Binary Arithmetic -- Negative numbers and Subtraction

Binary Mathematics

<u>Binary Addition</u>: this is performed using the same rules as decimal except all numbers are limited to combinations of zeros (0) and ones (1).

Using 8-bit numbers

1 1 1 0000 1110 ₂ + 0000 0110 ₂	which is which is	14 ₁₀ + 6 ₁₀
0001 0100 ₂		20 ₁₀

Not all integers are positive.

What about negative numbers?

What if we wanted to do: $14_{10} + (-2_{10}) = 12_{10}$

So,:
$$14_{10} + (-2_{10}) = 12_{10} \quad \longleftrightarrow \quad 14_{10} - (+2_{10}) = 12_{10}$$

- 2_{10}
- 12_{10}

This example is a deceptively easy because while there no need to borrow. Let's look at another example:

If we are using a paper and pencil, binary subtraction "can" be done using the same principles as decimal subtraction.

Binary Subtraction: Use standard mathematical rules:

-	0000 1110 ₂	which is	14 ₁₀
	0000 0110 ₂	which is	- 6 ₁₀
	0000 1000 ₂		8 10

This is rather straightforward. In fact no borrowing was even required in this example.

CSCC buffalo

Try this example:

$\begin{array}{r} & 1 \\ 0 & 10 & \frac{10}{40} & 10 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ \end{array}$	\rightarrow \rightarrow	25 ₁₀ - 14 ₁₀
0000 1011 ₂		11 ₁₀

THIS WAS PAINFUL!

When so much borrowing is involved the problem is very error prone.

Not only was the example above complex because of all the borrowing required but computers have additional problems with signed or negative numbers. Given the nature of the machine itself, how do we represent a negative number? What makes this even worse is that computers are fixed-length or finite-precision machines.

There are two common ways to represent negative numbers within the computer. Remember, the minus sign does not exist. The computer world is made up entirely of zeros (0) and ones (1). These two techniques are called signed magnitude representation and two's complement.

Let's explore sign-magnitude representation first. In the sign-magnitude number system, the most significant bit, the leftmost bit, holds the sign (positive or negative). A zero (0) in that leftmost bit means the number is positive. A one (1) in that leftmost bit means the number is negative.

<u>Step 1</u>: Decide how many bits the computer has available for your operations. Remember computers are fixed-length (or finite-precision) machines.

For example: if we use 4-bits, the leftmost bit is the sign bit and all the rest are used to hold the binary numbers. In a 4-bit computer world, this leaves only 3 bits to hold the number.

This limits our numbers to only very small ones.

A 4-bit number would look like X X X X the left-most bit is considered the <u>sign</u> bit

This is the sign bit

Using four bits, these are the ONLY binary numbers a computer could represent.

0	0000		
1	0001	-1	1 001
2	0010	-2	1 010
3	0011	-3	1 011
4	0100	-4	1 100
5	0 101	-5	1 101
6	0 110	-6	1 110
7	0 111	-7	1 111

If we were using 8-bits the left-most bit will contain the sign. This would leave 7 bits to hold the number. X X X X X X X X X X

This is the sign bit

CSECOULT

This sign bit is <u>reserved</u> and is no longer one of the digits that make up the binary number. Remember if the sign bit is **zero (0)** the binary number following it is <u>positive</u>. If the sign bit is **one (1)** the binary number following it is <u>negative</u>.

Using the sign-magnitude system the largest positive number that can be stored by an 8-bit computer is:

This is: 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127₁₀

If there were a one (1) in the first bit, the number would be equal to - 127_{10}

Over time it has become obvious that a system that even further reduces the number of available bits while meaningful, is not especially useful.

Then of course there is still the problem of how to deal with these positive and negative numbers. While this representation is simple, arithmetic is suddenly impossible. The standard rules of arithmetic don't apply. Creating a whole new way to perform arithmetic isn't overly realistic.

Fortunately another technique is available.

Two's Complement

Two's complement is an alternative way of representing negative binary numbers. This alternative coding system also has the unique property that subtraction (or the addition of a negative number) can be performed using addition hardware. Architects of early computers were thus able to build arithmetic and logic units that performed operations of addition and subtraction using only adder hardware. (As it turns out since multiplication is just successive addition and division is just successive subtraction it was possible to use simple adder hardware to perform all of these operations.

Let's look at an example:

 $14_{10} - 6_{10} = 14_{10} + (-6_{10}) = 8_{10}$

0000 1110₂ + 1000 0110₂ = ?₂ | | | | | | | left-most digit is 0 | | left-most digit is 1, number is negative

<u>Step 1</u>: Decide how many bits you are going to use for all your operations. For our purposes we will always use 8 bits.

If we were using 8-bits the left-most bit will contain the sign. This would leave 7 bits to hold the number.

XXXX XXXX

This is the sign bit

Fall 2008

This sign bit is **reserved** and is no longer one of the digits that make up the binary number. Using two's complement, the computer recognizes the presence of a one (1) in the leftmost bit which tells the machine that before it does mathematics it needs to convert negative numbers into their two's compliment equivalent.

0000 1110 ₂	the sign bit is 0 so the number is positive The binary number is 7-digits long,

1000 0110₂ the sign bit is 1 so the number is negative The binary number is only 7-digits long,

Example 1: $14_{10} - 6_{10} = 14_{10} + (-6_{10}) = 8_{10}$ 0000 $1110_2 + 1000$ $0110_2 = ?_2$ | left-most digit is 0 number is positive

Step 2: Strip the sign bits off the numbers.

<u>Step 3</u>: Convert the negative number into it's two's complement form. <u>Note</u>: If neither of the number were negative we would be doing simple addition and this would not be necessary.

How do we find the two's complement of -6?

Write down the number				
without the sign bit		000	0110 ₂	
 a) Flip all the digits 				
The 1 \rightarrow 0, the 0 \rightarrow 1		111	1001 ₂	
b) Add 1 to this number			+ 1	
c) This is now - 6 in the two's complement for	mat	111	1010 ₂	-

<u>Step 4</u>: <u>Add</u> the two's complement in place of the negative number.

So, 14 ₁₀	000 1110 ₂
+ (-6 ₁₀)	+111 1010 ₂ in two's complement forma
 8 ₁₀	1,000,1000
	this is the positive number 8 in binary Overflow bit
IT Worked!	IGNORE

CSECOULTER SCIENCE

Example 2:

 $12_{10} - 9_{10} = 3_{10}$

Or

 $12_{10} + (-9_{10}) = 3_{10}$

 $\begin{array}{rrrr} 0000 & 1100_2 + & 1000 & 1001_2 = & ?_2 \\ \text{Positive } 12 & & \text{Negative } 9 \end{array}$

Step 1: Determine the number of bits we are using. Choose 8 bits

12₁₀= 0000 1100₂

 $-9_{10} = 1000 \ 1001_2$

Step 2: Strip off the sign bits.

Step 3: Determine the 2's complement of the negative number, or the number to be subtracted.

Find the 2's complement of - 9_{10}

Write down the number without the sign bit	000 1001 ₂	
A) Flip all the digits $0 \rightarrow 1, 1 \rightarrow 0$	111 0110 ₂	this is the 1's complement
B) Add One(1)	+ 1	
C) This is Two's Complement	111 0111	

<u>Step 4</u>: Add the numbers together. In this case, add 12₁₀ in binary (000 1100₂) and the two's complement of - 9₁₀ in binary (111 0111). Ignore any overflow.

IT Worked!

CSCC buffalo

Example 3:

 $25_{10} - 14_{10} = 11_{10}$

Or

 $25_{10} + (-14_{10}) = 11_{10}$

0001 1001₂ + **1000** 1110₂ = **0000** 1011 Positive 25 Negative 14 Positive 11

Step 1: Determine the number of bits we are using. Choose 8 bits

Step 2: Strip off the sign bits.

Step 3: Determine the 2's complement of the negative number, or the number to be subtracted.

Find the 2's complement of - 1410

Write down the number without the sign bit	000	1110 ₂	
A) Flip all the digits $0 \rightarrow 1, 1 \rightarrow 0$	111	0001 ₂	this is the 1's complement
B) Add One(1)		+ 1	
C) This is the Two's Complement form of – 9	111	0010 ₂	Note: left-most bit is 1, negative number

<u>Step 4</u>: Add the numbers together. In this case, add 12₁₀ in binary (000 1100₂) and the two's complement of 9₁₀ in binary (111 0111). Ignore any overflow.

IT Worked!

In all of the above examples, the resulting number, the answer was positive.

What happens if we are working with numbers where the result is negative (where the negative number is larger than the positive number).

Fall 2008

The basic computational process is the same. Negative numbers are converted to their two's complement equivalent. But since the resulting number is negative, rather than positive, twos complement is used again to convert the number back to standard binary.

Example 4:

9 ₁₀ - 14	$10 = 9_{10} + (-14_{10}) = -5$	
Decimal 9 ₁₀ + (-14 ₁₀)	Standard Binary 0000 1001 ₂ + 1000 1110 ₂	left-most digit says positive left-most digit says negative
- 5 ₁₀		

<u>Step 1</u>: Decide on the number of binary digits -- Choose 8 <u>Step 2</u>: Strip off the sign bits.

<u>Step 3</u>: Convert the negative number to it's twos complement equivalent.

Write down the negative number without sign bit	000 1110 ₂
A) Flip the digits	111 0001 ₂
B) Add one (1)	+ 1
C) This is two's complement	111 0010 ₂

Step 4: Add the two numbers together.

	111	1011 ₂	no overflow, this says result Is still in two's complement form
9 ₁₀	000	1001 ₂	in two's complement format
+ (-14 ₁₀)	+ 111	0010 ₂	

<u>Step 5</u>: Convert from two's complement by doing the two's complement process again.

Write down the number	111 1011 ₂
A) Flip the digits	000 0100 ₂
B) Add one (1)	+ 1
C) This is two's complement D) We know the result	000 0101_2 positive 5, in standard binary
Is negative, change sign bit	$1000 0101_2$ negative 5, in standard binary

CSCC buffalo

Example 5:

- 25 + 18 = - 7

Proceed the same way, converting the negative number to it's two's complement equivalent.

Decimal	Standard Binary	
- 25 ₁₀	1001 1001 ₂	left-most digit says negative
+ 18 ₁₀	+ 0001 0010 ₂	left-most digit says positive
- 7 ₁₀		

<u>Step 1</u>: Decide on the number of binary digits -- Choose 8 <u>Step 2</u>: Strip off the sign bit.

Step 3: Convert the negative number to it's twos complement equivalent.

Write down the negative number Without the sign bit	001 1001 ₂
A) Flip the digitsB) Add one (1)	110 0110 ₂ + 1
C) This is two's complement	110 0111 ₂

Step 4: Add the two numbers together.

	111 1001 ₂	no overflow, this says result Is still in two's complement form
+ 18 ₁₀	+ 001 00102	
- 25 ₁₀	$110 0111_{2}$	in two's complement format

Step 5: Convert from two's complement by doing the two's complement process again.

Write down the number	111	1001 ₂
A) Flip the digits B) Add one (1)	000	0110 ₂ + 1
C) This is two's complement	000	0111_2 positive 7, in standard binary
Is negative, change sign bit	1000	1110_2 negative 7, in standard binary

CSCC buffalo

Try these problems:

1)	$9_{10} - 7_{10} = 2_{10}$ $9_{10} + (-7_{10}) = 2_{10}$	<mark>0</mark> 000 1001	+	1000 0111 =
2)	$17_{10} - 12_{10} = 5_{10}$ $17_{10} + (-12_{10}) = 5_{10}$	0001 0001	+	1000 1100 =
3)	$18_{10} - 22_{10} = -4_{10}$ $18_{10} + (-22_{10}) = -4_{10}$	<mark>0</mark> 001 0010	+	1001 0110 =
4)	$7_{10} - 19_{10} = -12_{10}$ $7_{10} + (-19_{10}) = -12_{10}$	<mark>0</mark> 000 0111	+	1001 0011 =
5)	$-26_{10} + 10_{10} = -16_{10}$	1001 1010	+	0 000 1010 =
6)	$-19_{10} + 6_{10} = -13_{10}$	1001 0011	+	0000 0110 =

Solutions:

1)	9 ₁₀ - 7 ₁₀ This is the 9 ₁₀ + (-7 ₁	$= 2_{10}$ e same as $(_{0}) = 2_{10}$		<mark>0</mark> 000 10	01 +	- 1 000 01	11 =	_
	Strip the s Convert t	sign bit. he negative	e number to it	's 2's com	pleme	nt equivaler	nt	
	1000 01	11 ——	Flip the digit	ts	000 111	0111 1000 + 1		
			This is 2's c	omp	111	1001		
	Now add	the numbe 000 1 + 111 1	rs 1001 001					
ignor overfle	e ow	1 000 0	010 = 210					
2)	17 ₁₀ - 12 This is the 17 ₁₀ + (- 1	$(10) = 5_{10}$ e same as $(2_{10}) = 5_{10}$	10	<mark>0</mark> 001 00	01 +	- 1 000 11	00 =	=
	Strip the s Convert t	sign bit. he negative	e number to it	's 2's com	pleme	nt equivaler	nt	
	1000 11	00	Flip the digit	ts	000 111	1100 0011 + 1		
			This is 2's c	omp	111	0100		
	Now add	the numbe 001 (+ 111 (rs)001)100					
ignor overfle	e ow	1 000 0	101 = 5 ₁₀					
	1 10	-						

UNVERSITY AT BUFFALD STATE UNVERSITY OF INCH YORK

3)	18 ₁₀ - 22 ₁₀ This is the sar 18 ₁₀ + (-22 ₁₀)	$ \begin{array}{l} = -4_{10} \\ \text{me as} \\ = -4_{10} \end{array} $	010 + 1001 0110 =			
	Strip the sign Convert the ne	Strip the sign bit. Convert the negative number to it's 2's complement equivalent				
	1001 0110	Flip the digits Add one(1)	001 0110 110 1001 + 1			
	Now add the r (+	This is 2's comp numbers 001 0010 110 1010	110 1010			
		111 1100,				
	No Overflow This is still in 2's complement Apply 2's complement to number again					
		Flip the digits Add one(1)	111 1100 000 0011 + 1			
	I	Put the sign bit back on we know the number is negative	1000 0100 - 4 ₁₀			
4)	$7_{10} - 19_{10} =$ This is the sar $7_{10} + (-19_{10}) =$	= - 12 ₁₀ me as = - 12 ₁₀ 0000 0 ⁻	111 + 1001 0011 =			
	Strip the sign Convert the ne	bits. egative number to it's 2's cor	nplement equivalent			
1001	0011 —	Flip the digits Add one(1)	001 0011 110 1100 + 1			
		This is 2's comp	110 1101			
	TY AT BUFFALO BRITY OF NEW YORK	ce	Convright © 2008 by Helene G. Ke			

	Now add the numbers 000 0111 + 110 1101	
	111 0100 No Overflow	
	This is still in 2's comp Apply 2's complement	blement to number again 111 0100
	Flip the digits Add one(1)	000 1011 + 1
	Put the sign bit back on we know the number	1000 1100
	is negative	- 12 ₁₀
5)	$-26_{10} + 10_{10} = -16_{10}$ 1001 1 Strip the sign bits. Convert the negative nu	010 + 0000 1010 = Imber to it's 2's complement equivalent.
	1001 1010	001 1010
	Flip the digits Add one(1)	110 0101 + 1
	This is 2's comp	110 0110
	Now add the numbers 110 0110 + 000 1010	
	111 0000	
	This is still in 2's comp Apply 2's complement	blement to number again 111 0000
	Flip the digits Add one(1)	000 1111 + 1
	Put the sign bit back on we know the number	1001 0000
	is negative	- 16 ₁₀

CSCC buffalo

Copyright © 2008 by Helene G. Kershner

6)	- 19 ₁₀ + 6 ₁₀ =	= - 13 ₁₀ 1001 00	011 + 0000 0110 =		
	Convert the ne	egative number to it's 2's con	nplement equivalent		
	1001 0011	Flip the digits Add one(1)	001 0011 110 1100 + 1		
		This is 2's comp	110 1101		
	Now add the numbers 110 1101 + 000 0110				
		111 0011 No Overflow This is still in 2's comp Apply 2's complement	lement to number again		
		Flip the digits Add one(1)	111 0011 000 1100 + 1		
	I	Put the sign bit back on we know the number	1000 1101		
		is negative	- 13 ₁₀		

