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Bayesian model selection

Approximations using Variational Bayesian EM

Annealed Importance Sampling

Structure scoring in discrete Directed Acyclic Graphs

Cheeseman-Stutz vs. Variational Bayes (if time)
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Select the model class m; with the highest probability given the data y:

p(msly) :p(mj;f;“')"mj), pylin,) = [ 0, p(0;1m;)p(v165,m,

Interpretation: The probability that randomly selected parameter values from the
model class would generate data set y.

m too simple

P(Data)

_ "just right"

[ \ too complex j::.{ "’*':Z‘.‘
/ J H k; L > ) :'..’:: 2 e

Y

Data Sets

Model classes that are too simple are unlikely to generate the data set.

Model classes that are too complex can generate many possible data sets, so again,
they are unlikely to generate that particular data set at random.
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The marginal likelihood is often a difficult integral ° e

p(ylm) = /d9 p(8lm)p(y|0)

e because of the high dimensionality of the parameter space
e analytical intractability

e and also due to the presence of hidden variables:

p(ylm) = / 16 p(6]m)p(y|0)

= /de p(9|m)/dx p(y,x|6,m)
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e Laplace approximations:

— Appeal to Central Limit Theorem, making a Gaussian approximation about the
maximum a posteriori parameter estimate, 0.

Inp(y|lm) ~Inp(@|m) +Inp(y|0) + ¢In2r — L1n |H]|

e Large sample approximations:

— eg. BlIC:asn — oo, Inp(y|m) ~ Inp(y| é) — %lnn

e Markov chain Monte Carlo (MCMC):

— Guaranteed to converge in the limit.
— Many samples required for accurate results.
— Hard to assess convergence.

e Variational approximations ... this changes the cost function

Other deterministic approximations are also available now: e.g. Bethe approximations (Yedidia,
Freeman & Weiss, 2000) and Expectation Propagation (Minka, 2001).



~ Lower Bounding the Marginal Likelihood M;,/“g;j;‘;‘g

Variational Bayesian Learning

Let the hidden states be x, data y and the parameters 0. ° e

We can lower bound the marginal likelihood (Jensen's inequality): 0

np(ylm) = In [ dxdo p(y.x.6]m)

y,X,0|m)
q(x,0)

p(y,x,6|m)
> dx df q(x,0)In :
/ (x,6) q(x,0)

= ln/dxd@ q(x, 0)p(

Use a simpler, factorised approximation to ¢(x, 8):

np(y|[m) = /dXdHqX(X)qg(e)lnp(y’X’0|m)

QX(X>C]0 <9)
= Fn(qx(x),q0(0),y).
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Maximizing this lower bound, F,,, leads to EM-like updates:

o (xX) o< exp [/ dO qe(0) Inp(x,y | 9)] E —like step
qp(0) o< p(0)exp [ / dx gx(X) lnp(x,y|9)] M —like step

Maximizing F,, is equivalent to minimizing KL-divergence between the approximate
posterior, qo(0) qx(x) and the true posterior, p(0,x|y, m):

qx\X) 4o 0
Inp(y )~ Fnlax0), 10(0),3) = [ x 0u(x) ao(®) 02T LOL ey g
v h % p(X7 9 | Y7 m) .,
desired computable - ~- —
quantity measure of inaccuracy of approximation

In the limit as n — oo, for identifiable models, the variational lower bound
approaches Schwartz's (1978) BIC criterion.
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Let's focus on conjugate-exponential (CE) models, which satisfy (1) and (2):

Condition (1). The joint probability over variables is in the exponential family:

p(x,y0) = f(x,y) 9(8) exp {¢(0) "u(x,y)}

where ¢(0) is the vector of natural parameters, u are sufficient statistics

Condition (2). The prior over parameters is conjugate to this joint probability:
p(Bln,v) = h(n,v) g(6)"exp {¢(8) v}
where 17 and v are hyperparameters of the prior.

Conjugate priors are computationally convenient and have an intuitive interpretation:

e 7): number of pseudo-observations
e v: values of pseudo-observations
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In the CE family:

e Gaussian mixtures

e factor analysis, probabilistic PCA

e hidden Markov models and factorial HMMs

e linear dynamical systems and switching models
e discrete-variable belief networks

Other as yet undreamt-of models can combine Gaussian, Gamma, Poisson, Dirichlet, Wishart,

Multinomial and others.

Not in the CE family:

e Boltzmann machines, MRFs (no conjugacy)

e logistic regression (no conjugacy)

e sigmoid belief networks (not exponential)

e independent components analysis (not exponential)

One can often approximate these models with models in the CE family e.g. IFA
(Attias, 1998).
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A very useful result 15/09/03

Theorem Given an iid data set y = (y1,...¥n), if the model is CE then:

(a) qo(0) is also conjugate, i.e.

g6(0) = h(ij, 2)g(0)" exp {$(6) T}

(b) gx(x) = [/ ¢x,(x:) is of the same form as in the E step of regular EM, but
using pseudo parameters computed by averaging over ¢g(6)

e, (x:) o fxiyi) exp {@ ulxi,y) b = p(xilys, 6)

(?

_ where ¢ = <¢(9)>q9(9) = ¢(é)
KEY points:
(a) the approximate parameter posterior is of the same form as the prior;
(b) the approximate hidden variable posterior, averaging over all parameters, is of

the same form as the exact hidden variable posterior under 6.
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EM for MAP estimation Variational Bayesian EM
Goal: maximize p(@|y,m) w.r.t. 6 Goal: lower bound p(y|m)
E Step: compute VB-E Step: compute
(¢
A" (x) = p(xly, 0) A(x) = p(xly, ")
M Step: VB-M Step:
o'+ = arg max/dx Q,((tH)(X) Inp(x,y,0) qétJrl)(H) X exp [/dx qitﬂ)(x) Inp(x,y,0)
0

Properties:

e Reduces to the EM algorithm if g9(0) = 6(0 — 67).

e F,. increases monotonically, and incorporates the model complexity penalty.

e Analytical parameter distributions (but not constrained to be Gaussian).

e VB-E step has same complexity as corresponding E step.

e \We can use the junction tree, belief propagation, Kalman filter, etc, algorithms
in the VB-E step of VB-EM, but using expected natural parameters, ¢.
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The Variational Bayesian EM algorithm has been used to approximate Bayesian
learning in a wide range of models, such as:

e probabilistic PCA and factor analysis (Bishop, 1999
e mixtures of Gaussians (Attias, 1999
e mixtures of factor analysers (Ghahramani & Beal, 1999
e state-space models (Ghahramani & Beal, 2000; Beal, 2003
o |CA, IFA (Attias, 1999; Miskin & MacKay, 2000; Valpola 2000
e mixtures of experts (Ueda & Ghahramani, 2000
[

hidden Markov models (MacKay, 1995; Beal, 2003

The main advantage is that it can be used to automatically do model selection
and does not suffer from overfitting to the same extent as ML methods do.

Also it is about as computationally demanding as the usual EM algorithm.

See: www.variational-bayes.org


http://www.variational-bayes.org

Graphical Models ML Meeting
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(Bayesian Networks / Directed Acyclic Graphical Models)

A  Bayesian network corresponds to a
factorization of the joint distribution:

p(A,B,C, D, E) =p(A)p(B)p(C|A, B)
p(D’B, C)p(E‘C, D)

n

In general: p( Xy, ..., X,) = Hp(Xz'|Xpa(z'))
i=1
where pa(t) are the parents of node <.

Semantics: X 1LY |V if V d-separates X from Y.

Two advantages: interpretability and efficiency.
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Which of the following graphical models is the data generating process?
Discrete directed acyclic graphical models: datay = (A4, B,C, D, E)"
o G true complex )
>
?:J) ‘Q ‘& marginal
m » likelihood
O
- Q Q Q Q tractable
O (&

/

If the data are just y = (C, D, E)"™, and s = (A, B)™ are hidden variables... 7

true complex

=

LU

5 6 ‘G Gv& marginal
L ‘ > likelihood
@Z’I }Q }Q intractable
@)

@
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Case study: Discrete DAGs 16/09/03

Let the hidden and observed variables be denoted with z = {z1,...,2,} = {s1,¥1,--.,Sn, Yn},
of which some j € H are hidden and j € V are observed variables, i.e. s; = {z;;},;en and

y: = {szj}jev-

Complete-data likelihood Complete-data marginal likelihood

n |z

n |Zz
Z‘H HHp Zjj |Zzpa(j)7 ) p(z|m):/d9 p(0|m)HHp(Zij’Zipa(j)70)
i=1j=1 i=1j=1
Incomplete-data likelihood

|2

P(Y|9):H p(yi|0) = H Z Hp(zij|zipa(j)79)

i=1{z;;}jen J=1

Incomplete-data marginal likelihood

n |Zz|

p(y | ’m) — /d@ p(@ | m) H Z H p(zij | Zipa(j) 9) (intractable!)

1=1{zi;}jen =1
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BIC - Bayesian Information Criterion

p(ylm) = / 16 p(6 | m)p(y |6) .

~ d
Inp(y|m) ~ Inp(y|m)sic = Inp(y | 9)j—§lnn :
use EﬁVI
to find 6
CS - Cheeseman-Stutz criterion
p(y | m) J 0 p(6|m)p(y |0) (+)
ply| m)=plzim = PpiS,y|m ;

Inp(y|m) ~ Inp(y |m)cs = Inp(8,y | m) + Inp(y|8) —Inp(s,y | 0) .

(*) is correct for any completion s of the hidden variables, so what completion §
should we use? [ CS uses result of E-step from the EM algorithm. ]
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e Bipartite structure: only hidden variables can be parents of observed variables.
Two binary hidden variables, and four five-valued discrete observed variables.

e Conjugate prior is Dirichlet, Conjugate-Exponential model, so the
VB-EM algorithm is a straightforward modification of EM.

i=1...n

e Experiment: There are 136 distinct structures (out of 256) with 2 latent variables
as potential parents of 4 conditionally independent observed vars.

e Score each structure for twenty varying size data sets:
n € {10, 20, 40, 80, 110, 160, 230, 320, 400, 430, 480, 560, 640, 800, 960, 1120, 1280, 2560, 5120, 10240}

using 4 methods: BIC, CS, VB, and a gold standard AlS
e 2720 graphs to score, times for each: BIC (1.5s), CS (1.5s), VB (4s), AIS (400s).



Annealed Importance Sampling (AIS) 509103

AlS is a state-of-the-art method for estimating marginal likelihoods, by breaking a
difficult integral into a series of easier ones.

Combines ideas from importance sampling, Markov chain Monte Carlo, & annealing.

Define 2, = / do p(@|m)p(y | 6)" ) = / do ()

with 7‘(0) =0 = Zy= fd@ p(9 | m) =1 < normalisation of prior,
and 7(K) =1 = Zg =p(y|m) «— marginal likelihood.
Zx 21 2o Zx

Schedule: {7(k)}f,, 2. =2 7, 2.

Importance sample from fi_1(0) as follows: with 8 ~ fr_1(0) ,
Z, / fr(0) fr—1( fr(8) Y (e

= [ do 9\ )T (R)=7(k=1)
Zi—1 fr—1(0) Zk: 1 Z H(T) Zpy\

e How reliable is AIS? How tight are the variational bounds?



How reliable is the AIS for this problem? VL oeeus

Varying the annealing schedule with random initialisation. n = 480, K = 2°%...21!8
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Scoring all structures by every method
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Every method scoring every structure
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Ranking of the true structure by each method

n MAP | BIC BICp CS VB | AIS®)
10 21 [ 127 50 129 115 | 59
20 12 | 118 64 111 124 | 135
40 28 | 127 124 107 113 | 15
80 8 114 99 78 116 | 44
110 8 109 103 98 113 2
160 13 | 119 111 114 81 6
230 8 105 93 83 54 54
320 8 111 101 90 33 78
400 6 101 72 77 15 8
430 7 104 78 68 14 18
480 7 102 92 80 44 2
560 9 108 98 96 31 11
640 7 104 97 105 17 7
800 9 107 102 108 26 23
960 13 | 112 107 76 13 1

1120 8 105 96 103 12 4
1280 7 90 59 6 3 5
2560 6 25 15 11 11 1
5120 5 6 5 1 1 1
10240 | 3 2 1 1 1 1

ML Meeting
15/09/03



Ranking the true structure

ML Meeting

rank of true structure

VB score finds correct structure earlier, and more reliably

0

15/09/03

10 R RRII LR e k. LRI

AIS
—— VB
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—— BICp
—&— BIC
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M-H acceptance fraction, measured over each of four quarters of the annealing schedule
0.8

—&— st
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—7— 4th
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Difference in scores between true and top-ranked structures
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Average Rank of the true structure ML Meeting
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Averaged over true structure parameters drawn from the prior (106 instances)
0

10 . L . S :::A::::

—— VB
—-— CS
—— BICp
—=— BIC

10 /

median rank of true structure




True <= Top-ranked score differences Mlg/“(’)';;g;g

Averaged over true structure parameters drawn from the prior (106 instances)

—o— VB
—— CS
—— BICp
—=— BIC

median score difference
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Averaged over true structure parameters drawn from the prior (106 instances)
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e VB outperforms BIC on ranking: 20 data sets, and 95 instances.

% times that \ than | BIC* BICp* CS* | BIC BICp CS
VB ranks worse | 16.9 30.2 31.8 | 15.1 296 30.9
same | 11.1 15.0 20.2 | 11.7 155 20.9

better | 72.0 54.8 48.0 | 73.2 55.0 48.2

e AIS standard can break down at high n, violating VB strict lower bound when
scoring the 136 structures:

n 10... 560 640 800 960 1120 1280 2560 5120 10240
% M-H re;. <40.3 415 437 459 477 496 59.2 69.7 79.2
single
# <VB <7.5 151 94 142 123 208 31.1 594 74.5
averaged
# <VB <1.9 0.0 0.0 0.0 1.5 2.2 5.1 19.9 52.9

e AIS has many parameters to tune: Metropolis-Hastings proposal widths/shapes,
annealing schedules (non-linear), # samples, reaching equilibrium...
VB has none!



Cheeseman-Stutz is a lower bound

p(y|6)
p(3.y6)

p(y [m)cs = p(8,y | m)

p(y|m) = /dOP(O)HP(YHO) > /dep(e)Hexp<

,
p(y|0) = [[ p(yi10) = ] exp ¢
=1 =1 L

where .. (si) = p(sily,0), &: Inp(3;,y|6)

( i)

=1

P(YM)>H6XP{Z Gs;(si) In —

p(y|6)

)
Y gs,(si)In
. i

Z sti (Sz) In

[Tiy exp { 5., d.,(s:) Inp(si, yi | ©)

p(y|6)
|9)/

Hz 1 p(Sw yi

1=1

}/depw)f[exm

S
\

ML Meeting

15/09/03

<p(y|m).

\
p(si,yi|0)
QSi(Si)

~”
.

/

N 3\
p(si,yi|0)
q\SZ'(Si)

~”
.

/

= G,(s) Inp(si,yi ] 0) .

[ a6 p(®) ] exp<

Y s (si) Inp(si,yi | 6)

Y Gs,(si) Inp(si,yi| 0)

a6 p(0) [ [ p(3i,y:19) .

)

/
\

Vg

VY

/



VB can be made universally tighter than CS Mlg/“ggjg;g

Inp(y |m)cs < Fm(gs(s),qe(0)) < Inp(y|m) .

Let's approach this result by considering the following forms for gs(s) and gg(0):

QS(S) — H QSi(Si) , with qsi(si) — p(Si ‘ Yis é) 3
1=1

g0(0) o< (Inp(0)p(s,y [0)) () -

We write the form for gg(0) explicitly:

p(0) Ty exp { S, g (50) Inp(si, v: 1 0) |
[ 46" p(0") Ty exp { ., s (5:) (s, y: | 0) )

and then substitute ¢s(s) and qg(@) into the variational lower bound F,,.



S:» Y 0 0
Fin(gs(s), qo(0)) = /de QQ(H);ES;QSZ-(S@)lnp(qSi?’Sig )+/d9 q6(0) In CZ((;)
— /d@ qe(g)ZZQSZ’(Si) In QS%S@')

n

+ [ 6 ao(@)tn [ 48" p(6) [T exp{ 3 (s mplsi.y: |6

S¢

n

:Zqui(si)ln L —|—ln/d9p(9)HeXp ZCIsi(Si)IHP(Sz‘,}’z‘W)

1 =1 S; QSi(Si)

1=1 S;

With this choice of gg(0) and ¢s(s) we acheive equality between the CS and VB
approximations.

We complete the proof by noting that at the very next step of VBEM (VBE-step) is
guaranteed to increase or leave unchanged F,,, and hence surpass the CS bound.
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Bayesian learning avoids overfitting and can be used to do model selection.
Variational Bayesian EM for CE models and propagation algorithms.

These methods have advantages over MCMC in that they can provide fast
approximate Bayesian inference. Especially important in machine learning
applications with large data sets.

Results: VB outperforms BIC and CS in scoring discrete DAGs.

VB approaches the capability of AlS sampling, at little computational cost.

— Finds the true structure consistently, whereas AIS needs tuning (e.g. large n).
— Compute time:

BIC CS VB AlS

time to compute each graph score | 1.bs 1.5s 4s 400s
total time for all 2720 graphs lhr ~ 1hr 3hrs 13days

No need to use CS because VB is provably better!
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Comparison to other methods:

— Laplace Method

— Other more sophisticated MCMC variants? (e.g. slice sampling)

— Bethe/Kikuchi approximations to marginal likelihood for discrete models
(Heskes)

Incorporate into a local search algorithm over structures (exhaustive enumeration
done here is only of academic interest!).

Extend to Gaussian and other non-discrete graphical models.
Apply to real-world data sets.

VB tools development:

— Overlay an AIS module into a general variational inference engine, such as
VIBES (Winn et al.)
— Automated algorithm derivation, such as AutoBayes (Gray et al.)
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no more slides... coffee



log marginal likelihood estimate

Scoring all structures by every method

ML Meeting

10
& A %ﬁ
g

. 18 ¥ ¥ v
o | ©

Ono@ 5
DEE
-

MMM 0 O
O [T [

OmmT O

>b >

<K<K

g
H

D>

ooo O

18 22 26 30 34 38 42 46 0560 054 58

X

15/09/03
A
A MAP
v AIS
o VB
(1 BIC
\ "4
@)
GESD



~ Scoring all structures by every method

log marginal likelihood estimate
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~ Scoring all structures by every method

log marginal likelihood estimate
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~ Scoring all structures by every method

log marginal likelihood estimate

X

80
. A
o 2§ o8 7
SRR
, & 4 B
e By ¥ VYoo .
8 (o
%O§E§§28 :
Dgggggué
% O
AALTIRRES
O
B D
H
1I8 2I2 2I6 3I0 3I4 3I8 4I2 4I6 5IO 5I4 5I8 6I6

ML Meeting
15/09/03

A MAP
v AIS
o VB
] BIC



~ Scoring all structures by every method

log marginal likelihood estimate
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Scoring all structures by every method
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~ Scoring all structures by every method

log marginal likelihood estimate
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