of actions back to the calling
thread.

IV. RELATED WORK

In [5], SwarmOS is presented as a mediation layer be-
tween applications and distributed resources such as sensors,
actuators, storage and computing. It has to cope with distribu-
tion, heterogeneous and shared resources as well as dynamic
situations (mobility, connectivity, ..) while providing context
awareness. In contrast to our research, SwarmOS does not
feature (or is not intended) to support autonomous resource
movement that is based on spatial-temporal trajectories that are
automatically computed from the system based on a resource
usage of applications. The same holds for MagnetOS [6]
which provides to split an application into components each of
which will be dynamically assigned to several executing nodes
(targeting ad-hoc and sensor networks).

In [7] an approach for dynamic task assignment in robot
swarms based on swarm algorithms with stochastic elements is
presented. It supports groups of nodes (especially robots) that
collectively execute applications without the need to program
the nodes separately, i.e., it provides location transparency
within the group. It is intended to support applications in real-
space. However, it is designed to support swarm algorithms
with stochastic elements. It does not provide a notation of real
time or space.

The Symbrion and Replicator projects [8] consist of super-
large-scale swarms of robots that are based on bio-inspired
approaches featuring self-X properties. The systems are highly
dynamic and so, if advantageous, the robots can aggregate into
a symbiotic organism that is, in this form, better suited to solve
a task in the current situation while sharing resources such as
energy.

There are different kinds of programming abstractions for
distributed, concurrent and parallel systems as well as for
sensor networks. Detailed surveys are provided in [9], [10].
Following a holistic approach, nesC [11] which is an extension
to C is a programming language for deeply networked systems
which was created for TinyOS. Programs are built out of
components that have internal concurrency. While nesC is a
node-level language (code is written for an individual node),
Pleiades [12] provides an abstraction to implement a central

program that has access to the entire network (also known as
macroprogramming [13]). SpatialViews [14] is an extension to
Java which allow to define virtual networks that are mapped
to physical nodes according to their physical location and
the services they provide. Execution is distributed among the
nodes in the virtual network performed by code migration.
Furthermore, it is possible to constrain execution based on
timing restrictions.

In [15] a programming and execution environment for
micro-aerial vehicle swarms is presented. Applications are a
composition of low level drone behaviors and high level goals
that are submitted by a user for execution on the swarm.
While this approach is similar to ours, we further provide
to use application constraints in order to define spatial and
temporal conditions (synchrony, (in)-dependence) in a relative
or absolute manner for a set of resources.

V. CONCLUSION

In this paper, we presented an approach for a swarm run-
time system as a mediation layer between swarm applications
and distributed resources such as sensors and actuators. The
runtime system hides heterogeneity and diversity of hardware,
software and system interfaces and provides a clear defined
interface for applications. In addition, we provide context
awareness for applications while guaranteeing location and
distribution transparency.

After the system has received a new application for ex-
ecution, it will be analyzed and according to the spatial-
temporal actions a dependency graph is computed. Afterwards,
the actions are extracted and code rewriting is used in order
to realize a distributed execution coordinated in space and
time. If necessary, spatial-temporal trajectories are calculated
in order to move resources. Finally, actions and trajectories are
scheduled to nodes in the system for execution.

According to the programming model, we allow the pro-
grammer to implement in a sequential manner without the
need to use neither coordination nor synchronization and to
bind parts of applications to space and time while resource
movement, scheduling and mapping is fully transparent. The
swarm runtime system supports to execute multiple indepen-
dently developed applications that can be executed in parallel
by guaranteeing isolation achieved by using the concept of
virtual swarms.

For performing experiments, we have set up a swarm lab
consisting of 40 mobile robots equipped with a 400 MHz
ARM9 CPU and 64 MB SDRAM and 24 stationary boards.
equipped with a 180 MHz ARM9 CPU and 64 MB SDRAM.
We use an external locating system for indoor tracking of
the robots based on a Microsoft Kinect [16]. We have
implemented basic functionality for the runtime system such as
node detection, communication and a simple way of executing
swarm application. Using a simulator, we tested the calculation
and following of trajectories by fine-grained engine control.
Currently, we are working on testing the algorithms in our
swarm lab with the real hardware.

Since mobile devices have a limitation of resources, a
major research field still remains to further investigate suitable
heuristics for online scheduling.

REFERENCES

[1] E. A. Lee, “Cyber-Physical Systems – Are Computing Foundations
Adequate?” in Position Paper for NSF Workshop On Cyber-Physical
Systems: Research Motivation, Techniques and Roadmap, October 2006.

[2] M. A. Uusitalo, “Global Vision for the Future Wireless World from the
WWRF,” in IEEE Vehicular Technology Magazine, vol. 1, no. 2, 2006,
pp. 4–8.

[3] D. Graff, J. Richling, T. M. Stupp et al., “Distributed Active Objects –
A Systemic Approach to Distributed Mobile Applications,” in 8th IEEE
International Conference and Workshops on Engineering of Autonomic
and Autonomous Systems, R. Sterrit, Ed. IEEE Computer Society,
April 2011, pp. 10–19.

[4] D. Graff, J. Richling, and M. Werner, “Modeling Group Scheduling
Problems in Space and Time by Timed Petri Nets,” Fundamenta
Informaticae, vol. 122, no. 4, pp. 297–313, January 2013.

[5] E. A. Lee, J. D. Kubiatowicz, J. M. Rabaey et al., “The TerraSwarm
Research Center (TSRC) (A White Paper),” EECS Department, Uni-
versity of California, Berkeley, Tech. Rep. UCB/EECS-2012-207, Nov
2012.

[6] R. Barr, J. C. Bicket, D. S. Dantas et al., “On the Need for System-
Level Support for Ad hoc and Sensor Networks,” Operating System
Review, vol. 36, pp. 1–5, 2002.

[7] J. McLurkin and D. Yamins, “Dynamic task assignment in robot
swarms,” in Robotics: Science and Systems Conference, Cambridge,
MA, USA, 2005.

[8] S. Kernbach, E. Meister, F. Schlachter et al., “Symbiotic robot or-
ganisms: REPLICATOR and SYMBRION projects,” in Proceedings of
the 8th Workshop on Performance Metrics for Intelligent Systems, ser.
PerMIS ’08. New York, NY, USA: ACM, 2008, pp. 62–69.

[9] R. Sugihara and R. K. Gupta, “Programming Models for Sensor
Networks: A Survey,” ACM Trans. Sen. Netw., vol. 4, no. 2, pp.
8:1–8:29, Apr. 2008. [Online]. Available: http://doi.acm.org/10.1145/
1340771.1340774

[10] L. Mottola and G. P. Picco, “Programming Wireless Sensor Networks:
Fundamental Concepts and State of the Art,” ACM Comput. Surv.,
vol. 43, no. 3, pp. 19:1–19:51, Apr. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1922649.1922656

[11] D. Gay, P. Levis, R. von Behren et al., “The nesC language: A holistic
approach to networked embedded systems,” SIGPLAN Not., vol. 38,
no. 5, pp. 1–11, May 2003.

[12] N. Kothari, R. Gummadi, T. Millstein et al., “Reliable and efficient
programming abstractions for wireless sensor networks,” SIGPLAN
Not., vol. 42, no. 6, pp. 200–210, Jun. 2007.

[13] M. Welsh and G. Mainland, “Programming sensor networks using
abstract regions,” in Proceedings of the 1st conference on Symposium
on Networked Systems Design and Implementation - Volume 1, ser.
NSDI’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 3–3.

[14] Y. Ni, U. Kremer, A. Stere et al., “Programming ad-hoc networks of
mobile and resource-constrained devices,” SIGPLAN Not., vol. 40, no. 6,
pp. 249–260, Jun. 2005.

[15] K. Dantu, B. Kate, J. Waterman, P. Bailis, and M. Welsh, “Programming
Micro-aerial Vehicle Swarms with Karma,” in Proceedings of the 9th
ACM Conference on Embedded Networked Sensor Systems, ser. SenSys
’11. New York, NY, USA: ACM, 2011, pp. 121–134. [Online].
Available: http://doi.acm.org/10.1145/2070942.2070956

[16] M. Haustein, A. Löscher, and M. Werner, “Adaptive Objektlokalisierung
durch Tiefenbildanalyse mittels einer Kinect-Kamera,” in Ortsbezogene
Anwendungen und Dienste, 9. Fachgespräch der GI FG KuVS, 2013,
pp. 109–118.

http://doi.acm.org/10.1145/1340771.1340774
http://doi.acm.org/10.1145/1340771.1340774
http://doi.acm.org/10.1145/1922649.1922656
http://doi.acm.org/10.1145/2070942.2070956

	Introduction
	Approach
	Runtime System
	Related Work
	Conclusion
	References

