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Abstract—The availability of low-cost mobile robots with
sensing, communication, and computational capabilities has made
feasible a new class of Cyber-Physical Systems (CPS). These mini-
CPSs may be used where quick, low-cost or non-lasting visual
sensing solutions are required, e.g. in border protection and dis-
aster recovery. In this paper, we take the first steps towards a fast
and automated CPS. We consider the problem of low complexity
placement and coordination of an unknown number of mobile
cameras to cover arbitrary targets. We address this problem
as an unsupervised clustering task. A set of proximal targets
are clustered together, whereas the camera location/direction for
each cluster are calculated/estimated individually. Our proposed
solutions provide centralized computationally efficient heuristics
using two clustering-based algorithms: k-camera clustering, and
cluster-first algorithms. Our evaluation shows that the required
number of cameras approach those obtained via near-optimal
methods as the cameras’ coverage range, angles of view, or the
number of targets increase.

I. INTRODUCTION

The availability of low-cost mobile robots with sensing,
communication, and computational capabilities has made feasi-
ble a new class of mini-CPSs which can make their deployment
simpler, faster, and more easily reconfigurable. Particularly,
Micro Air Vehicles (MAVs) (a.k.a. microdrones or small/micro
UAVs), typically equipped with cameras, have been proposed
to be used as mobile cameras [1], [2] in Wireless Video
Sensor Networks (WVSN). One of the main advantages of
using MAVs is their maneuverability and small size which
enables them to be placed in locations that achieve optimal
sensing coverage in both indoor [3] and outdoor scenarios
[1]. Among the many applications of such Wireless Mobile
Video Sensor Networks (WMVSN) are environment moni-
toring, smart surveillance, traffic management and healthcare
where quick, low-cost or non-lasting solutions are required
[1], [4], [5]. While research in camera surveillance has tackled
many challenges such as tracking and activity detection, it has
largely focused on the more fundamental challenge of area
or target coverage. The problem of optimal camera placement
to maximize coverage has been shown to be NP-complete in
many variations for both area and target coverage. Therefore,
this problem has been simplified in many forms to address
optimal sensor placement using isotropic and unisotropic
sensors in the field of robotics and sensor networks, e.g.
[6], [7]. With numerous solutions for area coverage [8]–[12]
and target coverage [12]–[17], typical simplifications include
fixing camera locations, or discretizing space and camera pan.
Despite all these efforts, finding a fast and computationally
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efficient algorithm for arbitrary number of targets has remained
a challenge.

In this paper we take the first steps towards developing an
automated and fast surveillance system using mobile cameras.
We propose computationally efficient heuristics for mobile
camera placement and orientation for the coverage of a set of
localized targets. Our objective is motivated by the need for
efficient algorithms for autonomous control of the mobile cam-
eras due to the limitations in their energy and computational
capabilities (relative to static cameras). The most significant
distinction between our methods and those of others in this
area, is our statistical approach. That is, rather than attempting
to find a solution for camera location/direction for each specific
target constellation, we aim for a solution that fits a large
number of scenarios.

We consider the problem of finding the minimum number
of cameras to cover a high fraction of a set of targets as a
clustering problem. We address this problem as an unsuper-
vised clustering task and find simple and efficient solutions
using classification techniques. We propose two algorithms. (1)
K-Camera clustering: we iteratively cluster targets coverable
by one camera, and then update the cameras locations until
convergence is achieved. (2) cluster-first method: we first
cluster proximal targets together, and then find the camera
location/direction for each cluster.

We evaluate our proposed algorithms via simulation in
MATLAB. We observe that our methods offer significantly
lower computational complexity, up to 100 times. However,
they require more cameras to cover a pre-determined fraction
of targets, e.g. 0.9. As the number of targets, camera coverage
ranges, and their maximum Angle Of View (AOV) increase,
the required number of cameras in our methods becomes
increasingly closer to those of near-optimal methods.

II. SYSTEM ASSUMPTIONS

Targets: We adopt the conventional simplifying assumption
that targets reside on a 2D plane [12], [13]. We assume
that target locations are known, which allows us to represent
a bigger sized object of interest by multiple targets. This
knowledge can be gained by higher tier cameras, common in
multi-tier visual sensor networks, used only for detection and
localization, and communicated to all lower tier cameras [18],
or using RFIDs [19].

Cameras and Camera Coverage: Cameras are horizontal
and their area of coverage are circular sectors, as shown
(highlighted in orange) in Figure 1a. The radius of this sector
is the depth of view of a camera, R, where 0 ≤ R ≤ Rmax

within which the captured image is considered of acceptable
sharpness and quality. The angular width of this sector is the
Angle of View (AOV) of the camera which is approximately
inversely proportional to the lens’s focal length. Mathemati-
cally, if (1) a target is within Rmax distance of the camera,
and (2) the angle between camera Ci and target Tj relative
to the orientation of the camera is within the AOV of the



camera, target Tj is covered by camera Ci. We impose hard
constraints on coverage of a target: either completely covered
or not covered at all. We do not consider occlusions, as we
assume the use of camera-equipped ground robots or MAVs
as mobile cameras, with cameras above the targets 2D plane.
We assume mobile cameras which are capable of following a
command to position and orient themselves as prescribed. We
assume a lower bound on the percentage of targets that are to
be covered, and refer to this bound as Coverage Termination
Criterion (CTC). We also pose an upper bound on the number
of cameras.

Camera Configuration Commands and Medium: We as-
sume that a centralized computational entity calculates the
position and direction of all mobile cameras. This entity can
be one of the mobile cameras or a separate entity. We also
assume that, there is a wireless channel between this central
entity and the mobile cameras. We assume coverage areas are
smaller than the communication range. Commands are sent via
the wireless medium to each mobile camera to inform it of the
new location and orientation to move to.

III. PROPOSED SOLUTIONS

Before we delve into our proposed solutions, we first
formally define our problem and introduce a definition which
will be used in the rest of this section.

Problem Statement: Given a set of co-planar targets in
a two-dimensional plane and using homogeneous horizontal
cameras with a given maximum AOV and maximum coverage
range Rmax, find the minimum number of cameras, their
location and orientation such that the fraction of targets visible
by at least one camera is equal to or greater than a pre-
determined value.

Definition: A group of targets, Ti, i ∈ {1..N} form a
cover-set with respect to a camera with given Rmax and AOV
if it is feasible to cover all of them by one camera.

In the subsections that follow, we first describe the basis
of our solution. We then utilize this basis to find the loca-
tion/direction of one camera for a cover-set. We then propose
two methods, K-Camera clustering and cluster-first algorithm,
to divide arbitrary set of targets to a ”small” number of cover-
sets.

A. Coverage for a cover-set

The distribution of an arbitrary co-planar set of targets
falls between the following two extreme and degenerate cases:
(1) all targets reside on one line, and (2) targets are evenly
distributed in a circle. Let us consider a cover-set with a
constellation that is somewhere between the two described
above. We call the smallest (in the sense of area) ellipse, with
parameters a and b, containing all the targets within the given
cover-set as ξopt, as shown in Figure 1b.

For non-degenerate cases, given a camera with sectoral
coverage and maximum AOV of θ, depending on the relation-
ship between a, b, AOV and Rmax, the following two camera
configurations are proposed to cover all targets:

Place the center of a circular sector of angle θ on the (1)
major, and (2) minor axis of ξopt (along L∗1 and L∗2), such
that the upper and lower boundaries are tangent to it. The
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(b) coverage for a cover-set

Fig. 1. Camera coverage model and placement/direction for a cover-set

possible camera locations are shown as P 1
1 and P 1

2 on the
major axis and as P 2

1 and P 2
2 on the minor axis. If the resulting

location of the sector vertex is within zero and Rmax to all
targets, this sector can cover them all. Using geometry one can
prove that the maximum distance between the camera and the
farthest possible target, d1max and d2max for the first and second
configuration are as follows: d1max = a +

√
a2 + b2

tan2(θ/2)

and d2max = b +
√
b2 + a2

tan2(θ/2) . If both d1max ≤ Rmax

and d2max ≤ Rmax, either method could be used. Otherwise,
method i with dimax ≤ Rmax will be selected. The tie is broken
in favor of the first configuration. The camera configuration
decision for degenerate cases (1) and (2) are obtained using
a = b and b = 0 respectively. Note that for a = b, all
orientations are equally suitable.

B. K-camera clustering

This method starts with an initial set of clusters formed
based on target proximity, and moves targets to adjacent
clusters until convergence is reached at which point ideally all
clusters form cover-sets. At every stage, the cluster’s camera
location/direction is found using the method described in
subsection III-A. The algorithm’s pseudo-code is depicted in
Algorithm 1. In line 3, Cmax is the maximum number of

Algorithm 1 Algorithm k-camera clustering
1: k → k0
2: Divide given area to k arbitrary clusters.
3: while coverage fraction ¡ CTC and k < Cmax do
4: k → k + 1, m→ 0
5: while Convergence not met and m < M do
6: for all clusters do
7: Find location and pose of camera for cluster i using method in

III-A
8: for all uncovered targets in cluster i do
9: find the ”best” adjacent cluster

10: end for
11: end for
12: m→ m+ 1
13: end while
14: end while

clusters allowed. In line 5, the convergence criterion is based
on the number of transitions of targets from one cluster to
the other, while an upper bound of M specifies the maximum
number of iterations allowed. In line 9, the decision on which
cluster to move an uncovered target to can be made as follows.
First we identify the adjacent clusters whose cameras can cover



the target at their current position and coordination. If more
than one choice is available, we select the adjacent cluster
which covers the target with the highest angular confidence.
If no qualifying cluster exists, the target remains in its current
cluster.

This algorithm’s complexity can be shown to be O((K −
k0)NM), where N , k0 and K are the number of targets and
the initial and final number of cameras (obtained from the
algorithm above) respectively.

C. Cluster-First Algorithm

An alternative to the K-Camera clustering method is to run
an (off-the-shelf) unsupervised clustering algorithm and divide
the targets into subsets. Once a set of clusters are obtained, we
handle them as if they form a cover-set and use the method
described in subsection III-A to find the location/direction
of the camera for each cluster. If polar coordinates are used
instead of Cartesian coordinates, scaling is required to balance
angle and magnitude values. The computational complexity of
this method also depends on the complexity of the clustering
algorithm. Again, the number of clusters (hence cameras) are
increased till the minimum required fraction of targets are
covered. If k-means clustering is used for example, which is
linear in both dimensions and number of targets [20], cluster-
first method would also be an O(N) method.

IV. PERFORMACE EVALUATION

We use MATLAB simulations to compare our proposed
methods’ performance against those of previously proposed in
the literature [11]. We generate location of targets randomly
using a uniform distribution over the given area. We generate
10 random scenarios in this manner and average the perfor-
mance metrics obtained in each scenario.

We compare our work against two heuristic algorithms,
amongst several proposed in [11] and modify them to cover
specific targets instead of a whole area: greedy search, which is
the closest to optimal in coverage, but is most computationally
demanding method, and dual-sampling, which is their most
computationally efficient method proposed. To the best of
our knowledge there are no other heuristic algorithms which
use similar assumptions and would allow us to compare our
methods against them.

The greedy algorithm in [11] is based on the idea of placing
sensors one at a time. The selection of position and orientation
for each additional sensor is decided based on the rank of all
possible location-orientation combinations. The rank of each
position/orientation combination is determined by how many
remaining targets it can cover. In the dual-sampling method,
one target is randomly selected at a time. The area from which
the camera location is chosen is limited to the Rmax vicinity of
this targets. Then from all possible camera location-orientation
combinations, the one with the highest rank that can cover the
selected target is chosen. In this section, k-camera clustering,
cluster-first method, greedy and dual-sampling methods are
referred to by KCam, CF, Greedy and 2Smp respectively.

Parameters: The parameters are summarized in Table I.
We also set the maximum number of cameras allowed to half
the number of targets, however since this limit is never reached
it is not included in the table. The parameter cθ→r is the

Parameter Range Nominal value
Dim 50m× 50m 50m× 50m
AOV {45◦ − 180◦} 90◦

Target count 10− 100 50
Rmax 20m− 50m 30m

CTC 0.8− 0.9 0.9
cθ→r - 50

TABLE I. SIMULATION PARAMETERS

coefficient used to balance between the values of angular and
Euclidean distance from origin (polar coordinates) for each
target. We assign it 50 empirically as it showed reasonable
but non-optimal results to reflect more realistic settings where
fine-tuning is not performed per scenario. For most scenarios
discussed in this section, KCam converges in less than 20
iterations.

Metrics: We consider the following metrics: (1) fraction
of covered targets, (2) execution time, and (3) number of
Cameras-To-number of Targets (CTR) ratio.

-Results
1. The effect of target density: The performance of

KCam, CF, Greedy and 2Smp are compared in Figure 2. Figure
2a shows that the Greedy and 2Smp method achieve perfect
coverage, while KCam and CF both result in lower coverage.
Figure 2b shows that both KCam and CF enjoy a much lower
computational complexity than Greedy and 2Smp. Specifically,
the complexity of the KCam and CF algorithm is more than 10
times and 100 times less than that of 2Smp respectively. Such
advantage in complexity is a result of replacing solving linear
programming problems for exact solution, with clustering
targets that have a higher probability to be covered by one
camera, for approximate solutions. The CTR for all 4 methods
is depicted in Figure 2c. This value is higher for KCam and
CF, although this difference decreases as the number of targets
increases.

2. The effect of AOV and Rmax: Some of the results for
varying AOV and Rmax are shown in Figures 2d, 2f and 2e.
The overall performance of all 4 algorithms naturally shows
improvement with wider AOV and longer Rmax. Most notably,
as either the AOV or Rmax increased, the CTR values for
KCam and CF decreased and got closer a to those of Greedy
and 2Smp and even less (better) for high Rmax values. This
is due to the additional slackness in the limitations forced
by AOV or Rmax which allows more targets in a cluster
be covered by a single camera. In Figure 2f and 2e, the
performance comparison between several Rmax values has
been done using two different values of CTC for KCam
and CF: 0.8 and 0.9. We have omitted the figures depicting
coverage for both cases of varying AOV and Rmax due to lack
of space. The trend for both resembles those in 2a. Also, the
execution time graphs when increasing AOV and Rmax were
similar and hence only the latter is shown.

3. The effect of minimum coverage criterion: As shown
in Figure 2e, the value of CTR is less for CTC of 0.8 than
that of 0.9. However, this is gained at the cost of lower
coverage, lower-bounded by selected CTC (the graphs omitted
due to lack of space). In other words, by allowing the coverage
algorithm to ignore the ”outliers”, we can use fewer cameras.

KCam versus CF: CF is based on clustering targets based
on their location, and then finding the camera location for
each cluster. KCam’s clusters are initially assigned arbitrarily
and are later modified dynamically based on targets coverage,
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Fig. 2. Metrics vs. target density, Rmax and AOV

and are hence more prone to get trapped in poor quality
equilibriums. Therefore, CF performs better than KCam when
there are more restrictions on coverage condition, i.e. small
value of AOV and/or Rmax. As these restrictions are relaxed,
this performance gap diminishes.

V. CONCLUSION AND FUTURE WORK

In this paper, we have taken the first steps towards
the development of an automated, distributed and fast CPS
surveillance system. We studied the problem of positioning
and coordination of mobile cameras to cover a given group
of targets. We have proposed two heuristic computationally
efficient and centralized methods: k-camera clustering and
cluster-first method. We have used simulation to evaluate our
methods and found that they have much less computational
complexity, but require higher number of cameras and provide
lower coverage than the computationally expensive but near-
optimal methods. However this gap decreased significantly as
the number of targets, cameras’ AOV or cameras’ coverage
range increased.

Our next steps are, to develop distributed versions of the
proposed algorithms, and address the communication and path-
planning issues that will arise in such settings. We also plan to
test them in a testbed using multiple camera-equipped MAVs.
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