
Karel the Robot – Making More Complex Decisions

Remember the possible <test> options are:

front-is-clear	front-is-blocked
left-is-clear	left-is-blocked
right-is-clear	right-is-blocked
next-to-a-beeper	not-next-to-a-beeper
any-beepers-in-beeper-bag	no-beepers-in-beeper-bag

Problem Statement:

Karel has been told to place two beepers on each street corner between 1st street and 2nd avenue and 1st street and 10th avenue. This would be a very easy task except there was a beeper party last night and there are beepers scattered around on random street corners.

Define Output: There will be two beepers on every corner on 1st street between 2nd avenue and 10th avenue.

Define Input: Karel is next to 20 beepers. He is at the Origin facing east.

Initial Algorithm

Pickup 18 beepers

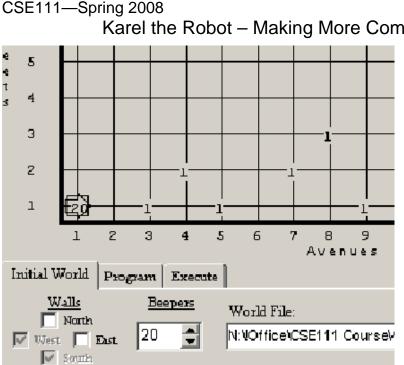
-Move

If next to a beeper, put a beeper down

Otherwise put down 2 beepers

Move

If next to a beeper, put a beeper down


Otherwise put down 2 beepers

Move

If next to a beeper, put a beeper down

Otherwise put down 2 beepers

... turnoff

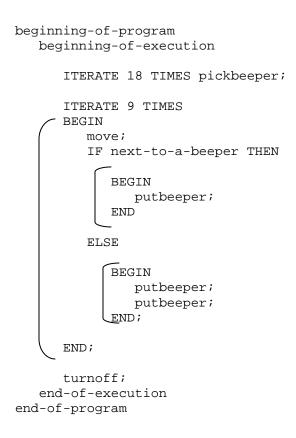
Karel the Robot - Making More Complex Decisions

Revised Algorithm

Pickup 18 beepers Repeat 9 times Move If next to a beeper, put a beeper down Otherwise put down 2 beepers turnoff

Why is the problem solved this way? Well, if there is already a beeper on the corner, Karel only needs to put one beeper down. If there are no beepers on the corner, then Karel needs to put 2 beepers down.

Let's examine the IF statement. Anytime we use a word like, OTHERWISE, we know we need to use an IF / THEN / ELSE.


If next to a beeper, put a beeper down Otherwise put down 2 beepers In Karel's language this would become: IF next-to-a-beeper THEN BEGIN putbeeper; END ELSE (another word for Otherwise) BEGIN putbeeper; putbeeper; END;

H. Kershner

CSE111—Spring 2008

Karel the Robot - Making More Complex Decisions

Given what we have above, we can write the program without further refining the algorithm.

Notice:

1) When Karen is next-to-a-beeper (the test is TRUE), one beeper get put down.

2) When Karen is NOT next-to-a-beeper (the test is FALSE), two beepers get put down.

3) BEGIN / END statements must match up or Karel (not to mention the programmer) gets very confused.