
CSE111-Fall 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

 Copyright © 2008 by Helene G. Kershner

We know how to write programs using Karel’s primitive commands
 move
 turnleft
 pickbeeper
 putbeeper
 turnoff

We know how to navigate between Karel’s World view, Karel’s Program view and Karel’s Execution (or
Run) view.

We know how to Compile a program, which means to translate it from Karel’s programming language,
which humans can understand as well as Karel into machine code that the computer inside Karel
understands.

AND, we immediately saw that writing programs with only the basic 5 primitives is very tedious. It is hard
to keep track of exactly what we are asking Karel to do.

We have already seen how Karel can to go out into the world and retrieve two beepers from two boxes,
bring the beepers home and deposit them at the origin. The World view looked something like this:

It was painful to keep track of all the move instructions and all the turnleft commands.

We began the programming process with a problem statement:

Problem Statement: Karel’s world contains two boxes, each with one beeper. Go out into Karel’s world,
retrieve the beepers from the boxes, return to the origin take beepers out of beeper bag.

We then defined the end result of the program (Output) and the starting state of our program (Input)
 Define the Output
 Return to Origin with two beepers in beeper bag
 Place two beepers at Origin
 Define the Input
 Start at Origin, facing North
 There are NO beepers in the beeper bag

CSE111-Fall 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

 Copyright © 2008 by Helene G. Kershner

Working with a problem statement, output and input we defined the initial version of our algorithm, our
initial solution to Karel’s problem.

Karel starts at origin with no beepers
Move Karel until one block North of beeper boxes
Turn right
Move to above first beeper box
Turn to face down
Pick up beeper
Turn around
Move one block
Turn right
Move 3 blocks
Turn to face down
Move one block
Pick up beeper
Turn around
Move one block
Go back to origin
Put down two beepers

 Turn off.

Looking over this algorithm, we recognized that few if any of these statements were at a level that Karel
could understand. Our next task was to translate the initial algorithm into Karel’s primitive commands.

Our initial program looked something like this:
beginning-of-program
 beginning-of-execution
 move;
 move;
 move;
 move;
 turnleft;
 turnleft;
 turnleft;
 move;
 move;
 turnleft;
 turnleft;
 turnleft;
 move;
 pickbeeper;
 turnleft;
 turnleft;
 move;
 turnleft;
 turnleft;
 turnleft;
 move;
 move;
 move;
 turnleft;
 turnleft;
 turnleft;
 move;
 pickbeeper;
 turnleft;
 turnleft;
 move;
 turnleft;
additional instruction added here to bring Karel home

CSE111-Fall 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

 Copyright © 2008 by Helene G. Kershner

 putbeeper;
 putbeeper;
 turnoff;
 end-of-execution
end-of-program

While this certainly solved Karel’s problem statement, the constant repetition of commands to do simple
tasks such as turn right or turn around made the process very tedious.

Defining New Instructions:
Since Karel is very good at following instructions, his designers included the concept of creating new
instructions which simplifies the program for his human handlers but from Karel’s perspective still uses
just the 5 basic instructions.

Here is the structure of a Karel program. Notice that Karel’s basic instructions are located between the
Beginning-of-Execution and End-of-Execution. The definitions of new terms are placed between the
Beginning-of-program and the Beginning-of-Execution.

BEGINNING-OF-PROGRAM

 Definitions

 BEGINNING-OF-EXECUTION

 Instructions

 END-OF-EXECUTION

END-OF-PROGRAM

Creating a new instruction is not a difficult task, and it is not complex. It does require care and attention to
detail. The benefit is that the program can be much more natural and easy to understand.

To create a new instruction for Karel we use this command:

DEFINE-NEW-INSTRUCTION <new name here> AS

Begin
<instruction(s);>
End;

The Begin and End indicate where the definition starts and finishes. For every Begin, there must be a
corresponding End.

Let’s try a simple new definition:

DEFINE-NEW-INSTRUCTION turnright AS
 Begin
 turnleft;
 turnleft;
 turnleft;
 End;

Our Karel programming language now contains the five primitives and the new instruction “turnright”.
The following version of Karel’s two box program uses turnright instead of three turnleft commands.

CSE111-Fall 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

 Copyright © 2008 by Helene G. Kershner

beginning-of-program
 define-new-instruction turnright as
 begin
 turnleft;
 turnleft;
 turnleft;
 end;
 beginning-of-execution
 move;
 move;
 move;
 move;
 turnright;
 move;
 move;
 turnright;
 move;
 pickbeeper;
 turnleft;
 turnleft;
 move;
 turnright;
 move;
 move;
 move;
 turnright;
 move;
 pickbeeper;
 turnleft;
 turnleft;
 move;
 turnleft;
 additional instruction added here to bring Karel home
 putbeeper;
 putbeeper;
 turnoff;
 end-of-execution
end-of-program

Not only is this program shorter than the earlier version but it is easier to understand.
Definitions are not standardized. The programmer can create them however the programmer chooses.
For example, the programmer might have decided to define the term turn-180 (which means turn-around)
and then use turn-180 to define turnaround. The basic program would be unchanged, but the definitions
section would contain two definitions one of which uses the other. This is perfectly legal. The definitions
section would look like:

beginning-of-program
 define-new-instruction turn-180 as
 begin
 turnleft;
 turnleft;
 end;
 define-new-instruction turnright as
 begin
 turn-180;
 turnleft;
 end;
 beginning-of-execution

Notice that the definition of turnright makes use of the turn-180 command. The most important concept here
is that a definition must be defined before it is used. So turn-180 had to be defined before turnaround.

CSE111-Fall 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

Copyright © 2008 by Helene G. Kershner

Using the turn-180 definition we can simplify our initial program further making it easier to read and
understand. From Karel’s point of view nothing has changed. Karel is still using only his primitive
commands. From the programmer’s view the programming process is becoming much simpler.

beginning-of-program
 define-new-instruction turn-180 as
 begin
 turnleft;
 turnleft;
 end;
 define-new-instruction turnright as
 begin
 turn-180;
 turnleft;
 end;
 beginning-of-execution
 move;
 move;
 move;
 move;
 turnright;
 move;
 move;
 turnright;
 move;
 pickbeeper;
 turn-180;
 move;
 turnright;
 move;
 move;
 move;
 turnright;
 move;
 pickbeeper;
 turn-180;
 move;
 turnleft;
additional instruction added here to bring Karel home
 putbeeper;
 putbeeper;
 turnoff;
 end-of-execution
end-of-program

Reducing Repeated Instructions:
Looking at the program above, there is still a lot of repetition.
The Iterate (which means repeat) command can be used to simplify code where instructions are repeated
over and over again. In the above program, if we were to bring Karel home, our instructions would look
like this.
beginning-of-program
 define-new-instruction turn-180 as
 begin
 turnleft;
 turnleft;
 end;
 define-new-instruction turnright as
 begin
 turn-180;
 turnleft;
 end;

CSE111-Fall 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

 Copyright © 2008 by Helene G. Kershner

 beginning-of-execution
 move;
 move;
 move;
 move;
 turnright;
 move;
 move;
 turnright;
 move;
 pickbeeper;
 turn-180;
 move;
 turnright;
 move;
 move;
 move;
 turnright;
 move;
 pickbeeper;
 turn-180;
 move;
 turnleft;
 move;
 move;
 move;
 move;
 move;
 turnleft;
 move;
 move;
 move;
 move;
 putbeeper;
 putbeeper;
 turnoff;
 end-of-execution
end-of-program

Notice, there are many places in the code where commands are repeated.

The Iterate command has the following structure:

Iterate <some number> times
 Begin
 Instruction(s);
 End;

The Iterate command can be used within a define a new instruction command or directly within the code.
Here is an example of the program we have been using where the Iterate command replaces the many
repetitions of the move command.

Looking at the compiled version of the code we can see that Karel’s designers recognized the Iterate
command as a repeat or loop and show us this visually in the compiled code.

CSE111-Fall 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

 Copyright © 2008 by Helene G. Kershner

1 beginning-of-program
 ¬¹¹¹¹¹¹¹¹¹
 2 Þßàdefine-new-instruction turn-180 as
 3 § begin
 ªË¹¹¹¹¹¹¹¹
 4 ̈¹¹ turnleft;
 5 ̈¹¹ turnleft;
 6 ©end;
 ¬¹¹¹¹¹¹¹¹¹
 7 Þßàdefine-new-instruction turnright as
 8 § begin
 ªË¹¹¹¹¹¹¹¹
 9 ̈¹¹ turn-180;
 10 ̈¹¹ turnleft;
 11 ©end;
 ¬¹¹¹¹¹¹¹¹¹
 12 Þßàbeginning-of-execution
 ªË¹¹¹¹¹¹¹¹
 13 ̈¹¹±Iterate Notice the circle or loop wherever the
 14 § 54 times Iterate Command appears.
 15 § 5begin
 16 § 7¹¹ move;
 17 § °end;
 18 ̈¹¹ turnright;
 19 ̈¹¹ move;
 20 ̈¹¹ move;
 21 ̈¹¹ turnright;
 22 ̈¹¹ move;
 23 ̈¹¹ pickbeeper;
 24 ̈¹¹ turn-180;
 25 ̈¹¹ move;
 26 ̈¹¹ turnright;
 27 ̈¹¹±Iterate
 28 § 53 times
 29 § 5begin
 30 § 7¹¹ move;
 31 § °end;
 32 ̈¹¹ turnright;
 33 ̈¹¹ move;
 34 ̈¹¹ pickbeeper;
 35 ̈¹¹ turn-180;
 36 ̈¹¹ move;
 37 ̈¹¹ turnleft;
 38 ̈¹¹±Iterate
 39 § 55 times
 40 § 5begin
 41 § 7¹¹ move;
 42 § °end;
 43 ̈¹¹ turnleft;
 44 ̈¹¹±Iterate
 45 § 54 times
 46 § 5begin
 47 § 7¹¹ move;
 48 § °end;
 49 ̈¹¹ putbeeper;
 50 ̈¹¹ putbeeper;
 51 ̈¹¹ turnoff;
 52 ©end-of-execution
 53 end-of-program

