
CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands
We know how to write programs using Karel’s primitive commands
 move
 turnleft
 pickbeeper
 putbeeper
 turnoff

We know have to navigate between Karel’s World view, Karel’s Program view and Karel’s Execution (or
Run) view.

We know how to Compile a program, which means to translate it from Karel’s programming language,
which humans can understand as well as Karel into machine code that the computer inside Karel
understands.

AND, writing programs with only the basic 5 primitives is hard to keep track of exactly what we are asking
Karel to do. And it is tedious.

We have already seen how Karel can to go to a box with a beeper inside and retrieve the beeper and
bring it home. The World view looked something like this:

It was painful enough to keep track of all the move instructions and all the turnleft commands when Karel
was close to the Origin (Home Base). Imagine if Karel’s World looked like this:

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

We are solving essentially the same problem, retrieve the beeper from the box and come home, but now
the number of move instructions makes the task incredibly tedious.

This is where the concept of creating new instructions for Karel becomes essential.

BEGINNING-OF-PROGRAM

 BEGINNING-OF-EXECUTION

 instructions

 END-OF-EXECUTION

END-OF-PROGRAM

Creating a new instruction is not a difficult task, and it is not complex. It does require care and attention to
detail. The benefit to the human in charge or Karel (the programmer) is that the program can be much
more natural and easy to understand.

To create a new instruction for Karel we use this command:

DEFINE-NEW-INSTRUCTION <new name here> AS <instruction>

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands
Now, technically only one single instruction can follow the AS

If that were really true, Karel would never get any easier to use.
While technically that is true, functionally there is an easy way around it.

Let’s try a simple new definition:

DEFINE-NEW-INSTRUCTION advance AS move;

Our Karel programming language now contains the five primitives and the new instruction “advance”

This is not an especially useful new instruction because we could have used move every time we used
advance.

To build powerful new vocabulary for Karel we can replace the word instruction below with a group of
instruction bounded by or captured between the words BEGIN and END.

DEFINE-NEW-INSTRUCTION <new name here> AS <instruction>

DEFINE-NEW-INSTRUCTION turnright AS
 BEGIN
 turnleft;
 turnleft;
 turnleft;
 END;

Look at the following program:

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

We have created two new instructions to increase Karel’s vocabulary. As we have seen, one helps us
very little. The advance instruction is identical to move and really adds nothing to Karel’s vocabulary. But
it is a perfectly legal new instruction.

On the other hand, the turnright instruction is very useful. It gives us, the programmers a shorthand for
having to over-and-over-again type turnleft three times every time we want Karel to make a right turn.

Where do we put these new instructions and what form must they take?

beginning-of-program

 Put the definition of new instruction here

 beginning-of-execution

 Primitives
 Use newly defined instructions

 turnoff;
 end-of-execution
end-of-program

Let’s enter our definitions.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands
beginning-of-program

DEFINE-NEW-INSTRUCTION turnright AS
 BEGIN
 turnleft;
 turnleft;
 turnleft;
 END;

 beginning-of-execution
 move;
 move;
 move;
 turnright;
 move;
 move;

 turnoff;
 end-of-execution
end-of-program

Now notice the instruction list as Karel is Executed. As Karel’s programmer, the inclusion of the
instruction turnright has made our tasks simpler. But, nothing has really changed for Karel. Every time
the turnright instruction is used in our program Karel, simply looks up the new instruction, follows the
definition exactly and then moves on. Control moves TEMPORARILY from our list of instructions between
beginning-of-execution and end-of-execution to the definition section and then back again.
Notice if our program had two turnright commands Karel would actually follow look up the definition twice
and each time do exactly what it was told.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

 control has moved from the list of instruction to
the turnright definition. When Karel finishes that instruction by turning left three times, control will move
back to the main part of the program.

Has Karel really learned a new instruction?
No, every time Karel encounters the turnright command, he simply does turnsleft three times. However,
as programmers we have gained flexibility. Now our programs can better reflect what we really want Karel
to do. Let’s look at another Example.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

In this World, we want Karel to retrieve a beeper and bring it home.
Karel is fairly far away from the beeper. The beeper is at 10th Street and 8th Avenue. Karel is at the Origin
(Home Base) 1st Street and 1st Avenue. We need to use lot of move instructions to get Karel to the beeper
and back.

Problem Statement: Karel starts at the Origin (Home Base) and needs to travel to 10th Street and 8th
Avenue to retrieve a beeper. Karel then needs to come home, drops beeper at HomeBase and face
North.

Define the Output: Get to 10th Street and 8th Avenue and pick up beeper. Then get home.
Define the Input: Start at Origin(HomeBase) with empty beeper-bag.

Initial Algorithm:
 9 move instructions
 turnright
 7 moves
 Pickup beeper
 turn-around
 7 moves
 turnleft
 9 move instructions
 turn-around
 drop off beeper

If we wrote out all the move instructions, and we could teach Karel what turnright and
turn-around means. This program would work.

Refine Algorithm:
 Define turnright as 3 turnleft instructions
 Define turn-around as 2 turnleft instruction

 9 move instructions
 turnright
 7 moves
 Pickup beeper
 turn-around
 7 moves
 turnleft
 9 move instructions
 turn-around
 drop off beeper

The following program is exactly our refined algorithm written very carefully, using all
the appropriate punctuation and headings required by Karel’s language. AND, as
instructed by our refined algorithm, we have defined turnright and turn-around.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

beginning-of-program
 DEFINE-NEW-INSTRUCTION turnright AS
 BEGIN
 turnleft;
 turnleft;
 turnleft;
 END;
 DEFINE-NEW-INSTRUCTION turn-around AS
 BEGIN
 turnleft;
 turnleft;
 END;
 beginning-of-execution
 move;
 move;
 move;
 move;
 move;
 move;
 move;
 move;
 move;
 turnright;
 move;
 move;
 move;
 move;
 move;
 move;
 move;
 pickbeeper;
 turn-around;
 move;
 move;
 move;
 move;
 move;
 move;
 move;
 turnleft;
 move;
 move;
 move;
 move;
 move;
 move;
 move;
 move;
 move;
 turn-around;
 putbeeper;

This “main” program has 39 statements

 turnoff;
 end-of-execution
end-of-program

This set of instructions solves our problem. It is as straightforward as it can get. It also has so many move
instructions that it is easy to type in either too many or too few and then have to keep fixing out code.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands
We used 9 move instructions, followed by 7 move instructions, followed by 9 more and then 7 more. If we
created a move4 instruction, our code would be little different for Karel, but much simpler for us.

What would our move4 instruction look like?

DEFINE-NEW-INSTRUCTION move4 AS
 BEGIN
 move;
 move;
 move;
 move;
 END;

This is essentially another Refinement of our Algorithm

Refine Algorithm Again:
 Define turnright as 3 turnleft instructions
 Define turn-around as 2 turnleft instruction
 Define move4 as 4 move instructions

 2 move4 instructions
 1 move instruction
 Turnright
 1 move4 instruction
 3 moves
 Pickup beeper
 turn-around
 1 move4 instruction
 3 moves
 turnleft
 2 move4 instructions
 1 move instruction
 turn-around
 drop off beeper

While our Refined Algorithm may look a bit longer, the actual program will be much shorter.

This is what our revised program would look like.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands
beginning-of-program
 DEFINE-NEW-INSTRUCTION move4 AS
 BEGIN
 move;
 move;
 move;
 move;
 END;
 DEFINE-NEW-INSTRUCTION turnright AS
 BEGIN
 turnleft;
 turnleft;
 turnleft;
 END;
 DEFINE-NEW-INSTRUCTION turn-around AS
 BEGIN
 turnleft;
 turnleft;
 END;
 beginning-of-execution
 move4;
 move4;
 move;
 turnright;
 move4;
 move;
 move;
 move;
 pickbeeper;
 turn-around;
 move4;
 move;
 move;
 move;
 turnleft;
 move4;
 move4;
 move;
 turn-around;

This “main” program has 21 statements

 putbeeper;
 turnoff;
 end-of-execution
end-of-program

By using the move4 instruction, our “main” program (the part of the program without the definitions) has
been reduced from 39 instructions down to 21 instructions. More important, this new program is easier to
read by humans and thus easier to understand.

To simplify the “main” program we needed to carefully define three new instructions for Karel to use. We
defined, turnright, turn-around and move4.

Let’s begin a totally new problem.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands
Karel’s new World looks like this:

Problem Statement: Karel is to go past each Hurdle, pick up the 3 beepers and place them behind
the 4th wall.

Define Output: Three walls with beepers behind them, one wall at the end.
Define Input: Karel is at 6th Street and 1st Avenue. The Hurdles/Walls are to Karel’s right

Initial Algorithm:
 Turnright
 Move 3 blocks
 Go around first hurdle
 Pickup beeper
 Got around second hurdle
 Pickup beeper
 Go around third hurdle
 Pickup beeper
 Go around 4th hurdle
 Drop off 3 beepers

As with the last program, while this algorithm solves the problem there are a lot of words in the algorithm
that Karel cannot understand because there is nothing in his limited vocabulary to describe them.

We will have to define turnright AND go around hurdle for a start.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

Refine Algorithm:
 Define turnright
 Define go-around-hurdle

Turnright
Move 3 blocks

 Go around first hurdle
 Pickup beeper
 Got around second hurdle
 Pickup beeper
 Go around third hurdle
 Pickup beeper
 Go around 4th hurdle
 Drop off 3 beepers

Let’s look at the definition section. Turnright we have created before. Go-around-hurdle requires a new
definition. And, this definition is not simply a number of the same terms repeated.

Let’s pretend that Karel has moved from the starting location at 6th and 1st to being just before the first
hurdle.

THINK!
What do we need Karel to do?
Creating definitions is often exactly the same as writing a program.
What do we need Karel to do to get past a hurdle?
 Turnleft
 Move 1 street
 Turnright
 Move 1 street
 Turnright
 Move 1 street

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands
This set of instructions seems to get Karel around the wall and ready to pickup the beeper. Let’s enter the
information into the Program section of Karel’s screen and see if we’ve given Karel enough information.

We’ve defined two new instructions.
We’ve defined turnright and Go-around-hurdle.

NOTICE: We defined a new instruction that makes use of another instruction.
IS this Legal?

As long as an instruction is defined before it is used, one new instruction can use another.

So, Go-around-hurdle could make use of the turnright instruction because it appears before the definition
for Go-around-hurdle.

beginning-of-program

 Put the definition of new instruction here

 beginning-of-execution

Definitions MUST be in the right location of the program or Karel will not be able to find them.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

Now that we have our definitions in place (turnright and Go-around-hurdle) we can write our program.

Let’s got back to our Refined Algorithm:

Refine Algorithm:
 Define turnright
 Define go-around-hurdle

Turnright
Move 3 blocks

 Go around first hurdle
 Pickup beeper
 Got around second hurdle
 Pickup beeper
 Go around third hurdle
 Pickup beeper
 Go around 4th hurdle
 Drop off 3 beepers

Looking at the vocabulary in our algorithm, is there anything remaining that we cannot translate directly
into Karel’s language. There does not seem to be. So let’s just type in the code using the primitive
commands. In other words, there the algorithm says, move 3 blocks, we would have to type: move; move;
move;

Our total program includes what is visible in this screen shot and, the previously created definitions.

 Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
 Karel the Robot
 Extending the Primitive Commands

 Copyright © 2008 by Helene G. Kershner

Here is the entire program, which compiles without errors in spelling, punctuation or misunderstood
words.

beginning-of-program
 DEFINE-NEW-INSTRUCTION turnright AS
 BEGIN
 turnleft;
 turnleft;
 turnleft;
 END;
 DEFINE-NEW-INSTRUCTION Go-around-hurdle AS
 BEGIN
 turnleft;
 move;
 turnright;
 move;
 turnright;
 move;
 END;
 beginning-of-execution
 turnright;
 move;
 move;
 move;
 Go-around-hurdle;
 pickbeeper;
 turnleft;
 Go-around-hurdle;
 pickbeeper;
 turnleft;
 Go-around-hurdle;
 pickbeeper;
 turnleft;
 Go-around-hurdle;
 putbeeper;
 putbeeper;
 putbeeper;
 turnoff;
 end-of-execution
end-of-program

When you Execute your program, watch Karel. You will notice that Karel really doesn’t “remember” the
new vocabulary we have defined. Rather, each time Karel encounters a defined instruction, Karel looks it
up does what it says and promptly forgets it again. So Karel doesn’t really KNOW how to turnright. Karel
does know how to look up the definition, do three turnleft instructions. However, by creating these
instructions, our programs become easier for people to read.

