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ABSTRACT

We present PILOT (Ptolemy Inference, Learning, and Op-
timization Toolkit), an actor-oriented machine learning and
optimization toolkit that is designed for developing data in-
tensive distributed applications for sensor networks. We de-
fine an actor interface that bridges state-space models for
robotic control problems and a collection of machine learn-
ing and optimization algorithms, then demonstrate how the
framework leverages programmability of sophisticated dis-
tributed robotic applications on streaming data. As a case
study, we consider a cooperative target tracking scenario
and study how the framework enables adaptation and im-
plementation of control policies and simulation within envi-
ronmental constraints by presenting actor-oriented abstrac-
tions that enable application developers to build state-space
aware machine learning and optimization actors.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; 1.2.8 [Artificial Intelligence|: Problem Solving,
Control Methods, and Search

General Terms
Design, Algorithms
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1. INTRODUCTION

The rapid growth of networked smart sensors today of-
fers unprecedented volumes of continually streaming data
about the physical world. Making effective use of the data
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will require data-to-information technology that is qualita-
tively different from traditional data analytics. Distributed
robotic applications is an important class of such data in-
tensive applications that demand real-time guarantees.

In classical control systems, sensor data provide a direct
measurement of a physical quantity to be controlled. In
modern control systems, the data provided by sensors is
more indirect. Consider, for example, a robot that is try-
ing to track a target. It may use a combination of sensors,
including cameras, laser or ultrasonic range-finders, signal-
strength measurements, microphones, etc. None of these
present data that directly measures a directly controllable
quantity. These data must be converted to actionable infor-
mation, e.g., a concise summary of the estimated location
and target trajectory. Given such a concise summary, an
optimal trade-off between often conflicting objectives must
be found and translated into action. To be effective, the
data summarization and optimization must be performed in
real time on streaming data.

The complex nature of applications that involve sensing,
data processing, control and actuation requires a structured
system modeling workflow. Distributed system design has
historically been prone to errors due to timing and concur-
rency requirements. In the cyber-physical setting a robotic
swarm operates in, the problem persists, if not made worse.

This paper describes a software architecture for enabling
an actor-oriented approach to developing distributed robotic
sensing and control applications. The presented toolkit en-
ables inference and optimization tasks to be defined by the
state-space models of the problem domain. This level of
abstraction presents analysis and optimization components
that are reusable and less error-prone, and can be easily
deployed in a distributed setting while preserving computa-
tional semantics.

A key goal of PILOT is to enable system engineers who
are not experts in machine learning to use the toolkit in or-
der to develop applications that rely on on-line estimation
and inference. In this context, we adopt an actor-oriented
design and provide domain-specific specializations of gen-
eral machine learning techniques. Moreover, we leverage
a design framework that boosts programmability of swarm
applications by providing abstractions in which algorithmic
accuracy can be traded off for better real-time performance
under scarcity of resources.

The rest of the paper is organized as follows: In section 2,
we survey previous research on actor-oriented design and
recent results on cooperative robotic control applications
and their computational implications. Section 3 summarizes
the application requirements posed by the developments in
robotic sensor networks, followed by Section 4, which details
the proposed toolkit interface for state-space aware inference



and optimization workflow. Section 5 presents an applica-
tion scenario on robot swarms that utilizes PILOT actors.
Conclusions are presented in Section 6.

2. RELATED WORK

Although individual efforts for control policies and swarm
control exist, programming complex control and inference
algorithms for sensor networks still remains a challenge, due
to the lack of a unifying framework that provides interfaces
that are reusable, extendable, and easy to apply to stream-
ing data. Specialized platforms that leverage development
of pattern recognition tasks on interactive devices have been
proposed [6, 10]. One other related framework in this area is
presented in [1], which introduces a high-level programming
language for robotic applications designed on ROS [14].

The multidisciplinary field of CPS design has triggered in-
tensive research on programming foundations of distributed
heterogeneous systems [3, 8]. Researchers have investigated
a collection of programming paradigms to be able to cor-
rectly express CPS behavior and be able to perform model-
based design, synthesis, and verification.

Object-oriented (OO) design enables hierarchical design
with method call interfaces that provide re-usability, scala-
bility and interface abstractions. OO design can be used in
distributed applications, where the focus is on static struc-
ture, a breakdown of the architecture into a collection of
objects with a procedure call interface. But the interaction
between these objects is left to the method interactions and
no clear computation model is explicitly defined. CPS de-
sign, in contrast, requires interaction models between com-
ponents that are independent from internal component se-
mantics. Actor-oriented programming builds upon the phi-
losophy of OO design, but it extends the idea of functional
abstractions further by defining actors and giving a clear
semantics to their interactions with each other [11].

Many examples of actor-oriented tools exist today. Frame-
works such as Simulink, LabVIEW and Ptolemy II [13] adopt
actor oriented design methodologies and are widely used
for design of embedded systems. Actor-oriented design in
Ptolemy II has been studied in the context of several CPS
domains including smart grid, aircraft, and automotive sys-
tems [3].

Tracking the developments in distributed computing and
embedded systems, closed-loop CPS applications on sensor
networks have become more feasible in the last decade. Var-
ious mobile sensor network applications have become widely
deployed, triggering case studies in the areas of surveillance
[5], hazard detection [15], and cooperative search [7].

3. APPLICATION REQUIREMENTS

A fundamental challenge in distributed CPS design is the
gap between computation requirements and existing design

tools for adaptive real-time simulation and deployment. Closed-

loop data intensive robotic applications bring about unique
requirements for such tools:

e Unlike off-line inference and control problems, robotic
sensor network applications are subject to variable avail-
ability of sensor data and network resources due to the
cyber-physical setting they operate in. Effects such
as imperfect communication, anomalies, and latency,
which may require dynamic adaptation, must be con-
sidered.

e Programming of robot swarms usually follows a work-
flow that relies of system design that considers the
state-space model of the problem and the inference
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and optimization algorithms used for state estimation
and control to be separate entities.

e In swarm applications, especially for a ubiquitous com-
puting scenario, available computation resources may
widely vary. This creates a demand for programming
abstractions that can accommodate trade-offs between
accuracy and timing, without requiring a reprogram-
ming of the sensor network.

To address these requirements of streaming sensor net-
work applications, we present PILOT, an actor-oriented ma-
chine learning and optimization toolkit, which is prototyped
in the Ptolemy II framework. The following section will fo-
cus on presenting PILOT’s system architecture, and an in-
troduction to design of robotic sensor network applications
using PILOT.

4. SYSTEM ARCHITECTURE
4.1 Actor-oriented Design

Ptolemy II is an open-source heterogeneous design frame-
work that leverages actor-oriented design [9]. Actors in
Ptolemy are concurrent components that communicate via
messages that are sent and received through input and out-
put ports. An actor interface is defined by a set of ports
and parameters, and the semantics of communication be-
tween actors is mediated by a director that implements a
specific model of computation. Ptolemy II enables hierarchi-
cal heterogeneous composition of computation models with
a clearly defined compositional semantics. Some widely used
models of computation in Ptolemy II include Process Net-
works (PN), Synchronous Data Flow (SDF) and Discrete-
Event (DE). Also, a decorator actor design pattern has been
implemented in Ptolemy. Similar to the concept in OO de-
sign, a Decorator actor is one that adds objects into a family
of other actors.

4.2 Software Architecture

PILOT (Ptolemy Inference, Learning, and Optimization
Toolkit) is developed based on the Ptolemy platform and
consists of multiple Java packages that enable Bayesian in-
ference, actor-oriented optimization and state-space model-
ing in an actor environment. Some of these aspects will be
explained in detail in upcoming sections of the paper.

PILOT utilizes Ptolemy’s decorator mechanism to im-
plement state-space models and sensor models that decorate
inference and optimization actors to give them operational
meaning. Classes of decorator and analysis actors will be
studied next.



4.3 Developing State-Space Aware Inference
and Optimization Models

4.3.1 State-Space Models

We consider a finite state space system, where the sys-
tem state is observable via a set of noisy observations, and
the state dynamics satisfy the Markov property. A general
representation of such model is given by

xo ~ Tx (0) (1.1)
Zt|$t ~ g(xtauht) (12)
$t+1|$t ~ f(xn Ut, t) (1-3)

where z; and z¢ correspond to the unknown state of a dy-
namic target and the set of observations at time t respec-
tively, mx (+) is the prior distribution of state z, g(-) denotes
the stochastic measurement model as a function of state ¢,
control inputs u: € U, where U is the domain of control
inputs. f(-) is the random function specifying the discrete
state dynamics.

4.3.2 State-Space Modeling in PILOT

A state-space model implemented by the StateSpace-
Model actor is depicted in Figure 2. This actor defines a tar-
get dynamics in 2-D space. A sensor model, GaussianSen-
sorModel, is defined, which delivers a sensor measurement
as a noisy estimate of the target position in 2-D space. The
association of the target and the sensor is enabled by the
decorator mechanism. It is seen in the same figure that the
sensor is associated with the StateSpaceModel actor and is
able to utilize the parameters provided by it (the state vari-
ables x and y in this case). Note that both of these actors
are also decorators, which means, they are designed to pro-
vide parameters to other actors in the system design, i.e.,
state-space dependent state estimation and optimization ac-
tors. The use of this mechanism will be explained further in
the following sections.

4.3.3 State Estimation

The general Bayesian state estimation problem aims at
estimating the marginal posterior distribution p(x:|zo.c) at
time t, which is known as the filtering problem. Here,
p(z¢|zo:t) is the PDF of x at time t given measurements
z, from time O to t. For a subset of the SSMs, in which
f(-) and g(-) are linear functions with Gaussian noise dis-

stateVariableNames: |'x","y"}

prior: {random(*200-100,random(*200- 100}
processNoise: multivariateGaussian({0.0,0.0},(1.0,0.4;0.4,1.2])
x_update: x

y_update: y
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Figure 2: Sensor and Dynamics Modeling in PILOT

tributions, the estimation problem can be delegated to a
Kalman filter, which yields the optimal solution in the min-
imum mean-square error sense [4]. Variants of the Kalman
filter for nonlinear state transition and measurement models
exist, e.g., the Extended Kalman Filter (EKF). A more gen-
eral Bayesian filtering approach, known as particle filtering,
fits to a wide set of noise and measurement models.

Particle filtering is a sequential Monte Carlo method that
approximates a posterior distribution p(x¢|z1.+) with a weigh-
ted particle set, where each particle is a candidate state es-
timate, its weight being proportional to the likelihood. The
filter approximates the posterior state with a probability
mass function estimate, p(-), given by

N
P(xe) = p(we|21:e) = Z wid(e — &), (2)

where # denotes the i’th particle for the state estimate at
time t, §(+) is the Dirac delta function and wj is the weight
associated with the particle 7 such that Zivzl wy; = 1, where
N is the total number of particles. This approximate proba-
bility mass yields the minimum mean square error (MMSE)

estimate of z; as &/7M5F = E(x,) ~ SN | wid}.

It is important to highlight that the choice of a parti-
cle filter over parametric estimation methods like Kalman
filters in actor-oriented settings is that downstream actors
have direct access to particles, and would have direct con-
trol over tuning the subset of particles used in approximate
algorithms. The ability to do so is important in a ubiqui-
tous computing scenario, for which varying computational
resources may require on-line algorithms to adapt their re-
sources to compromise accuracy for better real-time perfor-
mance.

The factoring of sensor models, target dynamics and the
algorithms being used is a key feature of PILOT. As demon-
strated in Figure 1, the software architecture enables state
estimation and optimization actors to be decorated by state-
space models defining target dynamics and sensor measure-
ments.

State estimation actors in PILOT are designed to com-
pletely be defined by the decorators they are associated with.
Associating a state estimator with a given state space model
will completely define the state estimation problem. The
specific algorithm used, e.g., particle filtering, Kalman fil-
tering, will be orthogonal to the system design.

4.3.4 Constrained Optimization for On-line Control
Applications

Next, we present an actor-oriented approach to perform-
ing optimization on streaming data. Consider the general
optimization problem

minimize f (x,Q)
subject to g(x, Q) >0, (3)

where f(-) is the objective function, g(-) is a vector-valued
constraint function, and Q is a vector of function parame-
ters.

As part of PILOT, we introduce an actor interface called
CompositeOptimizer which enables f(-) and g(-) to be de-
fined as actors that operate on input tokens, and upon fir-
ing, produce a scalar value for the objective function and a
constraint vector evaluated at x.

The operational semantics of the actor is given by Algo-
rithm 1. The CompositeOptimizer is an actor whose in-
ternal execution semantics is governed by the OptimizerDi-
rector. The current implementation of the director includes



Algorithm 1 CompositeOptimizer

Input: O < 9,

Output: x* that is a local optimum of f(-)
define P: An actor that implements SDF semantics and
has inputs: x, @ and outputs: f,g
while k < kpax &

!CompositeOptimizer.converged() do
x®) < OptimizerDirector.getNextX();
P.readInputs(x < x*, Q < Q,);
P.execute();

P.writeOutput(f(z*, Q;) = f*,

9(z™, Q) = ¢™);
OptimizerDirector.ComputeNextX(f(k> g® );
end while
x* <= CompositeOptimizer.getOptimalX();

a direct method solver, namely, Constrained Optimization
By Linear Approximation (COBYLA) [12], as well as a bar-
rier interior-point method based solver [2]. The methods
getNextX() and getOptimalX() in Algorithm 1 are imple-
mented by the specified solvers.

The CompositeOptimizer instance, as presented in Figure
3, is a sample realization of the actor that performs the
streaming optimization problem given by

X* = arg min f(X, q17q2)
xEeR™

subject to g(x,q1,q2) >0, (4)

where f(-) and g(-) are evaluated by executing actors £ (x)
and g(x) with inputs {x*), q1(4),q2(i)} at each iteration,
where the value of optimization variable x at each gradient
descent step iteration is indexed by k, and is determined
internally by the solver.
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Figure 3: Operational Semantics of CompositeOptimizer

S. CASE STUDY: COOPERATIVE MOBILE
SENSOR NETWORK CONTROL

5.1 Problem Statement

Emerging application scenarios on robotic sensor networks

include cooperative target localization and tracking, Simul-
taneous Localization and Mapping (SLAM), and obstacle
avoidance. The use of information theoretic objectives for
sensor network management has been a recent area of inter-
est. The reader is referred to [16] for a complete overview of
information theoretic metrics for control purposes.

In this case study, we will consider a cooperative multi-
robot target localization scenario using robots equipped with
range-only sensors. A particle filtering algorithm is used to
perform target state estimation. The goal of the mobile
sensor network is to successfully locate and track target po-
sition, and future goals will include pursuit objectives.

The target search problem can be structured with the fol-
lowing state-space model

xo ~ mx (x0) (5.1)
zjy = 1Ry, — el + vt (5.2)
Tir1l = Tt + Wi, (53)

where (5.2) corresponds to a range measurement made by
robot j, z;, denotes the observation made by the j’th sensor
at time t, R;, is the true position of robot j at time t and
1 is a random variable defining measurement noise.

The unknown state x is the target position in R?, for
our case study. The state dynamics of the uncooperative
mobile target is assumed to be unknown to the application,
and is characterized by a random walk with process noise
defined by w;. State estimation of the unknown target will
be performed given measurements from a set of robots, and
will be represented as a set of particles, {w}, &} ;.

5.2 State-Space Aware Application Design

The traditional approach to implementing an end-to-end
system for designing an end-to-end target tracking applica-
tion defined by (5.1)-(5.3) follows the monolithic approach
of implementing a state estimator, followed by a controller,
which are both implicitly dependent on the state-space of
the problem.

PILOT’s approach to designing such application differs
from the traditional approach as it exploits the dependence
of algorithmic blocks on the underlying problem state-space
by defining explicit interfaces to the system dynamics.

The end-to-end application demonstrated in Figure 6 en-
ables the user to define RobotDynamics, TargetDynamics
and sensor models as actor interfaces. The target dynamics
as given by (5.1) and (5.3) are contained by the Target-
Dynamics actor. The range sensors defined by (5.2)) are
implemented by the RangeSensor actor, which is decorated
by the TargetDynamics state-space model and therefore, can
utilize the state-space parameters defined by the target and
provide an imperfect measurement based on its parameters.

The usefulness of this interface definition is not limited
to defining system dynamics. The architecture also enables
learning and optimization actors to only include algorithm-
specific implementations, and not problem-specific details.
For instance, the ParticleFilter and MutualInformation-
Approximation actors that are part of the estimation and
control model given in Figure 7 are decorated by the Range-
Sensor, and TargetDynamics decorators. The decorator as-
sociation gives the actors operational meaning and defines
the state-space aware problem. The user interface for the
decorator association process is shown in Figure 4.

5.3 Simulation Setup

The case study assumes a network of robots equipped with
range-only sensors. Simulation parameters are summarized
in Table 1.



Simulation Parameter Value

Size of Robot Team (M) 4

Search space 200x200 units
Sensor measurement noise vy ~ N(0,5.0)
Maximum Robot Speed 20 units/s
Iteration Frequency 10 Hz

Target Dynamics

Circular Motion with w = 7 /5

Target Position Prior (wx)

Uniform over search space

Initial Target Position

To = [-50 50]

Robot Control Inputs
Robot Dynamics

ul? =Tv. wvy,], i€{0,1,2,3}
Riti1 = R +ul?At, i€ {0,1,2,3}

Table 1: Simulation Parameters

[ rangesensor PRI

z SQMt((x-r1x)A2 +(y-rL.y)A2)
noiseMean: 0.0

noiseCovariance: 5.0

. x=0.0,y=0.0}

(a) RangeSensor Actor Parameters

bootstrap:

lowvarianceSampler:

particleCount: 1000
outputParticleCount: (100

(b) ParticleFilter Actor Parameters
Figure 4: PILOT State-Space Model User Interfaces
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Figure 5: Model of ‘the Robot Equipped with Range Sensor

The robot model is given in Figure 5. Note that in this
model, Robot actors include models of range sensors with ad-
ditive noise, making measurements to a target and delivering
this data to a centralized computation unit. The refinement
of the Target State Estimation and Control actor is depicted
in Figure 7, which is an end-to-end PILOT model that in-
cludes state-space models of robot sensors, target dynamics,
state estimation and trajectory optimization.

5.4 Actor-Oriented Implementation of Control
Policies

Mutual information between target state and robot mea-
surements can be used to derive a control rule to maximize
the expected future mutual information, i.e., to minimize
the expected future uncertainty in the target location es-
timate. The observers in this case are mobile robots with
navigation, that expect velocity inputs from a centralized
controller. The proposed objective function is given by

u* = arg max [(z;;x;) (6.1)

st |[ul”|] < Vinaw, i=1,2,., M (6.2)

(zr;z.) : = H(z,) — H(z-|z,), (6.3)
where I(-;-) is the mutual information (MI) defined between
two random variables that are its arguments, H(z.) is the

entropy of the measurement set z,, H(z-|z-) is the condi-
tional entropy of the measurements given the state belief,

T =[t+1,..,t + T], where T is the time horizon of the
control problem, and u is the array of control inputs to the
mobile sensors.

We now illustrate how PILOT enables efficient exploration
of a variety of control policies. Figure 7 describes a Com-
positeOptimizer interface that is configured to compute
MI, given a set of particles and robot positions. The ac-
tor named MutualInformationApproximation, decorated by
the RobotDynamics state-space definition that explains the
dynamics of search robots, computes an approximate MI
between a particle set and robot trajectories.

A subset of common control policies for robotic path plan-
ning, as given by Table 2, have been implemented using
PILOT. Execution traces for each implemented trajectory
control policy is given in Figure 8, which assume the param-
eter space given by Table 1. Note that the path planning
problem defined by the PILOT model only depends on the
choice of the objective function and constraints, and requires
no modification to the state-space model itself.
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6. CONCLUSION

We presented PILOT, which is a novel toolkit for actor-
oriented design of machine learning and optimization algo-



Control Policy Optimization Problem

*
uy =arg max I(z ;T
MI t guteuM (Zt+15Te41)

Maximization
s.t (6.2) holds

machine learning techniques to perform on-line classifica-
tion for anomaly detection and model predictive control, as
well as exploring model-predictive control capabilities using
PILOT.

arg min [|[Riqy1 — zeq1||
ut(")eu

MI . s.t (6.2) holds if_dt(:i) < di D,
Maximization ue = ) Vi#
with  Single arg max I(zt'+1;xt+1)
Pursuer ug(Deu
s.t (6.2) holds otherwise
diD = ||Riy — x|, i € {1,2,..., M}
* = in_||Regr —
Direct ue arg mlunM H t+1 zH'lH

Target Pursuit

uge
s.t (6.2) holds

Table 2: Control Policies for Path Planning
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Figure 8: Simulation Traces for Control Policies given by

Table 2

rithms on streaming data for robotic sensor network appli-
cations. We demonstrated an actor interface to a collection
of algorithms, and described how estimation and control al-
gorithms can be customized based on state-space models of
the problem space. We illustrated the use of the toolkit
on a case study of cooperative robotic sensor network tar-
get localization with state-space dependent on-line target
state estimation with a variable set of sensor inputs. Future
work includes extending the framework to capture additional
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