
CSE111-Spring 2008 H. Kershner
Nested If Statements

While Loop
Five Block Square Maze

Problem statement; Karel needs to move through the five block square maze
and stop when he gets to the opening.

Define Output: Karel stops when he locates the opening in the maze.
Define Input. Karel is at the beginning of a 5-block square maze, facing east.

Version 1)
If we didn’t know more than the primitive instructions we would do something like:

Move;
Move;
Move;
Move;
Move;
Turnleft;
Move;
Move;
Move;
Move;
Move;
Turnleft;
…

Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Nested If Statements

While Loop

But we do know more than the primitive instructions and we have tools to let
Karel make some basic decision. Remember decisions are made using an IF
statement.

Version 2)
How do we get Karel to move around the maze with less of the programmer’s
help? Look at the maze and look at the very straight forward instructions we have
written.

What question would Karel need to ask to determine IF it were time to turn left?

If front-is-clear then move
 Else
 Turnleft;

What happens when we enter that code?
Karel moves exactly one block. Why?
Because, we only told Karel to move one time or turnleft one time.

Version 3)
How do we get Karel to move a bunch of times? Iterate

Would this work?

Iterate 30 times
Begin
If front-is-clear then move
 Else
 Turnleft;
End;
Turnoff;

Karel certainly moves around the maze when we combine the iterate command
with the IF statement.

Version 4)
Are we solving the problem we were asked to solve? NO
Why?
Because, Karel stops when the iterate command finishes, wherever Karel
happens to be. Karel does not stop when he reaches the opening as the problem
statement required.

Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Nested If Statements

While Loop

How does Karel know when Karel is at the opening? How does Karel know when
Karel has completed his walk through the maze?

We, as the programmer, could count the number of times, but that sort of misses
the point. We need to create a decision (IF) that asks essentially “Am I done?”

How can Karel know when to stop? How does Karel know Karel is at the
opening?

 What does that mean?
Remember Karel can test any of the following conditions

front-is-clear front-is-blocked
left-is-clear left-is-blocked
right-is-clear right-is-blocked
next-to-a-beeper not-next-to-a-beeper
any-beepers-in-beeper-bag no-beepers-in-beeper-bag

Look at the 5-block maze. Which of these tests can we use to determine if Karel
is done?

When the right-is-clear Karel is done.

We could write the following:

If right-is-blocked then
Begin

If front-is-clear then move
 Else
 Turnleft;
End;

This is called a nested IF statement.
A nested IF statement means there is one If statement wrapped inside another IF
statement.

If right-is-blocked then
Begin

If front-is-clear then move
 Else
 Turnleft;
End;

Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Nested If Statements

While Loop
Version 5)
Let’s go back to our earlier program and add this critical test. We will use iterate
30 times again just to see what happens.

We know this is too much, but hopefully he will stop when he comes to the
opening.

Iterate 30 times
begin
If right-is-blocked then
Begin

If front-is-clear then move
 Else
 Turnleft;
End;
End;

This seems to work.

But watch what happens at the end.

Karel finds the opening, knows not to turn. But the iterate statement means Karel
has to really stand in place and do nothing for a bit until the iterate statement has
run its course.

So, we have solved our problem but not in a very efficient way.
One more tool the While instruction.

The While Instruction or While Loop

Karel uses the While instruction whenever a task is to be repeated an
undetermined number of times. Like the Iterate instruction it is used to have Karel
repeat a task. But with Iterate, Karel must know IN ADVANCE how many times
the programmer wants Karel to repeat a task.

The While instruction essentially combines an IF with an Iterate allowing Karel to
determine when Karel has completed a given task based on one of the tests
Karel is capable of performing.

Copyright © 2008 by Helene G. Kershner

CSE111-Spring 2008 H. Kershner
Nested If Statements

While Loop

Copyright © 2008 by Helene G. Kershner

A while statement looks like this:

WHILE < test > DO
 < instruction >

For example:

WHILE front-is-blocked DO turnleft;

Or

WHILE front-is-clear DO
 Begin
 Putbeeper;
 Move;
 End;

Going back to our program, moving around our maze seems a perfect
opportunity to use the While statement. We already have Karel testing for the
ending condition (right-is-blocked) only now we have a statement Karel can use
that will end Karel’s movement when he meets that ending condition.

Let us transform this program into one using a While statement.

Iterate 30 times
begin
If right-is-blocked then
Begin

If front-is-clear then move
 Else
 Turnleft;
End;
End;

Using the While loop we replace the IF right-is-blocked test with a While right-is-
blocked, and we replace the Iterate 30 times statement. Now we are letting Karel
do more of the work.

While right-is-blocked DO
Begin

If front-is-clear then move
 Else
 Turnleft;
End;

Notice, now when Karel reaches the end of the Maze Karel stops without sort of
“marching” in place as Karel was forced to do using the Iterate statement.

