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ABSTRACT
Beyond military, hobby and recreational use, Unmanned
Aerial Vehicles (UAVs) and the potential they represent are
being considered seriously for a variety of commercial appli-
cations. While a number of regulatory, safety and privacy is-
sues remain to be resolved, several interesting technical chal-
lenges have presented themselves. In particular, we predict
a trend in which commercial UAVs will move from point-to-
point radio systems for command, control and telemetry to
using commercial cellular networks, primarily because such
networks offer broad coverage. Commercial services have
already emerged to provide cloud-based UAV control via
cellular networks. But a significant problem remains – these
networks were planned, designed and engineered for ground-
based terminal devices. The skies are poorly characterized
in terms of cellular coverage, leading to risks associated with
planning and flying missions into the radio unknown.

Prompted by the UAV opportunity, an examination of cel-
lular network planning – from an RF perspective – reveals
that the models used are likewise biased by the ground-based
assumption. In this research, we focus on the challenges
of characterizing cellular and other multi-node networks in
three dimensions, leading to a re-consideration of how mea-
surement and modeling can be beneficially combined. This
work suggests potential improvements in the speed and accu-
racy of multi-node radio network planning and deployment
with application to UAVs, hastily-formed (e.g., emergency)
networks, and general network design and optimization.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication; I.2.9 [A-
rtificial Intelligence]: Robotics—Autonomous Vehicles;
C.4 [Performance of Systems]: [Modeling techniques]
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1. INTRODUCTION
The proliferation of low-cost GPSs, inertial sensors, and

processing, due in no small part to the growing popular-
ity of smartphones, has significantly lowered the price of
navigation-capable unmanned aerial vehicles (UAVs). Once
only found in the realm of high-budget military applications,
small UAVs are now available for a variety of civil uses, from
law enforcement to amateur photography. Typical civilian
UAVs rely on a single point-to-point link between the air-
craft and an operator on the ground for telemetry as well as
command and control.

We can easily envision applications that would require
connectivity beyond a single ground-based transmitter, such
as goods delivery or wide-area surveillance and monitoring.
Unable to rely on the exceedingly expensive and limited
satellite uplinks typically used in military systems, civilian
UAVs must rely on terrestrial wide-area networks (WAN)
for beyond-LOS connectivity. A high-bandwidth connec-
tion, especially for processing-constrained UAVs, could also
boost navigation with the implementation of cloud-based
data processing [10, 13].

Cellular networks can be a solution for communication
with UAVs over populated areas; wide area coverage, low
cost of integration, packet-switched data capability, and sub-
100ms latencies for LTE [8] make telemetry and command-
and-control of UAVs, even with in-flight transmission of
video or images, possible. Indeed, commercial products that
use cellular networks for telemetry exist [1]. However, to-
day’s cellular networks are first and foremost designed for
users on the ground, and the above-ground coverage is not
well characterized and thus cannot be assumed as reliable
[5]. Furthermore, the primary tools used to plan and evalu-
ate such networks, namely, RF propagation models, often do
not apply in scenarios where the antenna is lower in altitude
than the receiving device [6].

In this paper, we seek to build a better understanding
of RF propagation in three dimensions, especially in the
context of rapidly deployable cellular networks. To do so,
we present:

• A system that takes aerial measurements in situ via



UAV
• A method to quickly and simply visualize the measured

RF field as the data is collected
• A comparison of the data against an existing propa-

gation model designed for on-the-ground applications,
and further trend analysis

The rest of this paper is structured as follows. In Sec-
tion 3, we detail the system we designed to take these mea-
surements. In Section 4, we detail the experimental scenario.
In Section 5, we present an analysis of the collected data.
Finally, in Section 6, we present our conclusions and outline
possibilities for future work.

2. BACKGROUND
In order to predict wireless coverage before deployment,

a network operator can use a propagation model. Numer-
ous RF models for “tall” transmitters and receivers on the
ground (i.e., the cellular case) have been created from col-
lected data [11], extended [7], compared [9, 2], and opti-
mized [3]. They are widely used in the planning and opti-
mization of cellular and other wireless networks [6]. They
can roughly be divided into two categories: statistical or
empirical, and deterministic. Empirical models, such as the
commonly used Okumura-Hata model [7], are created based
on real measurements in various scenarios, and are typically
computationally light but less accurate. Deterministic mod-
els can achieve very high accuracies using techniques such as
ray-tracing, but rely on detailed models of the environment
and require significant computation. The COST231 project
assembled and improved a collection of these models for use
by wireless deployments [4].

2.1 COST-231 Walfisch-Ikegami Model
Here, we examine in more detail one of these models,

the COST-231 version of the Walfisch-Ikegami model [4].
It is, unlike the Okumura-Hata model, a semi-deterministic
model, in that it takes into account some aspects of the envi-
ronment but still considers them in aggregate (e.g., average
building height rather than individual). It is chosen here
as a starting point because it both applicable to small cells
(cellular transmitters) below and above the building height,
and for relatively short distances > 20m. The model takes
into account:

• Frequency f in MHz
• Ground distance from TX to RX d in km
• Transmitter height hTX

• Receiver height hRX

• Height of buildings hroof

• Width of roads wroad

• Building separation bsep
• Angle between roads and direct radio path φ

For non-line-of-sight (NLOS) between the transmitter and
receiver, the path loss is defined as follows:

LNLOS = Lfs + Lrts + Lmsd (1)

where Lfs is free-space loss described in Equation 2, and
Lrts, Lmsd are estimated rooftop-to-street diffraction/scatter
and multiscreen diffraction loss, respectively. Lfs is the min-
imum loss; if Lrts + Lmsd < 0, LNLOS = Lfs.

Figure 1: System architecture

Lfs = 32.4 + 20log(d) + 20log(f) (2)

The loss estimates described in Equations 3 and 4 hold
for situations where the transmitter is above the heights of
the buildings, and φ is large (55 to 90 degrees).

Lrts = −16.9 − 10log(wroad) + 10log(f)+

20log(hroof − hRX) + (4 − 0.114(φ− 55)) (3)

Lmsd = ka + kb + kclog(d) + kdlog(f) − 9log(b)

ka = −18log(1 + hTX − hroof )

kb = 54

kc = 18

kd = −4 + 0.7(
f

925
− 1)

(4)

Given Equation 3, we see that it is expected in the model
that the RX is below the heights of the buildings. There is
no provision for having a TX and RX that are above the
heights of the buildings, as is often the case when the RX is
a UAV. We will again explore this issue in Section 5, where
we will compare collected aerial data to this model.

2.2 Models for Aerial Vehicles
Aerial RF surveys of existing cellular networks at altitude

have in the past been conducted from manned aircraft [12],
with the intent of placing cellular calls while in flight. More
recently, there has been work in characterizing the path
loss [16] and performance [17] of WiFi signals at heights
relevant to sUAS systems. These authors evaluate the per-
formance of the WiFi system at various distances and UAV
orientations, as well as present a simple logarithmic (1D)
model for the data. In urban environments, there has also
been work to adapt the pre-existing urban propagation mod-
els to UAV applications [14], taking into account diffraction
off buildings. This work focuses on the point-to-point opera-
tor case, where the UAV communicates with a single ground
station at human heights below the surrounding rooftops.

3. APPROACH OVERVIEW
In order to take aerial signal strength measurements, relay

the results on the ground, and visualize the data in real-time,
we construct a system is consisting of a ground station, an
air station and the target antenna(s). A diagram of the
system is shown in Figure 1.



3.1 Transmitting Radio and Data Collection
The transmitting radio is our proxy for a cellular base sta-

tion. It consists of a 915MHz (ISM) serial radio based on
the HopeRF chipset, capable of both transmitting and re-
ceiving data over a serial interface; this band was chosen as
representative, propagation-wise, of a 900MHz cellular sys-
tem, such as GSM900 and UMTS/LTE band 9. A similarly
configured radio is affixed to the air station and receives
packets from the transmitting antenna, measures the signal
strength, and relays the signal strength back to the trans-
mitting radio, where the data is logged in a database. We
thus not only record the signal’s strength from the point of
view of the UAV, but also from the base station’s point of
view. This data can then be plotted on a map and displayed
in real-time using a web application.

3.2 Ground station
The ground station is responsible for flight planning and

UAV control as well as telemetry, and consists of a laptop
computer and a telemetry radio. To avoid interference with
the 915MHz sensing, this radio operates at 433MHz. At the
ground station, the operator can specify the waypoints, as
GPS coordinates on a map, the drone should fly during a
mission. For this study, the missions have to be loaded in
advance for the drone to cover the area, although we can
imagine data-driven real-time flight planning as a superior
option and future direction.

3.3 Air station
The air station is composed of a UAV and flight control

system carrying a sensing package (described in the following
section). The UAV itself is a quadcopter custom-built from
off-the-shelf components, with enough capacity to carry a
variety of sensor payloads. The flight controller is a 3D
Robotics PixHawk running the open-source ArduPilot soft-
ware; attached to this controller is an SBAS-capable GPS
unit and 433MHz telemetry radio, allowing for drone teleme-
try and control separate from the radio used for sensing. The
flight controller also simultaneously reports its GPS location
and altitude to the sensing package.

3.4 Sensor Package
The sensor package consists of a single 915MHz ISM-band

radio, paired with the TX under test. As the sensing radio
receives packets from the transmitting radio, it aggregates
the location and altitude from the flight controller with the
received signal strength, and transmits it back to the trans-
mitting radio. An important consideration for the receive
antenna is that, being a dipole with ground plane, its gain
is not uniform in the vertical plane. This means that as the
quadcopter pitches and rolls, the gain towards the direction
of the transmitting antenna will change significantly. Thus,
a brushless gimbal, commonly used for aerial photography,
is utilized to keep the receive antenna pointing towards the
ground regardless of the UAV’s angle of attack. Figure 2
shows the gimbal in flight.

4. EXPERIMENTS
We conducted several propagation studies at a Joint Inter-

agency Field Experimentation (JIFX) event, held by the
Naval Postgraduate School at Camp Roberts, CA. We con-
ducted experiments with the same transmitter at a variety
of scenarios:

• Rural urban environment
• Collapsed buildings
• Open field

For each of these scenarios we flew the UAV with different
patterns: 3D lawn-mower, spirals and manual flight around
and above buildings.

The cellular signal strength is more likely to be affected
by the environment in an urban scenario than in an open
field. Therefore this paper focuses on that scenario.

Our transmitter-under-test, in this case, is a mobile com-
munications van, shown in Figure [1], equipped with a self-
contained, rapidly deployable cellular network operating in
the GSM900 band. For this experiment, we replaced the
GSM base station with our 915MHz transmitting radio. The
van also contains the servers and monitor necessary to record
incoming data and perform visualizations. Atop the van’s
45-foot pneumatic mast is an L-com HGV-906U, a 6dBi
omni-directional antenna with a vertical beam width of 30
degrees. All in all, with the mast fully extended the antenna
is located 13.9 meters above ground level. The spot at which
the van was parked was 257m above sea level (ASL).

Although the mast fully extends beyond the altitude of
some of the buildings, it is still relevant to map the signal
strength over those buildings to observe any reflection or

Figure 2: A gimbal keeps the antenna perpendicu-
lar to the ground regardless of the drone’s angle of
attack

Figure 3: Location of the ground station. Rural
Urban Environment at Camp Roberts, Paso Robles



refraction that might occur. Our flights include data gath-
ered from above and below the mast altitude, as well as
over the buildings and in between them. Figure 3 shows the
surrounding buildings with their approximate corresponding
dimensions and the location of our transmitting antenna.

For this experiment, we transmit our test packets from
the radio-under-test at 20dBm.

5. RESULTS AND ANALYSIS
In this section, we visualize and analyze the data collected

in the urban environment experiment described in Section 4.

5.1 RF Mapping and Interpolation
The first application of our captured data is to create a

three-dimensional map of signal strength in the target area.
If done quickly or even as the UAV completes is mission, this
gives the network planner an idea of how the transmitter is
performing and where additional measurements are needed,
guiding the following missions.

In order to deal with the intrinsically noisy data from our
sensor, we first create a grid of points in the area of interest,
at the desired resolution. At each point on the grid, we bin
the raw data that falls within a sphere around that point,
and assign the averaged value of the RSSIs of the binned
datum to the point. This results in a decimated regular
grid of points. To fill the rest of the grid, we use a natural
neighbor interpolation algorithm [15], chosen for its exact
interpolation of known points and its smoothness between
these points. Since signal strength in dB falls logarithmi-
cally with distance, and natural neighbor is fundamentally
linear, we linearize and scale the data with Equation 5 be-
fore applying interpolation, and reverse the operation on the
interpolated data.

Plinear = 10−PdBm/2000 (5)

Figure 4 shows raw data gathered within a 500 meter ra-
dius of our transmitting antenna, with the color representing
the received signal strength in dBm, as shown by the legend.
We subdivide this 1500x1300x150m area into a 100x100x50
grid, and decimate using a binning radius of 20m, resulting
in Figure 5. We then apply a natural neighbor interpolation
algorithm to the decimated data.

Figure 4: Raw flight data.

Figure 6 shows a slice at 275m ASL. At this altitude, we
strongly see the effect of the transmitting antenna and the
rapid falloff of signal strength.

Figure 5: Data binned into 20m radius spheres on a
regular grid.

Figure 6: Z-axis slice at 275m ASL.

Figure 7 shows a vertical slice. Note the narrow beam
width of the transmitting antenna, and the rapid falloff of
signal strength above the antenna.

Figure 7: Vertical slice

We now repeat the process with only the data in the cen-
ter 50m circle. We decrease the binning radius to 2m, and
increase the resolution (over the same area) of the grid to
300x300x50. In Figure 8, we see a top-down slice of the data,
revealing more nuanced features such as the radio shadow
caused by the buildings.

We recognize that the fidelity of these RF maps is di-
rectly related to the density of sampled points. Without dec-
imation, interpolation can generate artifacts from the noisy



Figure 8: Z-axis slice at 265m

Table 1: Parameters for COST231-WI Model

Parameter Value

hTX 13.9m
hroof 9.76m
wroad 16.94m
bsep 16.43m
φ 90◦

data. Decimation, however, reduces resolution.

5.2 Comparison with Propagation Models
We now compare our aerial data with the COST231-WI

model presented in Section 2.1, with one caveat. As it would
be invalid with RX heights above the roof heights, we omit
the second-to-last term of Equation 3, with the assumption
that it becomes incredibly small with increasing RX height.
We use the parameters in Table 1, estimated from the ge-
ometries of the buildings surrounding the transmitters.

In addition to the path loss given by the model, we also
take into account the radiation pattern of our transmitting
antenna and 5 dB of cable and connector loss at both the
transmitter and receiver. Figure 9 shows the binned data,
plotted vs. distance from the transmitter, and the predicted
RSSI values based on the COST-231-WI model at the same
points. We remove the values before 20m, as the model is
not valid for these points.

We note that the model produces an upper bound on the
signal strength, and the data respects that. Also, the slope
(path loss exponent) is fairly similar. We also note that data
shows a wide variance at any given distance.

5.2.1 Regression Analysis
In order to better understand the trends in our data,

we apply a least-squared regression to the decimated data.
In accordance with the free-space propagation Equation 2,
we assume the path loss follows the general trend given by
Equation 6.

Lprop = Ld0 + αlog(
d

d0
) (6)

where Ld0 is the propagation loss at a reference distance
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Figure 9: Comparison of binned data vs. predicted
COST-231-WI measurements

d0, and α is the path loss exponent. We choose the reference
distance to be 20m. In order to compute path loss, we sub-
tract the RSSI in dBm from the expected transmit power
at the antenna, given its gain pattern. Figure 10 shows a
comparison of the decimated data with the least-squares fit
of Equation 6.
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Figure 10: Path Loss vs. Distance, Least-squared fit

We note that α = 19.4 and the path loss Ld0 at 20m is 71.5
dB. This compares favorably with the α = 18 prescribed
by the COST-231 Walfisch-Ikegami model in Equation 4,
and the α = 20 described in the free-space propagation loss
equation 2. Note that there are other effects that are insuffi-
ciently described by a distance-dependent fit. For instance,
Figure 11 shows the path loss, after accounting for antenna
gain pattern, at two altitude slices.

We see that there is some altitude dependency on path
loss that cannot be accounted for in our current analysis.
Further data collection is required to accurately model this
effect.

6. CONCLUSION AND FUTURE WORK
In this paper, we collect and examine RF field strength

data above ground, with the intention of better understand-
ing field propagation in the context of using terrestrial cel-
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lular networks to communicate with small UAVs in the air.
To do this, we develop a system for autonomously collecting,
storing, and visualizing this data, consisting of both a UAV
aerial station and a ground station. We analyze received
signal strength data collected from a transmitter emulating
a rapidly deployed cellular base station in an urban envi-
ronment. We reveal that while the general trends match
existing terrestrial propagation models, there is still work to
be done to more accurately represent the space.

The current data set is too sparse, however, to definitively
create a propagation model that could be applied to simi-
lar situations. Our future work, thus, will involve collecting
similar sets of data at finer altitude scales in order to es-
tablish an altitude dependence on the data. In addition, we
plan to examine this data in the context of the exact ge-
ometries and positioning of the buildings and terrain, their
intrusions into the Fresnel zone of our transmissions, and
the corresponding diffraction and reflection effects.
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