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Abstract

Variational inference in the conjugate-exponential family

When learning models from data there is always the problem
of over-fitting/generalisation performance. In a Bayesian
approach this can be resolved by averaging over all possible
settings of the model parameters.

However for most interesting problems, averaging over
models leads to intractable integrals and so approximations
are necessary. Variational methods are becoming a
widespread tool to approximate inference and learning in
many graphical models: they are deterministic, generally fast,
and can monotonically increase an objective function which
transparently incorporates model complexity cost.

I’ll provide some theoretical results for the variational updates
in a very general family of ”conjugate-exponential” graphical
models, and show how well-known algorithms (e.g.
belief-propagation) can be readily incorporated in the
variational updates.

Some examples to illustrate the ideas: determining the most
probable number of clusters and their intrinsic latent-space
dimensionality in a Mixture of Factor Analysers model; and
recovering the hidden state-space dimensionality in a Linear
Dynamical System model.

This is work with Zoubin Ghahramani.



Outline

� Briefly review variational Bayesian learning.

� Concentrate on conjugate-exponential models.

� Variational Expectation-Maximisation (VEM).

� Examples in Mixture of Factor Analysers (MFA) and
Linear Dynamical Systems (LDS).



Bayesian approach

Motivation

� Maximum likelihood (ML) does not penalise complex
models, which can a priori model a larger range of data
sets.

� Bayes does not suffer from overfitting if we integrated out
all the parameters.

� We should be able to do principled model comparison.

Method

� Express distributions over all parameters in the model.

� Calculate the Evidence

P(Y jM) =

Z
d� P(Y j�;M)P(�jM):

too simple

too complex

"just right"
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(adapted from D.J.C. MacKay)

Problem

� These integrals are computationally intractable.



Practical approaches

� Laplace approximations:

– Appeal to Central Limit Theorem, making a Gaussian
approximation about the maximum a posteriori
parameter estimate.

� Large sample approximations:

– e.g. BIC.

� Markov chain Monte Carlo (MCMC):

– Guaranteed to converge in the limit.

– Many samples required for accurate results.

– Hard to assess convergence.

� Variational approximations.



The variational method

Let the hidden states be X and the parameters �,

lnP(Y ) = ln
Z
dX d� P(Y;X; �)

�

Z
dX d� Q(X; �) ln

P(Y;X; �)

Q(X; �)
:

Approximate the intractable distribution over hidden states
(X) and parameters (�) with a simpler distribution.

lnP(Y ) = ln
Z
dX d� P(Y;X; �)

�

Z
dX d� QX(X)Q�(�) ln

P(Y;X; �)

QX(X)Q�(�)

= F(Q;Y ):

Maximisation of this lower bound leads to EM-like updates:

E� step Q�
X(X) / exp hlnP(X;Y j�)iQ�(�)

M� step Q�
�(�) / P(�) exp hlnP(X;Y j�)iQX(X)

Equivalent to minimizing the KL-divergence between the
approximating and true posteriors.



a bit more explanation

F(Q;Y ) =

Z
dX d� QX(X)Q�(�) ln

P(X; Y; �)

QX(X)Q�(�)

=

Z
d� Q�(�)

"
ln
P(�)

Q�(�)
+

Z
dX QX(X) ln

P(X; Y j�)

QX(X)

#
:

e.g. setting a derivative to zero:

@F(Q;Y )

@Q�(�)
/ lnP(�)� 1� lnQ�(�) + hlnP(X; Y j�)iQX(X)

E� step Q�
X(X) / exp hlnP(X;Y j�)iQ�(�)

M� step Q�
�(�) / P(�) exp hlnP(X;Y j�)iQX(X)

Question:

What distributions can we make use of in our models?



Conjugate-Exponential models

Consider variational Bayesian learning in models that satisfy:

Condition (1). The complete data likelihood is in the
exponential family:

P(x;yj�) = f(x;y) g(�) exp
n
�(�)>u(x;y)

o
where �(�) is the vector of natural parameters, and u and f
and g are the functions that define the exponential family.

Condition (2). The parameter prior is conjugate to the
complete data likelihood:

P(�j�;�) = h(�; �) g(�)� exp
n
�(�)>�

o
where � and � are hyperparameters of the prior.

We call models that satify conditions (1) and (2)
conjugate-exponential.



Exponential family models

Some models that are in the exponential family:

� Gaussian mixtures,

� factor analysis, probabilistic PCA,

� hidden Markov models and factorial HMMs,

� linear dynamical systems and switching state-space
models,

� Boltzmann machines,

� discrete-variable belief networks.

Other as yet undreamt-of models can combine Gaussian, Gamma,

Poisson, Dirichlet, Wishart, Multinomial and others.

Some which are not in exponential family:

� sigmoid belief networks,

� independent components analysis

Make approximations/changes to move into exponential family...



Theoretical Results

Theorem 1 Given an iid data set Y = (y1; : : :yn), if the
model satisfies conditions (1) and (2), then at the maxima of
F(Q;Y ) (minima of KL(QkP)):

(a) Q�(�) is conjugate and of the form:

Q�(�) = h(~�; ~�)g(�)~� exp
n
�(�)>~�

o
where ~� = �+ n, ~� = � +

Pn
i=1 u(xi;yi), and

u(xi;yi) = hu(xi;yi)iQ, using h�iQ to denote
expectation under Q.

(b) QX(X) =
Qn
i=1Qxi(xi) and Qxi(xi) is of the same

form as the known parameter posterior:

Qxi(xi) / f(xi;yi) exp
n
�(�)>u(xi;yi)

o
= P(xijyi;�(�))

where �(�) = h�(�)iQ.

KEY points: (a) the approximate parameter posterior is of the
same form as the prior; (b) the approximate hidden variable
posterior is of the same form as the hidden variable posterior
for known parameters.



Variational EM algorithm

Since Q�(�) and Qxi(xi) are coupled, (a) and (b) do not
provide an analytic solution to the minimisation problem.

VE Step: Compute the expected sufficient statistics
t(Y ) =

P
i u(xi;yi) under the hidden variable

distributions Qxi(xi).

VM Step: Compute the expected natural parameters
�(�) under the parameter distribution given by ~� and ~�.

Properties:

� VE step has same complexity as corresponding E step.

� Reduces to the EM algorithm if Q�(�) = Æ(� � ��). M
step then involves re-estimation of ��.

� F increases monotonically, incorporates model
complexity penalty.



Belief networks

Corollary 1: Conjugate-Exponential Belief Networks. Let
M be a conjugate-exponential model with hidden and visible
variables z = (x;y) that satisfy a belief network factorisation.
That is, each variable zj has parents zpj and
P (zj�) =

Q
j P (zjjzpj ;�). Then the approximating joint

distribution for M satisfies the same belief network
factorisation:

Qz(z) =
Y
j

Q(zjjzpj ;
~�)

where the conditional distributions have exactly the same
form as those in the original model but with natural
parameters �(~�) = �(�). Furthermore, with the modified
parameters ~�, the expectations under the approximating
posterior Qx(x) / Qz(z) required for the VE Step can be
obtained by applying the belief propagation algorithm if the
network is singly connected and the junction tree algorithm if
the network is multiply-connected.



Markov networks

Theorem 2: Markov Networks. Let M be a model with
hidden and visible variables z = (x;y) that satisfy a Markov
network factorisation. That is, the joint density can be written
as a product of clique-potentials  j,
P (zj�) = g(�)

Q
j  j(Cj;�), where each clique Cj is a

subset of the variables in z. Then the approximating joint
distribution for M satisfies the same Markov network
factorisation:

Qz(z) = ~g
Y
j

 j(Cj)

where  j(Cj) = exp
n
hln j(Cj;�)iQ

o
are new clique

potentials obtained by averaging over Q�(�), and ~g is a
normalisation constant. Furthermore, the expectations under
the approximating posterior Qx(x) required for the VE Step
can be obtained by applying the junction tree algorithm.

Corollary 2: Conjugate-Exponential Markov Networks.
Let M be a conjugate-exponential Markov network over the
variables in z. Then the approximating joint distribution for M
is given by Qz(z) = ~g

Q
j  j(Cj;~�), where the clique

potentials have exactly the same form as those in the original
model but with natural parameters �(~�) = �(�).



Mixture of factor analysers

p-dim. vector y generated from k unobserved independent
Gaussian sources, x, then corrupted with Gaussian noise, r,
with diagonal covariance matrix 	: y = �x+ r.

Marginal density of y is Gaussian with zero mean and
covariance ��T +	.

ν1

Λ1 α

Ψ

a,b

...ν2 νS

Λ2 ΛS...

yn

xn

sn π

n=1...N

� Complete data likelihood is in exponential family.

� Choose conjugate priors:
(� � Gamma, � �Gaussian, � �Dirichlet).

VE: posteriors over hidden states calculated as usual.
VM: posteriors over parameters have same form as priors.



Synthetic example

True data: 6 Gaussian clusters with dimensions: (1 7 4 3 2 2)
embedded in 10 dimensions.

Inferred structure:

� Finds the clusters and their dimensionalities.

� Model complexity reduces in line with lack of data
support.

                  number of points 
                  per cluster 1 7 4 3 2 2

8         2      1
8     1   2
16 1       4 2
32 1 6 3 3 2 2
64 1 7 4 3 2 2
128 1 7 4 3 2 2

intrinsic dimensionalities



Linear Dynamical Systems

X 3

Y3

X 1

Y1

X 2

Y2

X T

YT

� Sequence of D-dimensional real-valued observed
vectors y1:T .

� Assume at each time step t, yt was generated from a
k-dimensional real-valued hidden state variable xt, and
that the sequence of x1:T define a first order Markov
process.

� The joint probability is given by

P(x1:T ;y1:T ) = P(x1)P(y1jx1)
TY
t=2

P(xtjxt�1)P(ytjxt):

� If transition and output functions are linear, time-invariant,
and noise distributions are Gaussian, this is a
Linear-Gaussian state-space model:

xt = Axt�1+wt; yt = Cxt+ rt:



Model selection using ARD

Dynamics matrix,A

Output matrix,C

EM underlying

� Gaussian priors on the entries in the columns of these
matrices.
P(aij�) = N (0;diag(�)�1); P(cij�) = N (0;diag(�i�)

�1)

� � and � are vectors of hyperparameters, to be
optimised during learning. Some �,�!1.

� Empty columns signify extinct hidden dimensions for:

– modelling hidden dynamics,

– for modelling output covariance structure.



LDS variational approximation

Parameters of the model � = (A;C;�), hidden states x1:T .

lnP(Y ) = ln
Z
dAdC d� dx1:t P(A;C;�;x1:T ;y1:T ):

Lower bound: Jensen’s inequality

lnP (Y ) � F(Q;Y ) =

Z
dAdC d� dx1:T Q(A;C;�;x1:T ) �

ln
P(A;C;�;x1:T ;y1:T )

Q(A;C;�;x1:T )
:

Factored approximation to the true posterior

Q(A;C;�;x1:T ) = QA(A)QC�(C;�)Qx(x1:T ):

This factorisation falls out from the initial assumptions and the
conditional independencies in the model.

Priors:

� Sensor precisions, �, given conjugate gamma priors.

� Transition and output matrices given conjugate
zero-mean Gaussian priors — ARD.



Optimal Q(�) distributions: LDS

Complete data likelihood is of conjugate-exponential form:
iterative analytic maximisations.

Dynamics matrix QA(A): A � N (ai; ai;�A
i )

ai = S>�A
i ; �A

i = (diag(�) +W)�1

Noise covariance Q�(�): �i � Gamma(�i;~a;~b)

~a= a+ T=2; ~b = b+ gi=2

Output matrix QC(Cj�i): C � N (ci; ci;�C
i )

ci = �iUi�
C
i ; �C

i = (diag(�) +W 0)�1=�i

Hidden state Qx(x1:T): xt � N (xt; �
(T )
t ;	

(T )
t )

f�
(T )
t ;	

(T )
t g = KalmanSmoother(QAC�;y1:T)

Hyperparameters �;�: 1=� = ha � aiQA

1=� = hc � ciQC�

S =

TX
t=2

hxt�1x
>

t i; W =

T�1X
t=1

hxtx
>

t i; W 0 =W + hxtx
>

t i

gi =

TX
t=1

y2ti � Ui(diag(�) +W 0)U>

i ; Ui =

TX
t=1

ytihx
>

t i;



Method overview

1. Randomly initialise the approximate posteriors;

2. Update each posterior according to variational E- & M-
steps

� QA(A) QC�(Cj�) Q�(�) Qx(x1:T );

3. Update the hyperparameters: � and �;

4. Repeat steps 2-3 until convergence.



Variational E Step for LDS

X 3

Y3

X 1

Y1

X 2

Y2

X T

YT

� Conjugate-exponential singly connected belief network,

� (C1) use Belief Propagation, which for LDSs is the
Kalman smoother:

Forward: infer state xt given past observations,
Backward: infer state xt given future observations.

� Inference using an ensemble of parameters is possible,
using just a single setting of the parameters.

Required averages: h�icii; h�icici>i; hAi; hA>Ai

� The result is a recursive algorithm very similar to the
Kalman smoothing propagation.



Synthetic experiments

Generated a variety of state-space models and looked the
recovered hidden structure.

Observed data is � 10-dim output � 200 time-steps

� True model: 3-dim static state-space.

Inferred model:

X X Y

A C

� True model: 3-dim dynamical state-space.

Inferred model:

X X Y

� True model: 4-dim state-space, of which 3 dynamical.

Inferred model:

X X Y



Degradation with data support

True model: � 6-dim state-space � 10-dim output

Complexity of recovered structure decreases with decreasing
data support (400 to 10 time-steps).

Inferred models:

X X Y

400

X X Y

350

X X Y

250

X X Y

100

X X Y

30

X X Y

20

X X Y

10



Summary

� Bayesian learning avoids overfitting and can be used to
learn model structure.

� Tractable learning using variational approximations.

� Conjugate-exponential familes of models.

� Variational EM and integration of existing algorithms.

� Examples learning structure in MFA and LDS models.

Issues & Extensions

� Quality of the variational approximations?

� How best to bring a model into exponential family?

� Extensions to other models, e.g. switching state-space
models [Ueda], is straightforward.

� Problems integrating existing algorithms into the VE step.

� Implementation on a general graphical model.



Optimal Q(�) distributions: MFA

Q(xnjsn) sN (xn;s;�s) : �s�1 = h�sT	�1�s
iQ(�s)+ I

xn;s = �s�
sT
	�1yn

Q(�s
q) sN (�

s

q;�
q;s) : �

s

q =

"
	�1

NX
n=1

Q(sn)ynxn;sT�q;s

#
q

�q;s�1 =	�1
qq

NX
n=1

Q(sn)hxnxnT iQ(xnjsn)+ diagh�siQ(�s)

Q(�sl ) sGamma(asl ; b
s
l ) : a

s
l = a+

p

2

bsl = b+
1

2

pX
q=1

h�s
ql
2
iQ(�s)

Q(�) sDirichlet(!u) : !us =
�

S
+

NX
n=1

Q(sn)

lnQ(sn) = [ (!us)�  (!)] +
1

2
ln j�s

j+

hlnP(ynjxn; sn;�s;	)iQ(xnjsn)Q(�s)+ c

Note that the optimal distributions Q(�s) have block diagonal covariance
structure. So even though each �s is a p� q matrix, its covariance only
has O(pq2) parameters.

Differentiating F with respect to the parameters, a and b, of the precision
prior we get fixed point equations  (a) = hln �i+ ln b and b= a=h�i.
Similarly the fixed point for the hyperparameters for the Dirichlet prior is
 (�)�  (�=S) +

P
[ (!us)�  (!)] =S = 0.



Sampling from Variational

Approximations

Sampling �m s Q(�) gives us estimates of:

� The Exact Predictive Density:

P(yjY ) =

Z
d� P(yj�)P(�jY )

=

Z
d� Q(�)P(yj�)

P(�jY )

Q(�)

�

MX
m=1

P(yj�m)!m

weights: !m = 1


P(�m;Y )
Q(�m)

; with
 s:t:
P
!m = 1

� The True Evidence:

P(Y jM) =
Z
d� Q(�)

P(�; Y )

Q(�)
= h
!i

� The KL Divergence:

KL(Q(�)kP(�jY )) = lnh!i � hln!i:



Variational Bayes & Ensemble Learning

� multilayer perceptrons (Hinton & van Camp, 1993)

� mixture of experts (Waterhouse, MacKay & Robinson, 1996)

� hidden Markov models (MacKay, 1995)

� other work by Jaakkola, Barber, Bishop, Tipping, etc

Examples of VB Learning Model

Structure

Model learning has been treated with variational Bayesian
techniques for:

� mixtures of factor analysers (Ghahramani & Beal, 1999)

� mixtures of Gaussians (Attias, 1999)

� independent components analysis (Attias, 1999; Miskin &

MacKay, 2000; Valpola 2000)

� principal components analysis (Bishop, 1999)

� linear dynamical systems (Ghahramani & Beal, 2000)

� mixture of experts (Ueda & Ghahramani, 2000)

� hidden Markov models (Ueda & Ghahramani, in prep)

(compiled by Zoubin)



Evolution of F , true evidence and

KL-divergence
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Required expectations for
linear-Gaussian state-space models

de�ning G0 = diag

�
a+ T=2

b+G=2

�

hC>R�1Ci =
�
diag�+W 0

�
�1

�

h
p+ UG0U>

�
diag�+W 0

�
�1
i

hC>R�1
i =

�
diag�+W 0

�
�1
UG0

hAi = S> (diag�+W)�1

hA>Ai = k (diag�+W)�1+ hAi>hAi

where S =
PT

t=2



xt�1xt

>

�
, W =

PT�1
t=1



xtxt

>

�
, Ui =

PT

t=1 ytihxt
>i

and W 0 =W +


xTxT

>

�
.

Kalman smoothing propagation
Forward recursion:

��

t =
�
��1

t + hA>Ai
�
�1

�t = �t

�
hC>R�1

iyt + hAi��

t�1�
�1
t�1�t�1

�
�t =

�
I + hC>R�1Ci � hAi��

t�1hAi
>
�
�1

Backward recursion:

�t = 	t

h
��1

t �t + hAi>
�
	�1

t+1
+ hAi��

t hAi
>
�
�1

��
	�1

t+1
�t+1 � hAi��

t�
�1
t �t

��
	t =

h
��

t
�1

� hAi>
�
	�1

t+1+ hAi��

t hAi
>
�
�1

hAi
i
�1

cov(xt;xt+1) =
��
	�1

t+1+ hAi��

t hAi
>
�
hAi�>��

t � hAi
�
�1


