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Overview ML Meeting
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Bayesian model selection

Approximations using Variational Bayesian EM

Annealed Importance Sampling

Structure scoring in discrete Directed Acyclic Graphs

Cheeseman-Stutz vs. Variational Bayes (if time)



Bayesian Model Selection ML Meeting
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Select the model class mj with the highest probability given the data y:

p(mj|y) =
p(mj)p(y|mj)

p(y)
, p(y|mj) =

∫
dθj p(θj|mj)p(y|θj,mj)

Interpretation: The probability that randomly selected parameter values from the
model class would generate data set y.

too simple

too complex

"just right"

Data Sets

P
(D

at
a)

Y

Model classes that are too simple are unlikely to generate the data set.

Model classes that are too complex can generate many possible data sets, so again,
they are unlikely to generate that particular data set at random.



Intractable Likelihoods ML Meeting
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The marginal likelihood is often a difficult integral

p(y|m) =
∫
dθ p(θ|m)p(y|θ)

x θ

y

• because of the high dimensionality of the parameter space

• analytical intractability

• and also due to the presence of hidden variables:

p(y|m) =
∫
dθ p(θ|m)p(y|θ)

=
∫
dθ p(θ|m)

∫
dx p(y,x|θ,m)



Practical Bayesian methods ML Meeting
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• Laplace approximations:

– Appeal to Central Limit Theorem, making a Gaussian approximation about the
maximum a posteriori parameter estimate, θ̂.

ln p(y|m) ≈ ln p(θ̂ |m) + ln p(y | θ̂) + d
2 ln 2π − 1

2 ln |H|

• Large sample approximations:

– e.g. BIC: as n→∞, ln p(y|m) ≈ ln p(y | θ̂)− d
2 lnn

• Markov chain Monte Carlo (MCMC):

– Guaranteed to converge in the limit.
– Many samples required for accurate results.
– Hard to assess convergence.

• Variational approximations ... this changes the cost function

Other deterministic approximations are also available now: e.g. Bethe approximations (Yedidia,

Freeman & Weiss, 2000) and Expectation Propagation (Minka, 2001).



Lower Bounding the Marginal Likelihood

Variational Bayesian Learning

ML Meeting
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Let the hidden states be x, data y and the parameters θ.

We can lower bound the marginal likelihood (Jensen’s inequality):

x θ

y

ln p(y|m) = ln
∫
dx dθ p(y,x,θ |m)

= ln
∫
dx dθ q(x,θ)

p(y,x,θ |m)
q(x,θ)

≥
∫
dx dθ q(x,θ) ln

p(y,x,θ |m)
q(x,θ)

.

Use a simpler, factorised approximation to q(x,θ):

ln p(y |m) ≥
∫
dx dθ qx(x)qθ(θ) ln

p(y,x,θ |m)
qx(x)qθ(θ)

= Fm(qx(x), qθ(θ),y).



Updating the variational approximation . . . ML Meeting
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Maximizing this lower bound, Fm, leads to EM-like updates:

q∗x(x) ∝ exp
[∫

dθ qθ(θ) ln p(x,y |θ)
]

E−like step

q∗θ(θ) ∝ p(θ) exp
[∫

dx qx(x) ln p(x,y |θ)
]

M−like step

Maximizing Fm is equivalent to minimizing KL-divergence between the approximate
posterior, qθ(θ) qx(x) and the true posterior, p(θ,x|y,m):

ln p(y|m)︸ ︷︷ ︸
desired

quantity

−Fm(qx(x), qθ(θ),y)︸ ︷︷ ︸
computable

=
∫
dx dθ qx(x) qθ(θ) ln

qx(x) qθ(θ)
p(x,θ |y,m)

= KL(q‖p)︸ ︷︷ ︸
measure of inaccuracy of approximation

In the limit as n → ∞, for identifiable models, the variational lower bound
approaches Schwartz’s (1978) BIC criterion.



Conjugate-Exponential models ML Meeting
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Let’s focus on conjugate-exponential (CE) models, which satisfy (1) and (2):

Condition (1). The joint probability over variables is in the exponential family:

p(x,y|θ) = f(x,y) g(θ) exp
{
φ(θ)>u(x,y)

}
where φ(θ) is the vector of natural parameters, u are sufficient statistics

Condition (2). The prior over parameters is conjugate to this joint probability:

p(θ|η,ν) = h(η,ν) g(θ)η exp
{
φ(θ)>ν

}
where η and ν are hyperparameters of the prior.

Conjugate priors are computationally convenient and have an intuitive interpretation:

• η: number of pseudo-observations
• ν: values of pseudo-observations



Conjugate-Exponential examples ML Meeting
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In the CE family:

• Gaussian mixtures
• factor analysis, probabilistic PCA
• hidden Markov models and factorial HMMs
• linear dynamical systems and switching models
• discrete-variable belief networks

Other as yet undreamt-of models can combine Gaussian, Gamma, Poisson, Dirichlet, Wishart,

Multinomial and others.

Not in the CE family:

• Boltzmann machines, MRFs (no conjugacy)
• logistic regression (no conjugacy)
• sigmoid belief networks (not exponential)
• independent components analysis (not exponential)

One can often approximate these models with models in the CE family e.g. IFA
(Attias, 1998).



A very useful result ML Meeting
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Theorem Given an iid data set y = (y1, . . .yn), if the model is CE then:

(a) qθ(θ) is also conjugate, i.e.

qθ(θ) = h(η̃, ν̃)g(θ)η̃ exp
{
φ(θ)>ν̃

}
(b) qx(x) =

∏n
i=1 qxi(xi) is of the same form as in the E step of regular EM, but

using pseudo parameters computed by averaging over qθ(θ)

qxi(xi) ∝ f(xi,yi) exp
{
φ
>

u(xi,yi)
}

= p(xi|yi, θ̃)

where φ = 〈φ(θ)〉qθ(θ)
?= φ(θ̃)

KEY points:
(a) the approximate parameter posterior is of the same form as the prior;
(b) the approximate hidden variable posterior, averaging over all parameters, is of
the same form as the exact hidden variable posterior under θ̃.



The Variational Bayesian EM algorithm ML Meeting
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EM for MAP estimation

Goal: maximize p(θ|y,m) w.r.t. θ

E Step: compute

q(t+1)
x (x) = p(x|y,θ(t))

M Step:

θ
(t+1)

= arg max
θ

∫
dx q(t+1)

x (x) ln p(x, y, θ)

Variational Bayesian EM

Goal: lower bound p(y|m)
VB-E Step: compute

q(t+1)
x (x) = p(x|y, φ̄(t))

VB-M Step:

q
(t+1)
θ (θ)∝ exp

[∫
dx q(t+1)

x (x) ln p(x, y, θ)

]

Properties:

• Reduces to the EM algorithm if qθ(θ) = δ(θ − θ∗).
• Fm increases monotonically, and incorporates the model complexity penalty.
• Analytical parameter distributions (but not constrained to be Gaussian).
• VB-E step has same complexity as corresponding E step.
• We can use the junction tree, belief propagation, Kalman filter, etc, algorithms

in the VB-E step of VB-EM, but using expected natural parameters, φ̄.



Variational Bayesian EM ML Meeting
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The Variational Bayesian EM algorithm has been used to approximate Bayesian
learning in a wide range of models, such as:

• probabilistic PCA and factor analysis (Bishop, 1999)

• mixtures of Gaussians (Attias, 1999)

• mixtures of factor analysers (Ghahramani & Beal, 1999)

• state-space models (Ghahramani & Beal, 2000; Beal, 2003)

• ICA, IFA (Attias, 1999; Miskin & MacKay, 2000; Valpola 2000)

• mixtures of experts (Ueda & Ghahramani, 2000)

• hidden Markov models (MacKay, 1995; Beal, 2003)

The main advantage is that it can be used to automatically do model selection
and does not suffer from overfitting to the same extent as ML methods do.

Also it is about as computationally demanding as the usual EM algorithm.

See: www.variational-bayes.org

http://www.variational-bayes.org


Graphical Models ML Meeting
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(Bayesian Networks / Directed Acyclic Graphical Models)

A
B

C

D

E

A Bayesian network corresponds to a
factorization of the joint distribution:

p(A,B,C,D,E) =p(A)p(B)p(C|A,B)

p(D|B,C)p(E|C,D)

In general: p(X1, . . . , Xn) =
n∏
i=1

p(Xi|Xpa(i))

where pa(i) are the parents of node i.

Semantics: X⊥⊥Y |V if V d-separates X from Y .

Two advantages: interpretability and efficiency.



Model Selection Task ML Meeting
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Which of the following graphical models is the data generating process?
Discrete directed acyclic graphical models: data y = (A,B,C,D,E)n
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likelihood
tractable

If the data are just y = (C,D,E)n, and s = (A,B)n are hidden variables... ?
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Case study: Discrete DAGs ML Meeting
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Let the hidden and observed variables be denoted with z = {z1, . . . , zn} = {s1, y1, . . . , sn, yn},

of which some j ∈ H are hidden and j ∈ V are observed variables, i.e. si = {zij}j∈H and

yi = {zij}j∈V .

Complete-data likelihood

p(z |θ)=
n∏
i=1

|zi|∏
j=1

p(zij | zipa(j),θ) ,

Complete-data marginal likelihood

p(z |m)=
∫
dθ p(θ |m)

n∏
i=1

|zi|∏
j=1

p(zij | zipa(j),θ)

Incomplete-data likelihood

p(y |θ) =
n∏
i=1

p(yi |θ) =
n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

p(zij | zipa(j),θ)

Incomplete-data marginal likelihood

p(y |m) =
∫
dθ p(θ |m)

n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

p(zij | zipa(j),θ) (intractable!)



The BIC and CS approximations ML Meeting
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BIC - Bayesian Information Criterion

p(y|m) =
∫
dθ p(θ |m)p(y |θ) ,

ln p(y|m) ≈ ln p(y|m)BIC = ln p(y | θ̂)︸ ︷︷ ︸
use EM

to find θ̂

−d
2

lnn .

CS - Cheeseman-Stutz criterion

p(y |m) = p(z |m)
p(y |m)
p(z |m)

= p(s,y |m)
∫
dθ p(θ |m)p(y |θ)∫

dθ′ p(θ′ |m)p(s,y |θ′)
, (∗)

ln p(y|m) ≈ ln p(y |m)CS = ln p(ŝ,y |m) + ln p(y | θ̂)− ln p(ŝ,y | θ̂) .

(∗) is correct for any completion s of the hidden variables, so what completion ŝ
should we use? [ CS uses result of E-step from the EM algorithm. ]



Experiments ML Meeting
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• Bipartite structure: only hidden variables can be parents of observed variables.
Two binary hidden variables, and four five-valued discrete observed variables.

yi1

si1 si2

yi2 yi3 yi4

i=1...n

• Conjugate prior is Dirichlet, Conjugate-Exponential model, so the
VB-EM algorithm is a straightforward modification of EM.

• Experiment: There are 136 distinct structures (out of 256) with 2 latent variables
as potential parents of 4 conditionally independent observed vars.

• Score each structure for twenty varying size data sets:
n ∈ {10, 20, 40, 80, 110, 160, 230, 320, 400, 430, 480, 560, 640, 800, 960, 1120, 1280, 2560, 5120, 10240}

using 4 methods: BIC, CS, VB, and a gold standard AIS

• 2720 graphs to score, times for each: BIC (1.5s), CS (1.5s), VB (4s), AIS (400s).



Annealed Importance Sampling (AIS) ML Meeting
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AIS is a state-of-the-art method for estimating marginal likelihoods, by breaking a
difficult integral into a series of easier ones.

Combines ideas from importance sampling, Markov chain Monte Carlo, & annealing.

Define Zk =
∫
dθ p(θ |m)p(y |θ)τ(k) =

∫
dθ fk(θ)

with τ(0) = 0 =⇒ Z0 =
∫
dθ p(θ |m) = 1 ← normalisation of prior,

and τ(K) = 1 =⇒ ZK = p(y |m) ← marginal likelihood.

Schedule: {τ(k)}Kk=1,
ZK
Z0
≡ Z1

Z0

Z2

Z1
. . .

ZK
ZK−1

.

Importance sample from fk−1(θ) as follows: with θ(r) ∼ fk−1(θ) ,

Zk
Zk−1

≡
∫
dθ

fk(θ)
fk−1(θ)

fk−1(θ)
Zk−1

≈ 1
R

R∑
r=1

fk(θ(r))

fk−1(θ(r))
=

1
R

R∑
r=1

p(y |θ(r),m)τ(k)−τ(k−1)

• How reliable is AIS? How tight are the variational bounds?



How reliable is the AIS for this problem? ML Meeting
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Varying the annealing schedule with random initialisation. n = 480,K = 26 . . . 218
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Scoring all structures by every method ML Meeting
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Every method scoring every structure ML Meeting
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MAP BIC BICp CS VB AIS(5)

10

160

640
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2560
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10240



Ranking of the true structure by each method ML Meeting
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n MAP BIC BICp CS VB AIS(5)

10 21 127 50 129 115 59

20 12 118 64 111 124 135

40 28 127 124 107 113 15

80 8 114 99 78 116 44

110 8 109 103 98 113 2

160 13 119 111 114 81 6

230 8 105 93 88 54 54

320 8 111 101 90 33 78

400 6 101 72 77 15 8

430 7 104 78 68 14 18

480 7 102 92 80 44 2

560 9 108 98 96 31 11

640 7 104 97 105 17 7

800 9 107 102 108 26 23

960 13 112 107 76 13 1

1120 8 105 96 103 12 4

1280 7 90 59 6 3 5

2560 6 25 15 11 11 1

5120 5 6 5 1 1 1

10240 3 2 1 1 1 1



Ranking the true structure ML Meeting
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VB score finds correct structure earlier, and more reliably
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Acceptance rate of the AIS sampler ML Meeting
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M-H acceptance fraction, measured over each of four quarters of the annealing schedule
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How true are the various scores? ML Meeting
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Difference in scores between true and top-ranked structures
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Average Rank of the true structure ML Meeting
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Averaged over true structure parameters drawn from the prior (106 instances)
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True ⇐⇒ Top-ranked score differences ML Meeting
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Averaged over true structure parameters drawn from the prior (106 instances)
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Overall Success Rate of each method ML Meeting
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Averaged over true structure parameters drawn from the prior (106 instances)
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Results summary ML Meeting
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• VB outperforms BIC on ranking: 20 data sets, and 95 instances.

% times that \ than BIC* BICp* CS* BIC BICp CS

VB ranks worse 16.9 30.2 31.8 15.1 29.6 30.9

same 11.1 15.0 20.2 11.7 15.5 20.9

better 72.0 54.8 48.0 73.2 55.0 48.2

• AIS standard can break down at high n, violating VB strict lower bound when
scoring the 136 structures:

n 10 . . . 560 640 800 960 1120 1280 2560 5120 10240

% M-H rej. <40.3 41.5 43.7 45.9 47.7 49.6 59.2 69.7 79.2

single

#AIS(1)<VB ≤7.5 15.1 9.4 14.2 12.3 20.8 31.1 59.4 74.5

averaged

#AIS(5)<VB ≤1.9 0.0 0.0 0.0 1.5 2.2 5.1 19.9 52.9

• AIS has many parameters to tune: Metropolis-Hastings proposal widths/shapes,
annealing schedules (non-linear), # samples, reaching equilibrium...

VB has none!



Cheeseman-Stutz is a lower bound ML Meeting
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p(y |m)CS = p(ŝ,y |m)
p(y | θ̂)

p(ŝ,y | θ̂)
≤ p(y |m) .

p(y |m) =

∫
dθ p(θ)

n∏
i=1

p(yi | θ) ≥
∫
dθ p(θ)

n∏
i=1

exp

∑
si

qsi(si) ln
p(si, yi | θ)

qsi(si)

 .

p(y | θ̂) =
n∏
i=1

p(yi | θ̂) =
n∏
i=1

exp

∑
si

q̂si(si) ln
p(si, yi | θ̂)

q̂si(si)

 .

where q̂si(si) ≡ p(si | y, θ̂) , ŝi : ln p(ŝi, y | θ̂) =
∑

si

q̂si(si) ln p(si, yi | θ) .

p(y |m) ≥
n∏
i=1

exp

∑
si

q̂si(si) ln
1

q̂si(si)

 ·
∫
dθ p(θ)

n∏
i=1

exp

∑
si

q̂si(si) ln p(si, yi | θ)


=

p(y | θ̂)∏n
i=1 exp

{∑
si
q̂si(si) ln p(si, yi | θ̂)

} ∫ dθ p(θ)
n∏
i=1

exp

∑
si

q̂si(si) ln p(si, yi | θ)


=

p(y | θ̂)∏n
i=1 p(ŝi, yi | θ̂)

∫
dθ p(θ)

n∏
i=1

p(ŝi, yi | θ) .



VB can be made universally tighter than CS ML Meeting

15/09/03

ln p(y |m)CS ≤ Fm(qs(s), qθ(θ)) ≤ ln p(y |m) .

Let’s approach this result by considering the following forms for qs(s) and qθ(θ):

qs(s) =
n∏
i=1

qsi(si) , with qsi(si) = p(si |yi, θ̂) ,

qθ(θ) ∝ 〈ln p(θ)p(s,y |θ)〉qs(s) .

We write the form for qθ(θ) explicitly:

qθ(θ) =
p(θ)

∏n
i=1 exp

{∑
si
qsi(si) ln p(si,yi |θ)

}
∫
dθ′ p(θ′)

∏n
i=1 exp

{∑
si
qsi(si) ln p(si,yi |θ′)

} ,

and then substitute qs(s) and qθ(θ) into the variational lower bound Fm.



Fm(qs(s), qθ(θ)) =
∫
dθ qθ(θ)

n∑
i=1

∑
si

qsi(si) ln
p(si,yi |θ)
qsi(si)

+
∫
dθ qθ(θ) ln

p(θ)
qθ(θ)

=
∫
dθ qθ(θ)

n∑
i=1

∑
si

qsi(si) ln
1

qsi(si)

+
∫
dθ qθ(θ) ln

∫
dθ′ p(θ′)

n∏
i=1

exp

∑
si

qsi(si) ln p(si,yi |θ′)


=

n∑
i=1

∑
si

qsi(si) ln
1

qsi(si)
+ ln

∫
dθ p(θ)

n∏
i=1

exp

∑
si

qsi(si) ln p(si,yi |θ)

 .

With this choice of qθ(θ) and qs(s) we acheive equality between the CS and VB
approximations.

We complete the proof by noting that at the very next step of VBEM (VBE-step) is
guaranteed to increase or leave unchanged Fm, and hence surpass the CS bound.



Summary & Conclusions ML Meeting
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• Bayesian learning avoids overfitting and can be used to do model selection.

• Variational Bayesian EM for CE models and propagation algorithms.

• These methods have advantages over MCMC in that they can provide fast
approximate Bayesian inference. Especially important in machine learning
applications with large data sets.

• Results: VB outperforms BIC and CS in scoring discrete DAGs.

• VB approaches the capability of AIS sampling, at little computational cost.

– Finds the true structure consistently, whereas AIS needs tuning (e.g. large n).
– Compute time:

BIC CS VB AIS
time to compute each graph score 1.5s 1.5s 4s 400s
total time for all 2720 graphs 1hr 1hr 3hrs 13days

• No need to use CS because VB is provably better!



Future Work ML Meeting
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• Comparison to other methods:

– Laplace Method
– Other more sophisticated MCMC variants? (e.g. slice sampling)
– Bethe/Kikuchi approximations to marginal likelihood for discrete models

(Heskes)

• Incorporate into a local search algorithm over structures (exhaustive enumeration
done here is only of academic interest!).

• Extend to Gaussian and other non-discrete graphical models.

• Apply to real-world data sets.

• VB tools development:

– Overlay an AIS module into a general variational inference engine, such as
VIBES (Winn et al.)

– Automated algorithm derivation, such as AutoBayes (Gray et al.)



ML Meeting
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no more slides... coffee
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