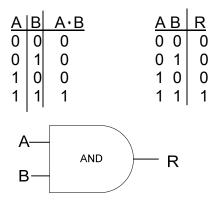
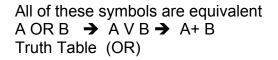

Logic Gates: AND, OR, NOT (Inverter)

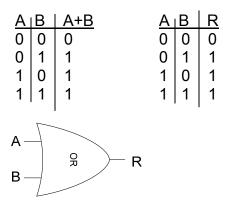

Using AND

An AND gate can have more than two inputs

- If at least one input is a 0, then the output is a 0.
- When all inputs are 1, the output is a 1.

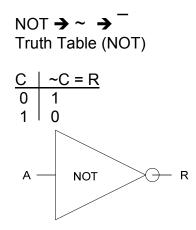
All of these symbols are equivalent: A AND B \rightarrow A \land B \rightarrow AB





Using OR

An OR gate can have more than two inputs

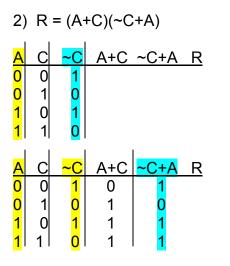

- If at least one input is a 1, then the output is a 1.
- If <u>all</u> the inputs are 0, the output is a 0.

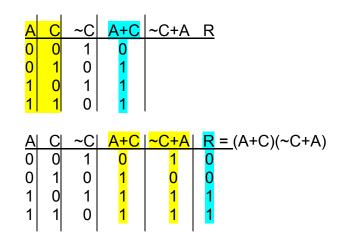
Using NOT (Invert)

All of these symbols are equivalent

Sample Examples:

3 initial columns


8 rows to include all possibilities


A	В	С	~A
0	0	1	1
<mark>0</mark>	0	0	1
0 0	1	0 0 1	1
<mark>0</mark>	1	1	1
1	0	0	O
1	0 1	0 1	0
1	1	0	<mark>0</mark>
1	1	1	0
	I		

	1 1	1	1	1
A	В	C	~A	~A·C
0	0	0	1	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0 0
1	1	1	0	0
				_

Question: If A= 0, B= 1, C=1 What is R? R = 1

Α	B	С	~A	<mark>∼A∙C</mark> ~	- <mark>AC+B</mark>
0	0	1	0	0	0
0	<mark>0</mark>	1	1	<mark>1</mark>	1
0	1	0	1	<mark>0</mark>	1
0	1	1	1	<mark>1</mark>	1
1	0	0	0	<mark>0</mark>	0
1	<mark>0</mark>	1	0	<mark>0</mark>	0
1	<mark>1</mark>	0	0	<mark>0</mark>	1
1	1	1	0	<mark>0</mark>	1

Copyright © 2008 by Helene G. Kershner

Try these Examples:

Remember, the dot (\cdot) will only be included if critical Two letters next to each other AB = A \cdot B which means AND

Note: Order of operations matters The order is: Parenthesis ()

		_	ex: AB or A⋅B ex: A+B
1)	R = ~A + ~B	C	If A = 0, B = 1, C = 1, then what is R?
2)	R = ~A · ~B	+ A	If A = 1, B = 0, then what is R?
3)			If $A = 1$, $B = 0$, then what is R? and 3 are not the same. Order of operations

- 4) R= (~B + C)A If A = 0, B = 1, C = 1 then what is R? Order of operations matters here.
- 5) R = ((A+~B)(B+C)) If A = 1, B = 1, C = 0 then what is R? Order of operations matters here.

Solutions:

```
1) R = ~A + ~BC
```

If A = 0, B = 1, C = 1, then what is R? R = 1

А	В	С	~A	~B	~BC	~A + ~BC
0	0	0	1	1	0	1
0	0	1	1	1	1	1
0	1	0	1	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	0	0	0	0
1	1	1	0	0	0	0

$$P = -A \cdot -B + A$$

If A = 1, B = 0, then what is R? R = 1

А	В	~A	~B	~A · ~B	~A · ~B + A
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	1	0	0	0	1
					11

```
3) R = -A \cdot (-B + A)
```

If A = 1, B = 0, then what is R? R = 0

А	В	~A	~B	(~B + A)	~A · (~B + A)
 0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	1	0
1	1	0	0	1	0

⁴⁾ R= (~B + C)A

If A = 0, B = 1, C = 1 then what is R? R = 0

А	В	С	~B	(~B+C)	(~B + C)A
0	0	0	1	1	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	1	1

5)	5) R = ((A+~B)(B+C))				A = 1, B = = 1	= 1, C = (0 then what is R?
	А	В	С	~B	(A+ ∼B)	(B+C)	((A+ ~B)(B+C))
	0	0	0	1	1	0	0
	0	0	1	1	1	1	1
	0	1	0	0	0	1	0
	0	1	1	0	0	1	0
	1	0	0	1	1	0	0
	1	0	1	1	1	1	1
	1	1	0	0	1	1	1
	1	1	1	0	1	1	1