
CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

I. Reviewing Karel
1) Karel has a limited initial vocabulary of five terms:
 move
 pickbeeper
 putbeeper
 turnleft
 turnoff
2) Statements in Karel’s programs are separated by a semicolon (;)
3) Karel’s programs have a standard format.

beginning-of-program

 Put the definition of new instruction here

 beginning-of-execution

 Primitives
 Use newly defined instructions

 turnoff;
 end-of-execution
end-of-program

4) As indicated above, the programmer can define new instructions to add to Karel’s vocabulary. These
instructions go between the reserved words beginning-of-program and beginning-of-
execution.

To define a new vocabulary word the programmer uses the command:
DEFINE-NEW-INSTRUCTION <new instruction here> AS
 BEGIN
 Instructions from primitives or;
 Instructions from other new instructions listed above this one;
 END;

Let’s work through a review problem:

Problem Statement: Karel is to walk around the block. Karel must end up facing North.
Define Output: What will Karel’s World look like?

Define Output: Karel needs to walk around the block making three turns, and each side of the street
has a length of 5 streets.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

Define Input: Karel starts in the bottom left hand corner of the block facing North.
Define Initial Algorithm:

Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right

Refined Algorithm: We cannot go to code directly from this algorithm, because Karel will not
understand many of the terms used. We need to define some new instructions.

Definitions
 Move 5 streets
 Turnright

Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right

Let’s program this refined algorithm.

The first step is to create the new definitions.

DEFINE-NEW-INSTRUCTION turnright AS
 BEGIN
 turnleft;

turnleft;
turnleft;

END;

DEFINE-NEW-INSTRUCTION move-ahead-5 AS
 BEGIN

move;
move;
move;
move;
move;

 END;

This part of the program has been entered into Karel’s program view.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

Now we can enter the rest of our code based on the refined algorithm.

Definitions
 Move 5 streets
 Turnright

Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

Now let’s compile and execute our program and see what happens.

If you type the program in and correct any syntax errors that may occur (there are none in the program as
shown -- I corrected them all first!)

II. Writing Efficient Code

How many instructions did we require Karel to perform?
Let’s see.

beginning-of-program
 DEFINE-NEW-INSTRUCTION turnright AS
 BEGIN
 turnleft;
 turnleft; (3)
 turnleft;
 END;
 DEFINE-NEW-INSTRUCTION move-ahead-5 AS
 BEGIN
 move;
 move;
 move; (5)
 move;

 (33) move;
 END;
 beginning-of-execution
 move-ahead-5; (5)
 turnright; this is three turnleft instructions (3)
 move-ahead-5; (5)
 turnright; this is three turnleft instructions (3)
 move-ahead-5; (5)
 turnright; this is three turnleft instructions (3)
 move-ahead-5; (5)
 turnright; this is three turnleft instructions (3)
 turnoff; (1)
 end-of-execution
end-of-program

Definitions are only executed when they are needed as part of the ”main” program. So, those instructions,
while critical to Karel’s operation in this program only count when they are used. This program requires
that Karel execute 33 instructions.

Now, notice something. Our program has Karel making four right turns. What this really means is that
Karel is making 12 left turns as part of completing this task. Could we have written the program so that
Karel had less work to do?

Think?

Karel is facing North. Because of this, we just had him go straight ahead and then make a right hand turn.
But if Karel were facing East instead, we would have Karel go straight ahead and then make left turns
which are much simpler for our Robot.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

Notice, if we had Karel make a right turn at the beginning, he could make left turns after that and have
many fewer instructions to follow.

Let’s go back to our initial Algorithm and make some changes.

Define Initial Algorithm:
Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right
Move ahead 5 streets
Turn right

Instead of this idea let’s try another.
Remember there is more than one right way to solve a problem. Any solution that works solves the
problem. But we know that some methods are easier or quicker than others.

Define Initial Algorithm:
 turnright
 move ahead 5 streets
 turnleft
 move ahead 5 streets
 turnleft
 move ahead 5 streets
 turnleft
 move ahead 5 streets
 turn-around
As we’ve seen before, Karel won’t understand most of the terms in this algorithm so it needs to be
refined. However, notice that the terms turnright and turn-around, are each only used one, we could
choose to define these terms, or NOT, since we only use them once. To make our program easily
readable by humans we’ll create them.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

Refine Algorithm
Define
 turnright
 move-ahead-5
 turn-around

turnright
move ahead 5 streets
turnleft
move ahead 5 streets
turnleft
move ahead 5 streets
turnleft
move ahead 5 streets
turn-around

Now let’s turn this program into code in Karel’s program view.

If we count the number of instructions Karel has to execute in this version of the program, you will find
that Karel is performing less instructions so this program will run faster.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

beginning-of-program
 DEFINE-NEW-INSTRUCTION turnright AS
 BEGIN
 turnleft;
 turnleft; (3)
 turnleft;
 END;
 DEFINE-NEW-INSTRUCTION move-ahead-5 AS
 BEGIN
 move;
 move;
 move; (5)
 move;
 move;
 END;
 DEFINE-NEW-INSTRUCTION turn-around AS

 (29) BEGIN
 turnleft; (2)
 turnleft;
 END;
 beginning-of-execution
 turnright; (3)
 move-ahead-5; (5)
 turnleft; (1)
 move-ahead-5; (5)
 turnleft; (1)
 move-ahead-5; (5)
 turnleft; (1)
 move-ahead-5; (5)
 turn-around; (2)
 turnoff; (1)
 end-of-execution
end-of-program

While the difference between 33 instructions and 29 is not huge, as we watch Karel on the screen it is
clear that even this savings matters.

III. New Language Tool for Karel -- IF/THEN and IF/THEN/ELSE
 Or -- How to get Karel to Make Decisions!

Earlier in the semester we spent quite a bit of time working with Logic. The first part of our discussion of
Logic began with being able to decide if a statement is True or False. Karel’s programming language has
a way to have Karel make some decisions based on his world. The IF/THEN (or IF/THEN/ELSE) structure
is the statement Karel’s language uses to make choices.

The IF/THEN Instruction:

IF <test condition> THEN
<instruction>

As with or definitions, even though only one instruction TECHNICALLY follows the word THEN, by using
the BEGIN/END idea we can have multiple instructions wrapped up to look like one.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

What is really going on with this instruction? How does it reflect a decision?

IF <test condition> THEN
<instruction>

Karel looks at the <test condition>. Whenever the <test condition> is TRUE, Karel does whatever
instructions follow the THEN, Afterwards Karel goes back to following instructions one at a time.

On the other hand, if the <test condition> is FALSE, Karel ignores the instructions after the THEN and
continues to follow the rest of the instructions in the program one at a time.

Just like the rest of Karel’s world, there are a limited number of things that Karel can test for. After all his
is a dimwitted Robot. These are:

front-is-clear front-is-blocked
left-is-clear left-is-blocked
right-is-clear right-is-blocked

next-to-a-beeper not-next-to-a-beeper

any-beepers-in-beeper-bag no-beepers-in-beeper-bag

Let’s look at a Problem where we might want to use this new statement.

Problem Statement: Karel has 5 beepers in his beeper bag. His task is to make sure that the five
corners between 3rd Street and 3rd Avenue and 3rd Street and 7th Avenue all have one beepers. Then
Karel is to go Home. If you look at the World below, two of these corners already have beepers on them.

This is a perfect problem for Karel’s programmer to uses the IF/THEN statement. If the corner already has
a beeper, skip it. Otherwise put a beeper on the corner. The programmer doesn’t have to know the details
of the corners. In fact, if the beepers were magically moved to other corners on 3rd Street between 3rd
Avenue and 7th Avenue, the same program should still work.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

We also want to make our program as general as possible so we can create definitions where possible. In
addition, if Karel can do some of the work for us, we want to allow Karel to do so.

Define Output: There must be a beeper at every corner on 3rd Street between 3rd Avenue and 7th
Avenue.
Define Input: Karel has to put 5 beepers in his bag. He is located on 3rd Street and 1st Avenue facing
East.
Initial Algorithm:
 Put 5 beepers in the beeper bag

Move 2 avenue blocks
 Put down beeper
 Move 1 avenue block
 Already a beeper so skip
 Move 1 avenue block
 Already a beeper so skip
 Move 1 avenue block
 Put down beeper
 Move 1 avenue block
 Put down beeper
 Turn around
 Move 6 avenue blocks
 Turn left
 Move 2 avenue blocks
 Turn around

We know from previous problems that many of the words used ahead, Karel cannot understand. In
addition we don’t have to do the work for Karel of checking to see if there is a beeper. So, let’s Refine the
program and use the If/Then to have Karel check the corners for us.

Refine the algorithm:
 Put 5 beepers in the beeper bag

Move 2 avenue blocks
If no beeper, put one down

 Move 1 avenue block
If no beeper, put one down

 Move 1 avenue block
If no beeper, put one down

 Move 1 avenue block
If no beeper, put one down

 Move 1 avenue block
If no beeper, put one down

 Turn around
 Move 6 avenue blocks
 Turn left
 Move 2 avenue blocks
 Turn around

Well, this is a simpler program, and we will learn how to repeat the same set of instructions later this
semester.

What might this program look like?
We already know how to create a turn around statement so we should do that.

Our program would begin something like this.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

beginning-of-program
DEFINE-NEW-INSTRUCTION turn-around AS
 BEGIN
 turnleft;
 turnleft;
 END;
 beginning-of-execution
 move;
 move;
 IF not-next-to-a-beeper THEN putbeeper;
 move;
 IF not-next-to-a-beeper THEN putbeeper;
 ...

Let’s write this out completely in Karel’s program world and see what happens.

Refine the Algorithm Again:
Define
 Turn-around
 If no beeper, put one down

 Put 5 beepers in the beeper bag

Move 2 avenue blocks
 Check-beeper
 Move
 Check-beeper
 Move
 Check-beeper
 Move
 Check-beeper
 Move
 Check-beeper

Turn-around
 Move 6 avenue blocks
 Turnleft
 Move 2 avenue blocks
 Turn-around

Write the Program:

beginning-of-program
 DEFINE-NEW-INSTRUCTION turnaround AS
 BEGIN
 turnleft;
 turnleft;
 END;
 DEFINE-NEW-INSTRUCTION check-beeper AS
 BEGIN
 IF
 not-next-to-a-beeper
 THEN
 putbeeper;
 END;

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

 beginning-of-execution
 pickbeeper;
 pickbeeper;
 pickbeeper;
 pickbeeper;
 pickbeeper;
 move;
 move;
 check-beeper;
 move;
 check-beeper;
 move;
 check-beeper;
 move;
 check-beeper;
 move;
 check-beeper;
 turnaround;
 move;
 move;
 move;
 move;
 move;
 move;
 turnleft;
 move;
 move;
 turnaround;
 turnoff;
 end-of-execution
end-of-program

IV: ITERATE

Whenever there are instructions that are repeated, they can be reduced by using the Iterate command.

• The ITERATE command enables the programmer to have Karel repeat an instruction or set of
instructions a fixed number of times.

ITERATE <positive number> TIMES <instruction>

• The <instruction> can actually be a group of instructions enclosed by a BEGIN and END

The program above can be rewritten making significant use of the ITERATE command.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

beginning-of-execution
 pickbeeper;
 pickbeeper;
 pickbeeper; this is a great place to use ITERATE
 pickbeeper; ITERATE 5 TIMES pickbeeper;
 pickbeeper; ;
 move;
 move;
 check-beeper;
 move;
 check-beeper;
 move;
 check-beeper;
 move;
 check-beeper;
 move;
 check-beeper;
 turnaround;
 move;
 move;
 move; this is another really good place to use ITERATE
 move; ITERATE 6 TIMES move;
 move;
 move;
 turnleft;
 move;
 move;
 turnaround;
 turnoff;
 end-of-execution
end-of-program

So, minimally this program can be reduced as follows:

beginning-of-program
 DEFINE-NEW-INSTRUCTION turnaround AS
 BEGIN
 turnleft;
 turnleft;
 END;
 DEFINE-NEW-INSTRUCTION check-beeper AS
 BEGIN
 IF not-next-to-a-beeper THEN
 putbeeper;
 END;
 beginning-of-execution
 ITERATE 5 TIMES pickbeeper;
 move;
 move;
 check-beeper;
 move;
 check-beeper; Notice that the set of instructions
 move; move;
 check-beeper; check-beeper;
 move; are repeated a number of times, 4 to be exact these can
 check-beeper; also be replaced by an ITERATE statement. See below.

 move;

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Writing more Efficient Programs, Making Decisions, ITERATE

 Copyright © 2008 by Helene G. Kershner

 check-beeper;
 turnaround;
 ITERATE 6 TIMES move;
 turnleft;
 move;
 move;
 turnaround;
 turnoff;
 end-of-execution
end-of-program

More than just individual instructions can be used in the ITERATE statement. When we put BEGIN and
END around a group of statements, they can be used as part of the ITERATE statement. Notice in this
revision of the program that the ITERATE statement is used to simplify the code even more.

beginning-of-program
 DEFINE-NEW-INSTRUCTION turnaround AS
 BEGIN
 turnleft;
 turnleft;
 END;
 DEFINE-NEW-INSTRUCTION check-beeper AS
 BEGIN
 IF
 not-next-to-a-beeper
 THEN
 putbeeper;
 END;
 beginning-of-execution
 ITERATE 5 TIMES pickbeeper;
 move;
 move;
 ITERATE 4 TIMES
 BEGIN
 check-beeper;
 move;
 END;
 check-beeper;
 turnaround;
 ITERATE 6 TIMES move;
 turnleft;
 move;
 move;
 turnaround;
 turnoff;
 end-of-execution
end-of-program

