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Abstract—In robot teams a coherent world model is essential
for cooperative behavior. The world model is a collection of
information about the robots environment. In order to establish a
coherent world model sensor fusion is required. However, sensor
noise injects uncertainty on the observations and can lead to
conflicting behavior. In this paper, we present a world model
for multi-robot systems. Our approach distinguishes between a
local and a shared world model. The latter achieves consensus
by redundant computations of shared sensor information. We
evaluated our approach in an appropriate environment, i.e., the
RoboCup Middle-Size League.

I. INTRODUCTION

The coordination of autonomous mobile robots can in-
herently benefit from precise coherent shared data of the
environment. However, sensor noise and communication delay
inhibits fast consensus on shared data. In practice, sensor
fusion is one of the most common methods, to reduce the
sensor noise and extract the most valuable information from
shared data [4]. The performance of sensor fusion approaches
is often evaluated in scenarios with a team of cooperative
robots.

An example scenario for a cooperative robot team is
RoboCup1. In particular, the RoboCup Middle-Size League
(MSL) is characterized by unpredictable opponent behaviours
and high velocities, i.e., 5 m/s on a 18m × 12m large field.

In MSL, the perception is primarily done by an omni-
directional vision system. The range limitations of current
omni-directional cameras, forbid players to observe the whole
field on their own. Sensor fusion of all available and useful
information within the team helps to achieve reliable and
coordinated game play. This is facilitated by the distinction
between local and shared world models as shown in [5].

In this paper, we present our experiences with distributed
sensing based on our MSL-team Carpe Noctem Cassel
(CNC) [2]. In general, we perform all computations redun-
dantly on all robots and assume missing information to be
unknown. For example, if a robot does not receive ball
observations of other robots, it exclusively relies on its own
observations. This approach is robust against broken robots and
unreliable communication, as information of other robots is
not mandatory for local reasoning. Furthermore, our approach
leads to a more precise and complete world model the more
information of other robots are available.

The rest of the paper is organized as follows. Section II de-
scribes our distributed sensing used in RoboCup. In Section III,

1http://www.robocup.org/

we discuss the strengths of our approach and highlight further
extensions. We conclude the paper and provide ideas for future
work in Section IV.

II. DISTRIBUTED SENSING

This section describes the local information processing of
a CNC robot and the sensor fusion used to improve these data
based on the shared team information. We use the obstacle
detection as an example to clarify the described concepts. In
order to specify the information sharing, we start with a short
description of the CNC world model.

A. World Model

The CNC world model contains all information the robot
collects about its environment. These information are com-
puted based on sensor information and can be used by all
decision processes. Furthermore, the world model is split into
a local part (referred to as local world model) and a shared
world model. The local world model contains the information
inferred from local sensor information, e.g., the position of the
robot on the field, provided by its own localization routines.
The shared world model contains the information that are
shared within the team of robots, e.g., the position of other
robots on the field. All positions are represented in a global
reference frame with the point of origin in the centre of the
field.

While the local information processing is performed with
30Hz, information is only shared with 10Hz to reduce the
used bandwidth. This information sharing is not synchronized
within the team. As a result, the timestamps of the information
can vary up to 100ms, ignoring network latencies. Sensor
fusion of this unsynchronized information needs to deal with
these variations. However, sending all information at the same
time would cause unnecessary transfer collisions.

B. Local Sensing

This section gives a short introduction to the local sensing
of the CNC robot. Obstacle and ball detection are based on
the camera image, which has a resolution of 640× 480 pixels
and is recorded with 30Hz. Therefore, all processing must be
performed in less than 33ms to retain the robot’s reactivity.
Figure 1(a) shows the omnidirectional vision system, where
the camera looks at a convex mirror. The mirror enables the
system to capture a 360◦ view, as depicted in Figure 1(b).
However, the detection range is limited, because of the reduced
px

area -ratio at the border of the image.



(a) Camera and mirror (b) Omnidirectional image

Fig. 1. Figure (a) shows the camera aligned on the convex mirror and Figure
(b) shows a recorded omnidirectional image.

All robots are required to be black. This allows for an
efficient obstacle detection, by operating on a gray image. We
utilize scan lines for further performance improvement. Scan
lines are radially distributed with an interval of 6◦ and start
from the center of the image. Changes in brightness along
a scan line, induced by transitions between the lighter field
and the black robots are used to detect obstacles. The nearest
matching pixels on the scan lines create a distance profile,
centred around the robot.

The next step is an adaptive discretisation of the distance
profile. Therefore, similar distances in the neighbourhood are
combined to a single value. In the last step the obstacles need
to be divided into multiple robots based on variations of robot
sizes.

Similar to the obstacle detection, the ball detection is
designed to determine the position of a ball with a given
colour, see the orange balls on Figure 1(b). First, the algorithm
identifies regions of interest (ROI), by finding colours similar
to ball colours. Again, scan lines are used to find matching
colours and similar results in the neighbourhood are combined
to a single ROI.

Based on these ROIs, a template matching is used to
identify ball hypotheses. Therefore, an edge detection inside
the ROIs is performed on the original gray image. The normal
vectors of a circular object are pointing to or away from the
centre of the circle and can be matched by a corresponding
patterns. Our implementation requires at least 12 pixel to
identify a ball hypothesis. This leads to a theoretical detection
range of 11m. In practice, the robots are able to detect the
ball up to 7m away. Additionally, we represent uncertainty of
ball hypotheses with a mean and a covariance matrix.

However, the achievable precision of the hypothesis is
limited by the local sensor values. Furthermore, teammates
and opponents can not be distinguished by local sensor values
only.

C. Sensor Fusion

This section describes the information sharing and fusion
within the team. To counteract the limited range of local sens-
ing, environment information is shared within the team via Wifi
connection. Obviously, this leads to duplicated information of
identical objects. We apply sensor fusion techniques to merge

this information in order to create a global world view and
to reduce uncertainty about the environment. However, a poor
realization of sensor fusion will lead to wrong estimations and
a worse team play. Therefore, the algorithms need to deal
with uncertain, imprecise, unreliable, and possibly outdated
information. Moreover, efficiency is a further important aspect,
because every time new local information arrives, the fusion
with shared information needs to be performed. Extending the
example from the last section, we describe our realization
of merging obstacles and ball estimations in the RoboCup
domain.

The initial situation of the obstacle fusion is an unordered
set of shared obstacle positions and teammate positions. As a
clustering algorithm, we choose a hierarchical clustering. Due
to the dynamic environment, the number of physical obstacles
on the field is unknown. The algorithm merges clusters until a
given threshold is exceeded, so the total number of clusters can
be unknown. We select a method based on Ward [7] to decide
when to stop the clustering. Ward uses the inner variance of
clusters before and after merging. The variance TD2(C) for
a given cluster C is given by:

TD2(C) =
∑
p∈C

dist(p, µC)
2 (1)

where p is a point from cluster C and µC is the cluster centroid.
The function dist denotes the Euclidean distance. A smaller
value of TD2(C) means that the points are closer to each
other [1]. The variance difference for two given cluster P and
Q can then be computed by:

distvar(P,Q) = TD2(P ∪Q)− (TD2(P ) + TD2(Q)) (2)

where P ∪Q is the merged cluster of P and Q. Afterwards, a
decision is made whether a cluster represents an opponent or
a teammate. Therefore, the shared position of the teammates
were added to the list of obstacles at the beginning. Each
cluster that contains a position of a teammate is annotated
accordingly. This cluster will be removed from the following
steps and the shared position of the teammate itself is used. To
avoid conflicts, no cluster can contain more than one teammate.

To deal with delayed or noisy information, the clustering
provides higher priority for own data about nearby obstacles.
For all clusters within a given radius (e.g. 1.5m) the detected
obstacle position by the robot itself is used instead of the
cluster centroid (see Figure 2).

Furthermore, we need to remove false positives from the
clustered positions. False positives are clusters that do not rep-
resent real obstacles and result from noisy sensor information.
To identify false positives, all opponent clusters are annotated
with the number of robots s that see the obstacle and the
number of robots d that do not see the obstacle, but should see
it. The line-of-sight criteria is checked to determine, if a robot
could see an obstacle. A majority vote decides if a cluster is
valid or not. If s < d the cluster will be removed and if s ≥ d
the cluster will be kept.

Figure 2(a) shows two robots and the sensed positions of
four numbered obstacles. The first robot Rob1 (blue) sees two
obstacles (1 and 2). The second robot Rob2 (yellow) sees
four obstacles (1 to 4). After applying the above described
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Fig. 2. Figure (a) shows the local obstacles of Rob1 (blue) and Rob2 (yellow).
Figure (b) shows the resulting fused obstacles (red).

algorithm, the observations are grouped into four clusters. The
red circles in Figure 2(b) are the resulting positions. Both
robots can see obstacle 1 (s = 2) and the resulting position
is the cluster centroid. Obstacle 2 is also seen by both robots.
However, the obstacle is near Rob1 (dist < 1.5m) and the
resulting position is the locally sensed position from Rob1
instead of the cluster centroid. Clusters 3 and 4 are only seen
by Rob2 (s = 1). The line-of-sight from Rob1 to obstacle
3 is interrupted by obstacle 2, so d = 0 and with s > d the
cluster is kept. The line-of-sight from Rob1 to obstacle 4 is not
interrupted and so the robot should see it (d = 1). However,
in case of a tie the obstacle is kept.

Afterwards, an object tracking is applied to refine the
results and derive further information, like opponent velocities.
A detailed description of the tracking is given in [3].

Contrary to the obstacle detection, the fusion of ball
observations from multiple robots is based on Dempster-Shafer
Theory of Evidence (DST) [6]. Presenting the whole approach
is beyond the scope of this paper and hence only a short
overview is given. A detailed description can be found in
[4]. The algorithm starts with the ball hypotheses H based
on the shared information. Each hypothesis is annotated with
the involved robots.

The next step is to compute for all hypotheses of each
robot the believe mass m where m : H → [0, 1]. Afterwards,
the hypotheses are combined by applying the Dempster-Shafer
Rule of Combination in order to fuse multiple observations:

m(x) =
∑
H∈H

m(x|H) ·m(H), (3)

where m is the belief mass for a given ball position x
considering all ball hypotheses H. Hypotheses are represented
with a mean and covariance matrix and the mass assignment
of Equation 3 results in a Gaussian Mixture Model (GMM).
The combination of two GMMs is reduced to a point-wise
multiplication. In order to deal with network latency, the
resulting believe mass for a given hypothesis is discounted
by:

α = 1− e−
1
ts
·(tmr−t0), (4)

where t0 is the timestamp of the hypothesis which is dis-
counted and tmr is the timestamp of the most recent ob-
servation. ts specify the time in which the position could

have changed significantly (in case of the ball 50ms), which
results in no intersection of two successive observations. The
combination believe mass of two hypothesis Hi and Hj is
computed by:

m1,2(Hij) = α ·A∗Hi⊕Hj
·m1(Hi) ·m2(Hj), (5)

where A∗Hi⊕Hj
describes the agreement of the two hypothesis

Hi and Hj [4]. Thus, the ball hypothesis with the highest
resulting mass is selected as ball.

III. DISCUSSION

The presented distributed sensing approach addresses the
requirements of a coherent, global world view by sharing
information within the robot team. This shared information
compensates the limited sensor range of a single robot and
enables global team coordination. In order to improve the
accuracy of the shared information, we apply sensor fusion
techniques tailored for the RoboCup domain. These techniques
merge duplicated, noisy information to an improved estimation
of the world state. Additionally, we specify the uncertainty of
these estimations. This allows the robots to make decisions
with respect to the degree of uncertainty. As a result, a precise
and efficient team coordination is achieved.

In addition to these advantages, we would also like to
mention some shortcomings of our current information sharing
approach. Our robots periodically share their local information
every 100ms, regardless of the existence of new information.
This leads to an unnecessary communication overhead. Thus,
our approach does not scale for large team sizes and high
amounts of shared information. In order to enable large teams
a flexible information sharing is needed.

Moreover, the used world models are currently domain-
specific and hard coded in a monolithic fashion. This results
in an inflexible system and changes to the software may
lead to unpredictable side effects. Additionally, an adaptive
reconfiguration of the world model at runtime is not possible.
Furthermore, in the current implementation it is not possible
to share information only within subgroups. Although, these
features are not required in RoboCup, a more flexible world
model may be required to transfer the approach to other
application domains.

IV. CONCLUSION AND FUTURE WORK

A global world view based on local sensor readings is
a challenging requirement for multi-robot domains. In this
paper we presented our experiences in distributed sensing in
the RoboCup domain. We extend the local sensing range by
sharing local information within the team. In order to further
improve the accuracy of the shared information, we apply
sensor fusion techniques, like the Dempster-Shafer Theory
of Evidence. Additionally, we combine sensor fusion with
domain-specific heuristics to eliminate false positives. This
combination has proven its quality to implement enhanced
team coordination as required in the RoboCup Middle Size
League. However, while this solution works fine in the ad-
dressed domain, we recognize limitations and expect necessary
modifications for other application domains.



Our future research aims at providing a more flexible
and scalable world modelling approach. This would enables
a simple description and reconfiguration of a local and a
shared world model. Furthermore, we are currently develop-
ing a generic approach to resolve conflicts for optimistically
shared information in adverse environments. This is a crucial
requirement to achieve mutual agreement on common goals in
multi-robot teams.
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