
Chapter 1

Introduction

Our everyday experiences can be summarised as a series of decisions to take actions which

manipulate our environment in some way or other. We base our decisions on the results of

predictions or inferences of quantities that have some bearing on our quality of life, and we

come to arrive at these inferences based onmodelsof what we expect to observe. Models are

designed to capture salient trends or regularities in the observed data with a view to predicting

future events. Sometimes the models can be constructed with existing expertise, but for the

majority of real applications the data are far too complex or the underlying processes not nearly

well enough understood for the modeller to design a perfectly accurate model. If this is the case,

we can hope only to design models that are simplifying approximations of the true processes

that generated the data.

For example, the data might be a time series of the price of stock recorded every day for the last

six months, and we would like to know whether to buy or sell stock today. This decision, and

its particulars, depend on what the price of the stock is likely to be a week from now. There

are obviously a very large number of factors that influence the price and these do so to varying

degrees and in convoluted and complex ways. Even in the unlikely scenario that we knew

exactly how all these factors affected the price, we would still have to gather every piece of data

for each one and process it all in a short enough time to decide our course of action. Another

example is trying to predict the best location to drill for oil, knowing the positions of existing

drill sites in the region and their yields. Since we are unable to probe deep beneath the Earth’s

surface, we need to rely on a model of the geological processes that gave rise to the yields in

those sites for which we have data, in order to be able to predict the best location.

Themachine learningapproach to modelling data constructs models by beginning with a flexi-

ble model specified by a set ofparametersand then finds the setting of these model parameters

that explains or fits the data best. The idea is that if we can explain our observations well, then

we should also be confident that we can predict future observations well. We might also hope
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that the particular setting of the best-fit parameters provides us with some understanding of the

underlying processes. The procedure of fitting model parameters to observed data is termed

learninga model.

Since our models are simplifications of reality there will inevitably be aspects of the data which

cannot be modelled exactly, and these are considered noise. Unfortunately it is often difficult

to know which aspects of the data are relevant for our inference or prediction tasks, and which

aspects should be regarded as noise. With a sufficiently complex model, parameters can be

found to fit the observed data exactly, but any predictions using this best-fit model will be sub-

optimal as it has erroneously fitted the noise instead of the trends. Conversely, too simple a

model will fail to capture the underlying regularities in the data and so will also produce sub-

optimal inferences and predictions. This trade-off between the complexity of the model and its

generalisation performance is well studied, and we return to it in section1.2.

The above ideas can be formalised using the concept of probability and the rules of Bayesian

inference. Let us denote the data set byy, which may be made up of several variables indexed

by j: y = {y1, . . . ,yj , . . . ,yJ}. For example,y could be the data from an oil well for which

the variables might be measurements of the type of oil found, the geographical location of the

well, its average monthly yield, its operational age, and a host of other measurable quantities

regarding its local geological characteristics. Generally each variable can be real-valued or

discrete. Machine learning approaches define agenerative modelof the data through a set of

parametersθ = {θ1, . . . , θK} which define a probability distribution over data,p(y |θ). One

approach to learning the model then involves finding the parametersθ∗ such that

θ∗ = arg max
θ

p(y |θ) . (1.1)

This process is often calledmaximum likelihoodlearning as the parametersθ∗ are set to max-

imise the likelihood ofθ, which is probability of the observed data under the model. The

generative model may also includelatentor hiddenvariables, which are unobserved yet inter-

act through the parameters to generate the data. We denote the hidden variables byx, and the

probability of the data can then be written by summing over the possible settings of the hidden

states:

p(y |θ) =
∑
x

p(x |θ)p(y |x,θ) , (1.2)

where the summation is replaced by an integral for those hidden variables that are real-valued.

The quantity (1.2) is often called theincomplete-data likelihood, and the summand in (1.2)

correspondingly called thecomplete-data likelihood. The interpretation is that with hidden vari-

ables in the model, the observed data is an incomplete account of all the players in the model.

14



Introduction

For a particular parameter setting, it is possible to infer the states of the hidden variables of the

model, having observed data, using Bayes’ rule:

p(x |y,θ) =
p(x |θ)p(y |x,θ)

p(y |θ)
. (1.3)

This quantity is known as theposteriordistribution over the hidden variables. In the oil well

example we might have a hidden variable for the amount of oil remaining in the reserve, and this

can be inferred based on observed measurements such as the operational age, monthly yield and

geological characteristics, through the generative model with parametersθ. The termp(x |θ)
is aprior probability of the hidden variables, which could be set by the modeller to reflect the

distribution of amounts of oil in wells that he or she would expect. Note that the probability

of the data in (1.2) appears in the denominator of (1.3). Since the hidden variables are by

definition unknown, findingθ∗ becomes more difficult, and the model is learnt by alternating

between estimating the posterior distribution over hidden variables for a particular setting of the

parameters and then re-estimating the best-fit parameters given that distribution over the hidden

variables. This procedure is the well-known expectation-maximisation (EM) algorithm and is

discussed in more detail in section2.2.

Given that the parameters themselves are unknown quantities we can treat them as random

variables. This is theBayesianapproach to uncertainty, which treats all uncertain quantities

as random variables and uses the laws of probability to manipulate those uncertain quantities.

The proper Bayesian approach attempts to integrate over the possible settings of all uncertain

quantities rather than optimise them as in (1.1). The quantity that results from integrating out

both the hidden variables and the parameters is termed themarginal likelihood:

p(y) =
∫
dθ p(θ)

∑
x

p(x |θ)p(y |x,θ) , (1.4)

wherep(θ) is a prior over the parameters of the model. We will see in section1.2 that the

marginal likelihood is a key quantity used to choose between different models in a Bayesian

model selection task. Model selection is a necessary step in understanding and representing the

data that we observe. The diversity of the data available to machine learners is ever increasing

thanks to the advent of large computational power, networking capabilities and the technolo-

gies available to the scientific research communities. Furthermore, expertise and techniques of

analysis are always improving, giving rise to ever more diverse and complicated models for

representing this data. In order to ‘understand’ the data with a view to making predictions based

on it, we need to whittle down our models to one (or a few) to which we can devote our limited

computational and conceptual resources. We can use the rules of Bayesian probability theory to

entertain several models and choose between them in the light of data. These steps necessarily

involve managing the marginal likelihood.
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Unfortunately the marginal likelihood,p(y), is an intractable quantity to compute for almost all

models of interest (we will discuss why this is so in section1.2.1, and see several examples in the

course of this thesis). Traditionally, the marginal likelihood has been approximated either using

analytical methods, for example the Laplace approximation, or via sampling-based approaches

such as Markov chain Monte Carlo. These methods are reviewed in section1.3. This thesis is

devoted to one particular method of approximation,variational Bayes, sometimes referred to as

ensemble learning. The variational Bayesian method constructs a lower bound on the marginal

likelihood, and attempts to optimise this bound using an iterative scheme that has intriguing

similarities to the standard expectation-maximisation algorithm. There are other variational

methods, for example those based on Bethe and Kikuchi free energies, which for the most part

are approximations rather than bounds; these are briefly discussed in the final chapter.

Throughout this thesis we assume that the reader is familiar with the basic concepts of probabil-

ity and integral and differential calculus. Included in the appendix are reference tables for some

of the more commonly used probability distributions.

The rest of this chapter reviews some key methods relevant to Bayesian model inference and

learning. Section1.1 reviews the use of graphical models as a tool for visualising the prob-

abilistic relationships between the variables in a model and explains how efficient algorithms

for computing the posterior distributions of hidden variables as in (1.3) can be designed which

exploit independence relationships amongst the variables. In section1.2, we address the issue

of model selection in a Bayesian framework, and explain why the marginal likelihood is the

key quantity for this task, and how it is intractable to compute. Since all Bayesian reasoning

needs to begin with some prior beliefs, we examine different schools of thought for expressing

these priors in section1.2.2, includingconjugate, reference, andhierarchicalpriors. In section

1.3 we review several practical methods for approximating the marginal likelihood, which we

shall be comparing to variational Bayes in the following chapters. Finally, section1.4 briefly

summarises the remaining chapters of this thesis.

1.1 Probabilistic inference

Bayesian probability theory provides a language for representing beliefs and a calculus for ma-

nipulating these beliefs in a coherent manner. It is an extension of the formal theory of logic

which is based on axioms that involve propositions that are true or false. The rules of proba-

bility theory involve propositions which haveplausibilitiesof being true or false, and can be

arrived at on the basis of just threedesiderata: (1) degrees of plausibility should be represented

by real numbers; (2) plausibilities should have qualitative correspondence with common sense;

(3) different routes to a conclusion should yield the same result. It is quite astonishing that from

just these desiderata, the product and sum rules of probability can be mathematically derived
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(Cox, 1946). Cox showed that plausibilities can be measured on any scale and it is possible to

transform them onto the canonical scale of probabilities that sum to one. For good introductions

to probability theory the reader is referred toPearl(1988) andJaynes(2003).

Statistical modelling problems often involve large numbers of interacting random variables and

it is often convenient to express the dependencies between these variables graphically. In par-

ticular such graphical models are an intuitive tool for visualisingconditional independencyre-

lationships between variables. A variablea is said to be conditionally independent ofb, givenc

if and only if p(a, b | c) can be writtenp(a | c)p(b | c). By exploiting conditional independence

relationships, graphical models provide a backbone upon which it has been possible to derive

efficient message-propagating algorithms for conditioning and marginalising variables in the

model given observation data (Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Jensen, 1996;

Heckerman, 1996; Cowell et al., 1999; Jordan, 1999). Many standard statistical models, espe-

cially Bayesian models with hierarchical priors (see section1.2.2), can be expressed naturally

using probabilistic graphical models. This representation can be helpful in developing both sam-

pling methods (section1.3.6) and exact inference methods such as the junction tree algorithm

(section1.1.2) for these models. All of the models used in this thesis have very simple graphi-

cal model descriptions, and the theoretical results derived in chapter2 for variational Bayesian

approximate inference are phrased to be readily applicable to general graphical models.

1.1.1 Probabilistic graphical models: directed and undirected networks

A graphical model expresses a family of probability distributions on sets of variables in a model.

Here and for the rest of the thesis we use the variablez to denote all the variables in the model,

be they observed or unobserved (hidden). To differentiate between observed and unobserved

variables we partitionz into z = {x,y} wherex andy are the sets of unobserved and observed

variables, respectively. Alternatively, the variables are indexed by the subscriptj, with j ∈ H
the set of indices for unobserved (hidden) variables andj ∈ V the set of indices for observed

variables. We will later introduce a further subscript,i, which will denote which data point out

of a data set of sizen is being referred to, but for the purposes of the present exposition we

consider just a single data point and omit this further subscript.

Each arc between two nodes in the graphical model represents a probabilistic connection be-

tween two variables. We use the terms ‘node’ and ‘variable’ interchangeably. Depending on the

pattern of arcs in the graph and their type, different independence relations can be represented

between variables. The pattern of arcs is commonly referred to as thestructureof the model.

The arcs between variables can be alldirectedor all undirected. There is a class of graphs in

which some arcs are directed and some are undirected, commonly calledchain graphs, but these

are not reviewed here. Undirected graphical models, also calledMarkov networksor Markov
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random fields, express the probability distribution over variables as a product overclique poten-

tials:

p(z) =
1
Z

J∏
j=1

ψj(Cj(z)) , (1.5)

wherez is the set of variables in the model,{Cj}Jj=1 arecliquesof the graph, and{ψj}Jj=1

are a set of clique potential functions each of which returns a non-negative real value for every

possible configuration of settings of the variables in the clique. Each clique is defined to be a

fully connected subgraph (that is to say each cliqueCj selects a subset of the variables inz), and

is usuallymaximalin the sense that there are no other variables whose inclusion preserves its

fully connected property. The cliques can be overlapping, and between them cover all variables

such that{C1(z) ∪ · · · ∪ CJ(z)} = z. Here we have written a normalisation constant,Z,

into the expression (1.5) to ensure that the total probability of all possible configurations sums

to one. Alternatively, this normalisation can be absorbed into the definition of one or more

of the potential functions. Markov networks can express a very simple form of independence

relationship: two sets of nodesA andB are conditionally independent from each other given a

third set of nodesC, if all paths connecting any node inA to any node inB via a sequence of

arcs are separated by any node (or group of nodes) inC. ThenC is said toseparateA fromB.

TheMarkov blanketfor the node (or set of nodes)A is defined as the smallest set of nodesC,

such thatA is conditionally independent of all other variables not inC, givenC.

Directed graphical models, also calledDirected Acyclic Graphs(DAGs), orBayesian networks,

express the probability distribution overJ variables,z = {zj}Jj=1, as a product of conditional

probability distributions on each variable:

p(z) =
J∏
j=1

p(zj | zpa(j)) , (1.6)

wherezpa(j) is the set of variables that areparentsof the nodej in the graph. A nodea is said

to be a parent of a nodeb if there is a directed arc froma to b, and in which caseb is said to

be achild of a. In necessarily recursive definitions: thedescendentsof a node are defined to

include its children and its childrens’ descendents; and theancestorsof a node are its parents

and those parents’ ancestors. Note that there is no need for a normalisation constant in (1.6)

because by the definition of the conditional probabilities it is equal to one. Adirected path

between two nodesa andb is a sequence of variables such that every node is a parent of the

following node in the sequence. Anundirected pathfrom a to b is any sequence of nodes such

that every node is a parent or child of the following node. Anacyclic graph is a graphical

model in which there exist no directed paths including the same variable more than once. The

semantics of a Bayesian network can be summarised as: each node is conditionally independent

from its non-descendents given its parents.
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More generally, we have the following representation of independence in Bayesian networks:

two sets of nodesA andB are conditionally independent given the set of nodesC if they are

d-separatedbyC (here thed- prefix stands fordirected). The nodesA andB are d-separated by

C if, along every undirected path fromA toB, there exists a noded which satisfieseitherof the

following conditions: either (i)d has converging arrows (i.e.d is the child of the previous node

and the parent of the following node in the path)andneitherd nor its descendents are inC; or

(ii) d does not have converging arrows and is inC. From the above definition of the Markov

blanket, we find that for Bayesian networks the minimal Markov blanket for a node is given by

the union of its parents, its children,and the parents of its children. A more simple rule for

d-separation can be obtained using the idea of the ‘Bayes ball’ (Shachter, 1998). Two sets of

nodesA andB are conditionally dependent givenC if there exists a path by which the Bayes

ball can reach a node inB from a node inA (or vice-versa), where the ball can move according

to the following rules: it can pass through a node in the conditioning setC provided the entry

and exit arcs are a pair of arrows converging on that node; similarly, it can only pass through

every node in the remainder of the graph provided it does so on non-converging arrows. If there

exist no such linking paths, then the sets of nodesA andB are conditionally independent given

C.

Undirected models tend to be used in the physics and vision communities, where the systems

under study can often be simply expressed in terms of many localised potential functions. The

nature of the interactions often lack causal or direct probabilistic interpretations, and instead

express degrees of agreement, compatibility, constraint or frustration between nodes. In the

artificial intelligence and statistics communities directed graphs are more popular as they can

more easily express underlying causal generative processes that give rise to our observations.

For more detailed examinations of directed and undirected graphs seePearl(1988).

1.1.2 Propagation algorithms

The conditional independence relationships discussed in the previous subsection can be ex-

ploited to design efficient message-passing algorithms for obtaining the posterior distributions

over hidden variables given the observations of some other variables, which is called inference.

In this section we briefly present an inference algorithm for Markov networks, called thejunc-

tion treealgorithm. We will explain at the end of this subsection why it suffices to present the

inference algorithm for the undirected network case, since the inference algorithm for a directed

network is just a special case.

For data in which every variable is observed there is no inference problem for hidden variables,

and learning for example the maximum likelihood (ML) parameters for the model using (1.1)

often consists of a straightforward optimisation procedure. However, as we will see in chapter

2, if some of the variables are hidden this complicates finding the ML parameters. The common
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(a) Original Markov network.
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(b) One possible elimination ordering:(x2, x4, x5, x3)
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(c) Another possible elimination ordering:(x5, x2, x3, x4).

Figure 1.1:(a) The original Markov network;(b) The sequence of intermediate graphs resulting
from eliminating (integrating out) nodes to obtain the marginal onx1 — see equations (1.9–
1.14); (c) Another sequence of graphs resulting from a different elimination ordering, which
results in a suboptimal inference algorithm.

practice in these cases is to utilise expectation-maximisation (EM) algorithms, which in their E

step require the computation of at least certain properties of the posterior distribution over the

hidden variables.

We illustrate the basics of inference using a simple example adapted fromJordan and Weiss

(2002). Figure1.1(a)shows a Markov network for five variablesx = {x1, . . . , x5}, each of

which is discrete and takes onk possible states. Using the Markov network factorisation given

by (1.5), the probability distribution over the variables can be written as a product of potentials

defined over five cliques:

p(x) = p(x1, . . . , x5) =
1
Z
ψ(x1, x2)ψ(x1, x3)ψ(x1, x4)ψ(x2, x5)ψ(x3, x5)ψ(x4, x5) , (1.7)

20



Introduction 1.1. Probabilistic inference

where we have included a normalisation constantZ to allow for arbitrary clique potentials.

Note that in this graph1.1(a)the maximal cliques are all pairs of nodes connected by an arc,

and therefore the potential functions are defined over these same pairs of nodes. Suppose we

wanted to obtain the marginal distributionp(x1), given by

p(x1) =
1
Z
∑
x2

∑
x3

∑
x4

∑
x5

ψ(x1, x2)ψ(x1, x3)ψ(x1, x4)ψ(x2, x5)ψ(x3, x5)ψ(x4, x5) .

(1.8)

At first glance this requiresk5 computations, since there arek4 summands to be computed for

each of thek settings of the variablex1. However this complexity can be reduced by exploiting

the conditional independence structure in the graph. For example, we can rewrite (1.8) as

p(x1) =
1
Z
∑
x2

∑
x3

∑
x4

∑
x5

ψ(x1, x3)ψ(x3, x5)ψ(x1, x4)ψ(x4, x5)ψ(x1, x2)ψ(x2, x5) (1.9)

=
1
Z
∑
x3

ψ(x1, x3)
∑
x5

ψ(x3, x5)
∑
x4

ψ(x1, x4)ψ(x4, x5)
∑
x2

ψ(x1, x2)ψ(x2, x5)

(1.10)

=
1
Z
∑
x3

ψ(x1, x3)
∑
x5

ψ(x3, x5)
∑
x4

ψ(x1, x4)ψ(x4, x5)m2(x1, x5) (1.11)

=
1
Z
∑
x3

ψ(x1, x3)
∑
x5

ψ(x3, x5)m4(x1, x5)m2(x1, x5) (1.12)

=
1
Z
∑
x3

ψ(x1, x3)m5(x1, x3) (1.13)

=
1
Z
m1(x1) (1.14)

where each ‘message’mj(x·, . . . ) is a new potential obtained byeliminating the jth vari-

able, and is a function of all the variables linked to that variable. By choosing this ordering

(x2, x4, x5, x3) for summing over the variables, the most number of variables in any summand

is three, meaning that the complexity has been reduced toO(k3) for each possible setting ofx1,

which results in an overall complexity ofO(k4) .

This process can be described by the sequence of graphs resulting from the repeated application

of a triangulationalgorithm (see figure1.1(b)) following these four steps: (i) choose a nodexj
to eliminate; (ii) find all potentialsψ and any messagesm that may reference this node; (iii)

define a new potentialmj that is the sum with respect toxj of the product of these potentials;

(iv) remove the nodexj andreplace it with edgesconnecting each of its neighbours — these

represent the dependencies from the new potentials. This process is repeated until only the

variables of interest remain, as shown in the above example. In this way marginal probabilities

of single variables or joint probabilities over several variables can be obtained. Note that the

second elimination step in figure1.1(b)), that of marginalising outx4, introduces a new message

m4(x1, x5) but since there is already an arc connectingx1 andx5 we need not add a further one.
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Figure 1.2:(a) The triangulated graph corresponding to the elimination ordering in figure1.1(b);
(b) the corresponding junction tree including maximal cliques (ovals), separators (rectangles),
and the messages produced in belief propagation.

The ordering chosen for this example is optimal; different orderings of elimination may result in

suboptimal complexity. For example, figure1.1(c)shows the process of an elimination ordering

(x5, x2, x3, x4) which results in a complexityO(k5). In general though, it is an NP-hard prob-

lem to find the optimal ordering of elimination that minimises the complexity. If all the nodes

have the same cardinality, the optimal elimination ordering is independent of the functional

forms on the nodes and is purely a graph-theoretic property.

We could use the above elimination algorithm repeatedly to find marginal probabilities for each

and every node, but we would find that we had needlessly computed certain messages several

times over. We can use the junction tree algorithm to compute all the messages we might need

just once. Consider the graph shown in figure1.2(a)which results from retaining all edges that

were either initially present or added during the elimination algorithm (using the ordering in our

worked example). Alongside in figure1.2(b)is the junction tree for this graph, formed by linking

the maximal cliques of the graph, of which there are three, labelledA,B andC. In between the

clique nodes areseparatorsfor the junction tree, which contain nodes that are common to both

the cliques attached to the separator, that is to saySAB = CA ∩ CB. Here we use calligraphic

C to distinguish these cliques from the original maximal cliques in the network1.1(a). For a

triangulated graph it is always possible to obtain such a singly-connected graph, or tree (to be

more specific, it is always then possible to obtain a tree that satisfies therunning intersection

property, which states that if a variable appears in two different cliques, then it should also

appear in every clique in the path between the two cliques). The so-called ‘messages’ in the

elimination algorithm can now be considered as messages sent from one clique to another in the

junction tree. For example, the messagem2(x1, x5) produced in equation (1.11) as a result of

summing overx2 can be identified with the messagemAB(x1, x5) that cliqueA sends to clique

B. Similarly, the messagem4(x1, x5) in (1.12) resulting from summing overx4 is identified
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with the messagemCB(x1, x5) that C passes on toB. To complete the marginalisation to

obtainp(x1), the cliqueB absorbsthe incoming messages to obtain a joint distribution over its

variables(x1, x3, x5), and then marginalises outx3 andx5 in either order. Included in figure

1.2(b)are two other messages,mBA(x1, x5) andmBC(x1, x5), which would be needed if we

wanted the marginal overx2 or x4, respectively.

For general junction trees it can be shown that the message that cliquer sends to cliques is a

function of the variables in their separator,Srs(x), and is given by

mrs(Srs(x)) =
∑

Cr(x)\Srs(x)

ψr(Cr(x))
∏

t∈N (r)\s

mtr(Str(x)) , (1.15)

whereN (r) are the set of neighbouring cliques of cliquer. In words, the message fromr to

s is formed by: taking the product of all messagesr has received from elsewhere other thans,

multiplying in the potentialψr, and then summing out all those variables inr which are not in

s.

The joint probability of the variables within cliquer is obtained by combining messages into

cliquer with its potential:

p(Cr(x)) ∝ ψr(Cr(x))
∏

t∈N (r)

mtr(Str(x)) . (1.16)

Note that from definition (1.15) a clique is unable to send a message until it has received mes-

sages from all other cliques except the receiving one. This means that the message-passing

protocol must begin at the leaves of the junction tree and move inwards, and then naturally the

message-passing moves back outwards to the leaves. In our example problem the junction tree

has a very trivial structure and happens to have both separators containing the same variables

(x1, x5).

Here we have explained how inference in a Markov network is possible: (i) through a process of

triangulation the junction tree is formed; (ii) messages (1.15) are then propagated between junc-

tion tree cliques until all cliques have received and sent all their messages; (iii) clique marginals

(1.16) can then be computed; (iv) individual variable marginals can be obtained by summing out

other variables in the clique. The algorithm used for inference in a Bayesian network (which is

directed) depends on whether it is singly- or multiply-connected (a graph is said to be singly-

connected if it includes no pairs of nodes with more than one path between them, and multiply-

connected otherwise). For singly-connected networks, an exactly analogous algorithm can be

used, and is calledbelief propagation. For multiply-connected networks, we first require a pro-

cess to convert the Bayesian network into a Markov network, calledmoralisation. We can then

form the junction tree after a triangulation process and perform the same message-passing al-

gorithm. The process of moralisation involves adding an arc between any variables sharing the

same child (i.e. co-parents), and then dropping the directionality of all arcs.
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Moralisation does not introduce any further conditional independence relationships into the

graph, and in this sense the resulting Markov network is able to represent a superset of the

probability distributions representable by the Bayesian network. Therefore, having derived the

inference procedure for the more general Markov network, we already have the result for the

Bayesian network as a special case.

1.2 Bayesian model selection

In this thesis we are primarily concerned with the task of model selection, or structure discovery.

We use the term ‘model’ and ‘model structure’ to denote a variety of things, some already

mentioned in the previous sections. A few particular examples of model selection tasks are

given below:

Structure learning In probabilistic graphical models, each graph implies a set of conditional

independence statements between the variables in the graph. The model structure learn-

ing problem is inferring the conditional independence relationships that hold given a set

of (complete or incomplete) observations of the variables. Another related problem is

learning the direction of the dependencies, i.e. the causal relationships between variables

(A→ B, orB → A).

Input dependence A special case of this problem is input variable selection in regression. Se-

lecting which input (i.e. explanatory) variables are needed to predict the output (i.e. re-

sponse) variable in the regression can be equivalently cast as deciding whether each input

variable is a parent (or, more accurately, an ancestor) of the output variable in the corre-

sponding directed graph.

Cardinality Many statistical models contain discrete nominal latent variables. A model struc-

ture learning problem of interest is then choosing the cardinality of each discrete latent

variable. Examples of this problem include deciding how many mixture components are

required in a finite mixture model, or how many hidden states are needed in a hidden

Markov model.

Dimensionality Other statistical models contain real-valued vectors of latent variables. The

dimensionality of this latent vector is usually unknown and needs to be inferred. Exam-

ples include choosing the intrinsic dimensionality in a probabilistic principal components

analysis (PCA), or factor analysis (FA) model, or in a linear-Gaussian state-space model.

In the course of this thesis we tackle several of the above model selection problems using

Bayesian learning. The machinery and tools for Bayesian model selection are presented in

the following subsection.
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1.2.1 Marginal likelihood and Occam’s razor

An obvious problem with using maximum likelihood methods (1.1) to learn the parameters of

models such as those described above is that the probability of the data will generally be greater

for more complex model structures, leading to overfitting. Such methods fail to take into account

model complexity. For example, inserting an arc between two variables in a graphical model can

only help the model give higher probability to the data. Common ways for avoiding overfitting

have included early stopping, regularisation, and cross-validation. Whilst it is possible to use

cross-validation for simple searches over model size and structures — for example, if the search

is limited to a single parameter that controls the model complexity — for more general searches

over many parameters cross-validation is computationally prohibitive.

A Bayesian approach to learning starts with some prior knowledge or assumptions about the

model structure — for example the set of arcs in the Bayesian network. This initial knowledge

is represented in the form of a prior probability distribution over model structures. Each model

structure has a set of parameters which have prior probability distributions. In the light of ob-

served data, these are updated to obtain a posterior distribution over models and parameters.

More formally, assuming a prior distribution over models structuresp(m) and a prior distribu-

tion over the parameters for each model structurep(θ |m), observing the data sety induces a

posterior distribution over models given by Bayes’ rule:

p(m |y) =
p(m)p(y |m)

p(y)
. (1.17)

The most probable model or model structure is the one that maximisesp(m |y). For a given

model structure, we can also compute the posterior distribution over the parameters:

p(θ |y,m) =
p(y |θ,m)p(θ |m)

p(y |m)
, (1.18)

which allows us to quantify our uncertainty about parameter values after observing the data.

We can also compute the density at a new data pointy′, obtained by averaging over both the

uncertainty in the model structure and in the parameters,

p(y′ |y) =
∑
m

∫
dθ p(y′ |θ,m,y)p(θ |m,y)p(m |y) , (1.19)

which is known as thepredictive distribution.

The second term in the numerator of (1.17) is called themarginal likelihood, and results from

integrating the likelihood of the data over all possible parameter settings under the prior:

p(y |m) =
∫
dθ p(y |θ,m)p(θ |m) . (1.20)
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In the machine learning community this quantity is sometimes referred to as theevidencefor

modelm, as it constitutes the data-dependent factor in the posterior distribution over models

(1.17). In the absence of an informative priorp(m) over possible model structures, this term

alone will drive our model inference process. Note that this term also appears as the normal-

isation constant in the denominator of (1.18). We can think of the marginal likelihood as the

average probability of the data, where the average is taken with respect to the model parameters

drawn from the priorp(θ).

Integrating out the parameters penalises models with more degrees of freedom since these mod-

els cana priori model a larger range of data sets. This property of Bayesian integration has been

calledOccam’s razor, since it favours simpler explanations (models) for the data over complex

ones (Jefferys and Berger, 1992; MacKay, 1995). Having more parameters may impart an ad-

vantage in terms of the ability to model the data, but this is offset by the cost of having to code

those extra parameters under the prior (Hinton and van Camp, 1993). The overfitting problem is

avoided simply because no parameter in the pure Bayesian approach is actuallyfit to the data. A

caricature of Occam’s razor is given in figure1.3, where the horizontal axis denotes all possible

data sets to be modelled, and the vertical axis is the marginal probabilityp(y |m) under each

of three models of increasing complexity. We can relate the complexity of a model to the range

of data sets it can capture. Thus for a simple model the probability is concentrated over a small

range of data sets, and conversely a complex model has the ability to model a wide range of data

sets.

Since the marginal likelihood as a function of the datay should integrate to one, the simple

model can give a higher marginal likelihood to those data sets it can model, whilst the complex

model gives only small marginal likelihoods to a wide range of data sets. Therefore, given a

data set,y, on the basis of the marginal likelihood it is possible to discard both models that are

too complex and those that are too simple. In these arguments it is tempting, but not correct, to

associate the complexity of a model with the number of parameters it has: it is easy to come up

with a model with many parameters that can model only a limited range of data sets, and also

to design a model capable of capturing a huge range of data sets with just a single parameter

(specified to high precision).

We have seen how the marginal likelihood is an important quantity in Bayesian learning, for

computing quantities such as Bayes factors (the ratio of two marginal likelihoods,Kass and

Raftery, 1995), or the normalising constant of a posterior distribution (known in statistical

physics as the ‘partition function’ and in machine learning as the ‘evidence’). Unfortunately

the marginal likelihood is a very difficult quantity to compute because it involves integrating

over all parameters and latent variables, which is usually such a high dimensional and compli-

cated integral that most simple approximations fail catastrophically. We will see in section1.3

some of the approximations to the marginal likelihood and will investigate variational Bayesian

approximations in the following chapter.
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Figure 1.3: Caricature depicting Occam’s razor (adapted fromMacKay, 1995). The horizon-
tal axis denotes all possible data sets of a particular size and the vertical axis is the marginal
likelihood for three different model structures of differing complexity. Simple model structures
can model certain data sets well but cannot model a wide range of data sets; complex model
structures can model many different data sets but, since the marginal likelihood has to integrate
to one, will necessarily not be able to model all simple data sets as well as the simple model
structure. Given a particular data set (labelled Y), model selection is possible because model
structures that are too simple are unlikely to generate the data set in question, while model
structures that are too complex can generate many possible data sets, but again, are unlikely to
generate that particular data set at random.

It is important to keep in mind that a realistic model of the data might need to be complex.

It is therefore often advisable to use the most ‘complex’ model for which it is possible to do

inference, ideally setting up priors that allow the limit of infinitely many parameters to be taken,

rather than to artificially limit the number of parameters in the model (Neal, 1996; Rasmussen

and Ghahramani, 2001). Although we do not examine any such infinite models in this thesis,

we do return to them in the concluding comments of chapter7.

Bayes’ theorem provides us with the posterior over different models (1.17), and we can com-

bine predictions by weighting them according to the posterior probabilities (1.19). Although

in theory we should average over all possible model structures, in practice computational or

representational constraints may make it necessary to select a single most probable structure

by maximisingp(m |y). In most problems we may also have good reason to believe that the

marginal likelihood is strongly peaked, and so the task of model selection is then justified.

1.2.2 Choice of priors

Bayesian model inference relies on the marginal likelihood, which has at its core a set of prior

distributions over the parameters of each possible structure,p(θ |m). Specification of param-

eter priors is obviously a key element of the Bayesian machinery, and there are several diverse
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schools of thought when it comes to assigning priors; these can be loosely categorised intosub-

jective, objective, andempiricalapproaches. We should point out that all Bayesian approaches

are necessarily subjective in the sense that any Bayesian inference first requires some expression

of prior knowledgep(θ). Here the emphasis is not on whether we use a prior or not, but rather

whatknowledge (if any) is conveyed inp(θ). We expand on these three types of prior design in

the following paragraphs.

Subjective priors

The subjective Bayesian attempts to encapsulate prior knowledge as fully as possible, be it in

the form of previous experimental data or expert knowledge. It is often difficult to articulate

qualitative experience or beliefs in mathematical form, but one very convenient and analytically

favourable class of subjective priors areconjugatepriors in theexponential family. Generally

speaking, a prior is conjugate if the posterior distribution resulting from multiplying the likeli-

hood and prior terms is of the same form as the prior. Expressed mathematically:

f(θ | µ̃) = p(θ |y) ∝ f(θ |µ)p(y |θ) , (1.21)

wheref(θ |µ) is some probability distribution specified by a parameter (or set of parameters)

µ. Conjugate priors have at least three advantages: first, they often lead to analytically tractable

Bayesian integrals; second, if computing the posterior in (1.21) is tractable, then the modeller

can be assured that subsequent inferences, based on using the posterior as prior, will also be

tractable; third, conjugate priors have an intuitive interpretation as expressing the results of pre-

vious (or indeed imaginary) observations under the model. The latter two advantages are some-

what related, and can be understood by observing that the only likelihood functionsp(y |θ) for

which conjugate prior families exist are those belonging to generalexponential familymodels.

The definition of an exponential family model is one that has a likelihood function of the form

p(yi |θ) = g(θ) f(yi) eφ(θ)>u(yi) , (1.22)

whereg(θ) is a normalisation constant:

g(θ)−1 =
∫
dyi f(yi) eφ(θ)>u(yi) , (1.23)

and we have used the subscript notationyi to denote each data point (not each variable!). We as-

sume thatn data points arrive independent and identically distributed (i.i.d.) such that the prob-

ability of the datay = {y1, . . . ,yn} under this model is given byp(y |θ) =
∏n
i=1 p(yi |θ).
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Hereφ(θ) is a vector of so-callednatural parameters, andu(yi) andf(yi) are functions defin-

ing the exponential family. Now consider the conjugate prior:

p(θ | η,ν) = h(η,ν) g(θ)η eφ(θ)>ν , (1.24)

whereη andν are parameters of the prior, andh(η,ν) is an appropriate normalisation constant.

The conjugate prior contains the same functionsg(θ) andφ(θ) as in (1.22), and the result of

using a conjugate prior can then be seen by substituting (1.22) and (1.24) into (1.21), resulting

in:

p(θ |y) ∝ p(θ | η,ν)p(y |θ) ∝ p(θ | η̃, ν̃) , (1.25)

whereη̃ = η+n andν̃ = ν +
∑n

i=1 u(yi) are the new parameters for the posterior distribution

which has thesame functional formas the prior. We have omitted some of the details, as a

more general approach will be described in the following chapter (section2.4). The important

point to note is that the parameters of the prior can be viewed as the number (or amount),η,

and the ‘value’,ν, of imaginary data observed prior to the experiment (by ‘value’ we in fact

refer to the vector of sufficient statistics of the data). This correspondence is often apparent

in the expressions for predictive densities and other quantities which result from integrating

over the posterior distribution, where statistics gathered from the data are simply augmented

with prior quantities. Therefore the knowledge conveyed by the conjugate prior is specific and

clearly interpretable. On a more mathematical note, the attraction of the conjugate exponential

family of models is that they can represent probability densities with a finite number of sufficient

statistics, and are closed under the operation of Bayesian inference. Unfortunately, a conjugate

analysis becomes difficult, and for the majority of interesting problems impossible, for models

containing hidden variablesxi.

Objective priors

The objective Bayesian’s goal is in stark contrast to a subjectivist’s approach. Instead of at-

tempting to encapsulate rich knowledge into the prior, the objective Bayesian tries to impart as

little information as possible in an attempt to allow the data to carry as much weight as possible

in the posterior distribution. This is often called ‘letting the data speak for themselves’ or ‘prior

ignorance’. There are several reasons why a modeller may want to resort to the use of objec-

tive priors (sometimes called non-informative priors): often the modeller has little expertise and

does not want to sway the inference process in any particular direction unknowingly; it may be

difficult or impossible to elicit expert advice or translate expert opinions into a mathematical

form for the prior; also, the modeller may want the inference to be robust to misspecifications of

the prior. It turns out that expressing such vagueness or ignorance is in fact quite difficult, partly

because the very concept of ‘vagueness’ is itself vague. Any prior expressed on the parameters
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has to follow through and be manifest in the posterior distribution in some way or other, so this

quest for uninformativeness needs to be more precisely defined.

One such class of noninformative priors arereference priors. These originate from an infor-

mation theoretic argument which asks the question: “which prior should I use such that I max-

imise the expected amount of information about a parameter that is provided by observing the

data?”. This expected information can be written as a function ofp(θ) (we assumeθ is one-

dimensional):

I(p(θ), n) =
∫
dy(n) p(y(n))

∫
dθ p(θ |y(n)) ln

p(θ |y(n))
p(θ)

, (1.26)

where we usey(n) to make it obvious that the data set is of sizen. This quantity is strictly posi-

tive as it is an expected Kullback-Leibler (KL) divergence between the parameter posterior and

parameter prior, where the expectation is taken with respect to the underlying distribution of the

datay(n). Here we assume, as before, that the data arrive i.i.d. such thaty(n) = {y1, . . . ,yn}
andp(y(n) | θ) =

∏n
i=1 p(yi | θ). Then then-reference prior is defined as the prior that max-

imises this expected information fromn data points:

pn(θ) = arg max
p(θ)

I(p(θ), n) . (1.27)

Equation (1.26) can be rewritten directly as a KL divergence:

I(p(θ),y(n)) =
∫
dθ p(θ) ln

fn(θ)
p(θ)

, (1.28)

where the functionfn(θ) is given by

fn(θ) = exp
[∫

dy(n) p(y(n) | θ) ln p(θ |y(n))
]
, (1.29)

andn is the size of the data sety. A naive solution that maximises (1.28) is

pn(θ) ∝ fn(θ) , (1.30)

but unfortunately this is only an implicit solution for then-reference prior asfn(θ) (1.29) is a

function of the prior through the termp(θ |y(n)). Instead, we make the approximation for large

n that the posterior distributionp(θ |y(n)) ∝ p(θ)
∏n
i=1 p(yi | θ) is given byp∗(θ |y(n)) ∝∏n

i=1 p(yi | θ), and write the reference prior as:

p(θ) ∝ lim
n→∞

f∗n(θ)
f∗n(θ0)

, (1.31)

wheref∗n(θ) is the expression (1.29) using the approximation to the posteriorp∗(θ |y(n)) in

place ofp(θ |y(n)), andθ0 is a fixed parameter (or subset of parameters) used to normalise the
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limiting expression. For discrete parameter spaces, it can be shown that the reference prior is

uniform. More interesting is the case of real-valued parameters that exhibit asymptotic normal-

ity in their posterior (see section1.3.2), where it can be shown that the reference prior coincides

with Jeffreys’ prior (seeJeffreys, 1946),

p(θ) ∝ h(θ)1/2 , (1.32)

whereh(θ) is the Fisher information

h(θ) =
∫
dyi p(yi | θ)

[
− ∂2

∂θ2
ln p(yi | θ)

]
. (1.33)

Jeffreys’ priors are motivated by requiring that the prior is invariant to one-to-one reparameteri-

sations, so this equivalence is intriguing. Unfortunately, the multivariate extensions of reference

and Jeffreys’ priors are fraught with complications. For example, the form of the reference prior

for one parameter can be different depending on the order in which the remaining parameters’

reference priors are calculated. Also multivariate Jeffreys’ priors are not consistent with their

univariate equivalents. As an example, consider the mean and standard deviation parameters of

a Gaussian,(µ, σ). If µ is known, both Jeffreys’ and reference priors are given byp(σ) ∝ σ−1.

If the standard deviation is known, again both Jeffreys’ and reference priors over the mean

are given byp(µ) ∝ 1. However, if neither the mean nor the standard deviation are known,

the Jeffreys’ prior is given byp(µ, σ) ∝ σ−2, which does not agree with the reference prior

p(µ, σ) ∝ σ−1 (here the reference prior happens not to depend on the ordering of the parame-

ters in the derivation). This type of ambiguity is often a problem in defining priors over multiple

parameters, and it is often easier to consider other ways of specifying priors, such as hierarchi-

cally. A more in depth analysis of reference and Jeffreys’ priors can be found inBernardo and

Smith(1994, section 5.4).

Empirical Bayes and hierarchical priors

When there are many common parameters in the vectorθ = (θ1, . . . , θK), it often makes sense

to consider each parameter as being drawn from the same prior distribution. An example of this

would be the prior specification of the means of each of the Gaussian components in a mixture

model — there is generally no a priori reason to expect any particular component to be different

from another. The parameter prior is then formed from integrating with respect to a hyperprior

with hyperparameterγ:

p(θ | γ) =
∫
dγ p(γ)

K∏
k=1

p(θk | γ) . (1.34)

Therefore, each parameter is independentgiven the hyperparameter, although they are depen-

dent marginally. Hierarchical priors are useful even when applied only to a single parameter,
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often offering a more intuitive interpretation for the parameter’s role. For example, the precision

parameterν for a Gaussian variable is often given a (conjugate) gamma prior, which itself has

two hyperparameters(aγ , bγ) corresponding to the shape and scale of the prior. Interpreting the

marginal distribution of the variable in this generative sense is often more intuitively appealing

than simply enforcing a Student-t prior. Hierarchical priors are often designed using conjugate

forms (described above), both for analytical ease and also because previous knowledge can be

readily expressed.

Hierarchical priors can be easily visualised using directed graphical models, and there will be

many examples in the following chapters. The phraseempirical Bayesrefers to the practice of

optimising the hyperparameters (e.g.γ) of the priors, so as to maximise the marginal likelihood

of a data setp(y | γ). In this way Bayesian learning can be seen as maximum marginal likelihood

learning, where there are always distributions over the parameters, but the hyperparameters are

optimised just as in maximum likelihood learning. This practice is somewhat suboptimal as it

ignores the uncertainty in the hyperparameterγ. Alternatively, a more coherent approach is to

define priors over the hyperparameters and priors on the parameters of those priors, etc., to the

point where at the top level the modeller is content to leave those parameters unoptimised. With

sufficiently vague priors at the top level, the posterior distributions over intermediate parameters

should be determined principally by the data. In this fashion, no parameters are actually ever fit

to the data, and all predictions and inferences are based on the posterior distributions over the

parameters.

1.3 Practical Bayesian approaches

Bayes’ rule provides a means of updating the distribution over parameters from the prior to the

posterior distribution in light of observed data. In theory, the posterior distribution captures all

information inferred from the data about the parameters. This posterior is then used to make

optimal decisions or predictions, or to select between models. For almost all interesting appli-

cations these integrals are analytically intractable, and are inaccessible to numerical integration

techniques — not only do the computations involve very high dimensional integrals, but for

models with parameter symmetries (such as mixture models) the integrand can have exponen-

tially many modes.

There are various ways we can tackle this problem. At one extreme we can restrict ourselves

only to models and prior distributions that lead to tractable posterior distributions and inte-

grals for the marginal likelihoods and predictive densities. This is highly undesirable since it

inevitably leads us to lose prior knowledge and modelling power. More realistically, we can

approximate the exact answer.
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1.3.1 Maximum a posteriori (MAP) parameter estimates

The simplest approximation to the posterior distribution is to use a point estimate, such as the

maximum a posteriori (MAP) parameter estimate,

θ̂ = arg max
θ

p(θ)p(y |θ) , (1.35)

which chooses the model with highest posterior probability density (the mode). Whilst this esti-

mate does contain information from the prior, it is by no means completely Bayesian (although

it is often erroneously claimed to be so) since the mode of the posterior may not be represen-

tative of the posterior distribution at all. In particular, we are likely (in typical models) to be

over-confident of predictions made with the MAP model, since by definitionall the posterior

probability mass is contained in models which give poorer likelihood to the data (modulo the

prior influence). In some cases it might be argued that instead of the MAP estimate it is suffi-

cient to specify instead a set ofcredible regionsor rangesin which most of the probability mass

for the parameter lies (connected credible regions are called credible ranges). However, both

point estimates and credible regions (which are simply a collection of point estimates) have the

drawback that they are not unique: it is always possible to find a one-to-one monotonic mapping

of the parameters such that any particular parameter setting is at the mode of the posterior prob-

ability density in that mapped space (provided of course that that value has non-zero probability

density under the prior). This means that two modellers with identical priors and likelihood

functions will in general find different MAP estimates if their parameterisations of the model

differ.

The key ingredient in the Bayesian approach is then not just the use of a prior but the fact that

all variables that are unknown are averaged over, i.e. that uncertainty is handled in a coherent

way. In this way is it not important which parameterisation we adopt because the parameters

are integrated out.

In the rest of this section we review some of the existing methods for approximating marginal

likelihoods. The first three methods are analytical approximations: the Laplace method (Kass

and Raftery, 1995), the Bayesian Information Criterion (BIC;Schwarz, 1978), and the criterion

due toCheeseman and Stutz(1996). All these methods make use of the MAP estimate (1.35),

and in some way or other try to account for the probability mass about the mode of the posterior

density. These methods are attractive because finding the MAP estimate is usually a straight-

forward procedure. To almost complete the toolbox of practical methods for Bayesian learning,

there follows a brief survey of sampling-based approximations, such as importance sampling

and Markov chain Monte Carlo methods. We leave the topic of variational Bayesian learning

until the next chapter, where we will look back to these approximations for comparison.
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1.3.2 Laplace’s method

By Bayes’ rule, the posterior over parametersθ of a modelm is

p(θ |y,m) =
p(θ |m) p(y |θ,m)

p(y |m)
. (1.36)

Defining the logarithm of the numerator as

t(θ) ≡ ln [p(θ |m) p(y |θ,m)] = ln p(θ |m) +
n∑
i=1

ln p(yi |θ,m) , (1.37)

the Laplace approximation(Kass and Raftery, 1995; MacKay, 1995) makes a local Gaussian

approximation around a MAP parameter estimateθ̂ (1.35). The validity of this approximation

is based on the large data limit and some regularity conditions which are discussed below. We

expandt(θ) to second order as a Taylor series about this point:

t(θ) = t(θ̂) + (θ − θ̂)>
∂t(θ)
∂θ

∣∣∣∣
θ=θ̂

+
1
2!

(θ − θ̂)>
∂2t(θ)
∂θ∂θ>

∣∣∣∣
θ=θ̂

(θ − θ̂) + . . . (1.38)

≈ t(θ̂) +
1
2
(θ − θ̂)>H(θ̂)(θ − θ̂) , (1.39)

whereH(θ̂) is the Hessian of the log posterior (matrix of the second derivatives of (1.37)),

evaluated at̂θ,

H(θ̂) =
∂2 ln p(θ |y,m)

∂θ∂θ>

∣∣∣∣
θ=θ̂

=
∂2t(θ)
∂θ∂θ>

∣∣∣∣
θ=θ̂

, (1.40)

and the linear term has vanished as the gradient of the posterior∂t(θ)
∂θ at θ̂ is zero as this is the

MAP setting (or a local maximum). Substituting (1.39) into the log marginal likelihood and

integrating yields

ln p(y |m) = ln
∫
dθ p(θ |m) p(y |θ,m) (1.41)

= ln
∫
dθ exp [t(θ)] , (1.42)

≈ t(θ̂) +
1
2

ln
∣∣2πH−1

∣∣ (1.43)

= ln p(θ̂ |m) + ln p(y | θ̂,m) +
d

2
ln 2π − 1

2
ln |H| , (1.44)

whered is the dimensionality of the parameter space. Equation (1.44) can be written

p(y |m)Laplace= p(θ̂ |m) p(y | θ̂,m)
∣∣2πH−1

∣∣1/2 . (1.45)

Thus the Laplace approximation to the marginal likelihood consists of a term for the data likeli-

hood at the MAP setting, a penalty term from the prior, and a volume term calculated from the

local curvature.
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Approximation (1.45) has several shortcomings. The Gaussian assumption is based on the large

data limit, and will represent the posterior poorly for small data sets for which, in principle, the

advantages of Bayesian integration over ML or MAP are largest. The Gaussian approximation

is also poorly suited to bounded, constrained, or positive parameters, such as mixing proportions

or precisions, since it assigns non-zero probability mass outside of the parameter domain. Of

course, this can often be alleviated by a change of parameter basis (see for example,MacKay,

1998); however there remains the undesirable fact that in the non-asymptotic regime the ap-

proximation is still not invariant to reparameterisation. Moreover, the posterior may not be log

quadratic for likelihoods with hidden variables, due to problems of identifiability discussed in

the next subsection. In these cases the regularity conditions required for convergence do not

hold. Even if the exact posterior is unimodal the resulting approximation may well be a poor

representation of the nearby probabilitymass, as the approximation is made about a locally max-

imum probabilitydensity. The volume term requires the calculation of|H|: this takesO(nd2)
operations to compute the derivatives in the Hessian, and then a furtherO(d3) operations to

calculate the determinant; this becomes burdensome for high dimensions, so approximations

to this calculation usually ignore off-diagonal elements or assume a block-diagonal structure

for the Hessian, which correspond to neglecting dependencies between parameters. Finally, the

second derivatives themselves may be intractable to compute.

1.3.3 Identifiability: aliasing and degeneracy

The convergence to Gaussian of the posterior holds only if the model isidentifiable. Therefore

the Laplace approximation may be inaccurate if this is not the case. A model is not identifiable

if there isaliasingor degeneracyin the parameter posterior.

Aliasing arises in models with symmetries, where the assumption that there exists a single mode

in the posterior becomes incorrect. As an example of symmetry, take the model containing a

discrete hidden variablexi with k possible settings (e.g. the indicator variable in a mixture

model). Since the variable is hidden these settings can be arbitrarily labelledk! ways. If the

likelihood is invariant to these permutations, and if the prior over parameters is also invariant to

these permutations, then the landscape for the posterior parameter distribution will be made up

of k! identical aliases. For example the posterior for HMMs converges to a mixture of Gaussians,

not a single mode, corresponding to the possible permutations of the hidden states. If the aliases

are sufficiently distinct, corresponding to well defined peaks in the posterior as a result of large

amounts of data, the error in the Laplace method can be corrected by multiplying the marginal

likelihood by a factor ofk!. In practice it is difficult to ascertain the degree of separation of

the aliases, and so a simple modification of this sort is not possible. Although corrections

have been devised to account for this problem, for example estimating thepermanentof the

model, they are complicated and computationally burdensome. The interested reader is referred
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to Barvinok (1999) for a description of a polynomial randomised approximation scheme for

estimating permanents, and toJerrum et al.(2001) for a review of permanent calculations.

Parameter degeneracy arises when there is some redundancy in the choice of parameterisation

for the model. For example, consider a model that has two parametersθ = (ν1,ν2), whose

difference specifies the noise precision of an observed Gaussian variableyi with mean0, say,

yi ∼ N(yi |0, ν1−ν2). If the prior over parameters does not disambiguateν1 from ν2, the

posterior overθ will contain an infinity of distinct configurations of(ν1,ν2), all of which give

the same likelihood to the data; this degeneracy causes the volume element∝
∣∣H−1

∣∣ to be

infinite and renders the marginal likelihood estimate (1.45) useless. Parameter degeneracy can

be thought of as a continuous form of aliasing in parameter space, in which there are infinitely

many aliases.

1.3.4 BIC and MDL

The Bayesian Information Criterion (BIC) (Schwarz, 1978) can be obtained from the Laplace

approximation by retaining only those terms that grow withn. From (1.45), we have

ln p(y |m)Laplace= ln p(θ̂ |m)︸ ︷︷ ︸
O(1)

+ ln p(y | θ̂,m)︸ ︷︷ ︸
O(n)

+
d

2
ln 2π︸ ︷︷ ︸
O(1)

− 1
2

ln |H|︸ ︷︷ ︸
O(d lnn)

, (1.46)

where each term’s dependence onn has been annotated. RetainingO(n) andO(lnn) terms

yields

ln p(y |m)Laplace= ln p(y | θ̂,m)− 1
2

ln |H|+O(1) . (1.47)

Using the fact that the entries of the Hessian scale linearly withn (see (1.37) and (1.40)), we

can write

lim
n→∞

1
2

ln |H| = 1
2

ln |nH0| =
d

2
lnn+

1
2

ln |H0|︸ ︷︷ ︸
O(1)

, (1.48)

and then assuming that the prior is non-zero atθ̂, in the limit of largen equation (1.47) becomes

the BIC score:

ln p(y |m)BIC = ln p(y | θ̂,m)− d

2
lnn . (1.49)

The BIC approximation is interesting for two reasons: first, it does not depend on the prior

p(θ |m); second, it does not take into account the local geometry of the parameter space and

hence is invariant to reparameterisations of the model. A Bayesian would obviously baulk at

the first of these features, but the second feature of reparameterisation invariance is appealing

because this should fall out of an exact Bayesian treatment in any case. In practice the dimension

of the modeld that is used is equal to the number ofwell-determinedparameters, or the number

36



Introduction 1.3. Practical Bayesian approaches

of effectiveparameters, after any potential parameter degeneracies have been removed. In the

example mentioned above the reparameterisationν∗ = ν1 − ν2 is sufficient, yieldingd =
|ν|. The BIC is in fact exactly minus the minimum description length (MDL) penalty used

in Rissanen(1987). However, the minimum message length (MML) framework ofWallace

and Freeman(1987) is closer in spirit to Bayesian integration over parameters. We will be

revisiting the BIC in the following chapters as a comparison to our variational Bayesian method

for approximating the marginal likelihood.

1.3.5 Cheeseman & Stutz’s method

If the complete-datamarginal likelihood defined as

p(x,y |m) =
∫
dθ p(θ |m)

n∏
i=1

p(xi,yi |θ,m) (1.50)

can be computed efficiently then the method proposed inCheeseman and Stutz(1996) can be

used to approximate the marginal likelihood of incomplete data. For any completion of the data

x̂, the following identity holds

p(y |m) = p(x̂,y |m)
p(y |m)
p(x̂,y |m)

(1.51)

= p(x̂,y |m)
∫
dθ p(θ |m)p(y |θ,m)∫

dθ′ p(θ′ |m)p(x̂,y |θ′,m)
. (1.52)

If we now apply Laplace approximations (1.45) to both numerator and denominator we obtain

p(y |m) ≈ p(x̂,y |m)
p(θ̂ |m)p(y | θ̂,m)

∣∣2πH−1
∣∣1/2

p(θ̂
′ |m)p(x̂,y | θ̂′,m)

∣∣2πH ′−1
∣∣1/2 . (1.53)

If the approximations are made about the same pointθ̂
′
= θ̂, then the hope is that errors in each

Laplace approximation will tend to cancel one another out. If the completionx̂ is set to be the

expected sufficient statistics calculated from an E step of the EM algorithm (discussed in more

detail in chapter2), then the ML/MAP settinĝθ
′
will be at the same point aŝθ. The final part of

the Cheeseman-Stutz approximation is to form the BIC asymptotic limit of each of the Laplace

approximations (1.49). In the originalAutoclassapplication (Cheeseman and Stutz, 1996) the

dimensionalities of the parameter spaces for the incomplete and complete-data integrals were

assumed equal so the terms scaling aslnn cancel. Sincêθ
′
= θ̂, the terms relating to the prior

probability ofθ̂ andθ̂
′
also cancel (although these areO(1) in any case), and we obtain:

p(y |m)CS = p(x̂,y |m)
p(y | θ̂,m)

p(x̂,y | θ̂,m)
. (1.54)

37



Introduction 1.3. Practical Bayesian approaches

whereθ̂ is the MAP estimate. In chapter2 we see how the Cheeseman-Stutz approximation

is related to the variational Bayesian lower bound. In chapter6 we compare its performance

empirically to variational Bayesian methods on a hard problem, and discuss the situation in

which the dimensionalities of the complete and incomplete-data parameters are different.

1.3.6 Monte Carlo methods

Unfortunately the large data limit approximations discussed in the previous section are limited

in their ability to trade-off computation time to improve their accuracy. For example, even if

the Hessian determinant were calculated exactly (costingO(nd2) operations to find the Hessian

and thenO(d3) to find its determinant), the Laplace approximation may still be very inaccurate.

Numerical integration methods hold the answer to more accurate, but computationally intensive

solutions.

The Monte Carlo integration method estimates the expectation of a functionφ(x) under a prob-

ability distributionf(x), by taking samples{x(i)}Ni=1 : x(i) ∼ f(x). An unbiased estimate,̂Φ,

of the expectation ofφ(x) underf(x), usingN samples is given by:

Φ =
∫
dx f(x)φ(x) ' Φ̂ =

1
N

N∑
i=1

φ(x(i)) . (1.55)

Expectations such as the predictive density, the marginal likelihood, posterior distributions over

hidden variables etc. can be obtained using such estimates. Most importantly, the Monte Carlo

method returns more accurate and reliable estimates the more samples are taken, and scales well

with the dimensionality ofx.

In situations wheref(x) is hard to sample from, one can use samples from a different aux-

iliary distribution g(x) and then correct for this by weighting the samples accordingly. This

method is calledimportance samplingand it constructs the following estimator usingN sam-

ples,{x(i)}Ni=1, generated such that eachx(i) ∼ g(x):

Φ =
∫
dx g(x)

f(x)
g(x)

φ(x) ' Φ̂ =
1
N

N∑
i=1

w(i)φ(x(i)) , (1.56)

where w(i) =
f(x(i))
g(x(i))

(1.57)

are known as theimportance weights. Note that the estimator in (1.56) is unbiased just as that

in (1.55). It is also possible to estimateΦ even ifp(x) andg(x) can be computed only up to
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multiplicative constant factors, that is to say:f(x) = f∗(x)/Zf andg(x) = g∗(x)/Zg. In such

cases it is straightforward to show that an estimator forΦ is given by:

Φ =
∫
dx g(x)

f(x)
g(x)

φ(x) ' Φ̂ =
∑N

i=1w
(i)φ(x(i))∑N

i=1w
(i)

, (1.58)

where w(i) =
f∗(x(i))
g∗(x(i))

(1.59)

are a slightly different set of importance weights. Unfortunately this estimate is now biased as

it is really the ratio of two estimates, and the ratio of two unbiased estimates is in general not

an unbiased estimate of the ratio. Although importance sampling is simple,Φ̂ can often have

very high variance. Indeed, even in some simple models it can be shown that the variance of the

weightsw(i), and therefore of̂Φ also, are unbounded. These and related problems are discussed

in section4.7 of chapter4 where importance sampling is used to estimate the exact marginal

likelihood of a mixture of factor analysers model trained with variational Bayesian EM. We use

this analysis to provide an assessment of the tightness of the variational lower bound, which

indicates how much we are conceding when using such an approximation (see section4.7.2).

A method related to importance sampling isrejection sampling. It avoids the use of a set of

weights{w(i)}Ni=1 by stochastically deciding whether or not to include each sample fromg(x).
The procedure requires the existence of a constantc such thatc g(x) > f(x) for all x, that

is to sayc g(x) envelopes the probability densityf(x). Samples are obtained fromf(x) by

drawing samples fromg(x), and then accepting or rejecting each stochastically based on the

ratio of its densities underf(x) andg(x). That is to say, for each sample an auxiliary variable

u(i) ∼ U(0, 1) is drawn, and the sample underg(x) accepted only if

f(x(i)) > u(i)c g(x(i)) . (1.60)

Unfortunately, this becomes impractical in high dimensions and with complex functions since

it is hard to find a simple choice ofg(x) such thatc is small enough to allow the rejection rate

to remain reasonable across the whole space. Even in simple examples the acceptance rate falls

exponentially with the dimensionality ofx.

To overcome the limitations of rejection sampling it is possible to adapt the densityc g(x) so

that it envelopesf(x) more tightly, but only in cases wheref(x) is log-concave. This method

is calledadaptive rejection sampling(Gilks and Wild, 1992): the envelope functionc g(x) is

piecewise exponential and is updated to more tightly fit the densityf(x) after each sample

is drawn. The result is that the probability of rejection monotonically decreases with each

sample evaluation. However it is only designed for log-concavef(x) and relies on gradient

information to construct tangents which upper bound the densityf(x). An interesting extension

(Gilks, 1992) to this constructs alower boundb l(x) as well (whereb is a constant) which is

updated in a similar fashion using chords between evaluations off(x). The advantage of also

39



Introduction 1.3. Practical Bayesian approaches

using a piecewise exponential lower bound is that the method can become very computationally

efficient by not having to evaluate densities underf(x) (which we presume is costly) for some

samples. To see how this is possible, consider drawing a samplex(i) which satisfies

b l(x(i)) > u(i)c g(x(i)) . (1.61)

This sample can be automatically acceptedwithout evaluation off(x(i)), since if inequality

(1.61) is satisfied then automatically inequality (1.60) is also satisfied. If the sample does not

satisfy (1.61), then of coursef(x(i)) needs to be computed, but this can then be used to tighten

the bound further.Gilks and Wild(1992) report that the number of density evaluations required

to sampleN points fromf(x) increases as3
√
N , even for quite non-Gaussian densities. Their

example obtains 100 samples from the standard univariate Gaussian with approximately 15

evaluations, and a further 900 samples with only 15 further evaluations. Moreover, in cases

where the log density is close to but not log concave, the adaptive rejection sampling algorithm

can still be used with Metropolis methods (see below) to correct for this (Gilks et al., 1995).

Markov chain Monte Carlo (MCMC) methods (as reviewed inNeal, 1992) can be used to gen-

erate a chain of samples, starting fromx(1), such that the next sample is a non-deterministic

function of the previous sample:x(i) P← x(i−1), where we defineP(x′,x) as the probabil-

ity of transition fromx′ to x. If P hasf(x) as its stationary (equilibrium) distribution, i.e.

f(x) =
∫
dx′ f(x′)P(x′,x), then the set{x(i)}Ni=1 can be used to obtain an unbiased estimate

of Φ as in (1.55) in the limit of a large number of samples. The set of samples have to drawn

from the equilibrium distribution, so it is advisable to discard all samples visited at the begin-

ning of the chain. In generalP is implemented using a proposal densityx(i) ∼ g(x,x(i−1))
about the previous sample. In order to ensurereversibilityof the Markov chain, the probability

of accepting the proposal needs to take into account the probability of a reverse transition. This

gives rise to the the Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) acceptance

functiona(·, ·):

a(x(i),x(i−1)) =
f∗(x(i))g(x(i−1),x(i))
f∗(x(i−1))g(x(i),x(i−1))

. (1.62)

If a(x(i),x(i−1)) ≥ 1 the sample is accepted, otherwise it is accepted according to the prob-

ability a(x(i),x(i−1)). Several extensions to the MCMC method have been proposed includ-

ing over-relaxation (Adler, 1981), hybrid MCMC (Neal, 1993), and reversible-jump MCMC

(Green, 1995). These and many others can be found at the MCMC preprint service (Brooks).

Whilst MCMC sampling methods are guaranteed to yield exact estimates in the limit of a large

number of samples, even for well-designed procedures the number of samples required for ac-

curate estimates can be infeasibly large. There is a large amount of active research dedicated to

constructing measures to ascertain whether the Markov chain has reached equilibrium, whether

the samples it generates are independent, and analysing the reliability of the estimates. This
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thesis is concerned with fast, reliable, deterministic alternatives to MCMC. Long MCMC runs

can then be used to check the accuracy of these deterministic methods.

In contrast to MCMC methods, a new class of sampling methods has been recently devised

in which samples from exactly the equilibrium distribution are generated in a finite number of

steps of a Markov chain. These are termedexact samplingmethods, and make use of trajectory

couplingandcoalescencevia pseudorandom transitions, and is sometimes referred to ascou-

pling from the past(Propp and Wilson, 1996). Variations on exact sampling include interruptible

algorithms (Fill , 1998) and continuous state-space versions (Murdoch and Green, 1998). Such

methods have been applied to graphical models for machine learning problems in the contexts of

mixture modelling (Casella et al., 2000), and noisy-or belief networks (Harvey and Neal, 2000).

Finally, one important role of MCMC methods is to compute partition functions. One such pow-

erful method for computing normalisation constants, such asZf used above, is calledannealed

importance sampling(Neal, 2001). It is based on methods such as thermodynamic integration

for estimating the free energy of systems at different temperatures, and work on tempered tran-

sitions (Neal, 1996). It estimates the ratio of two normalisation constantsZt andZ0, which we

can think of for our purposes as the ratio of marginal likelihoods of two models, by collating the

results of a chain of intermediate likelihood ratios of ‘close’ models,

Zt
Z0

=
Z1

Z0
. . .
Zt−2

Zt−3

Zt−1

Zt−2

Zt
Zt−1

. (1.63)

Each of the ratios is estimated using samples from a Markov chain Monte Carlo method. We will

look at this method in much more detail in Chapter6, where it will be used as a gold standard

against which we test the ability of the variational Bayesian EM algorithm to approximate the

marginal likelihoods of a large set of models.

To conclude this section we note that Monte Carlo is a purely frequentist procedure and in

the words ofO’Hagan(1987) is ‘fundamentally unsound’. The objections raised therein can be

summarised as follows. First, the estimateΦ̂ depends on the sampling densityg(x), even though

g(x) itself is ancillary to the estimation. Put another way, the same set of samples{x(i)}ni=1,

conveying exactly the same information aboutp(x), but generated under a differentg(x) would

produce a different estimatêΦ. Of course, the densityg(x) is often tailored to the problem

at hand and so we would expect it to contain some of the essence of the estimate. Second,

the estimate does not depend on the location of thex(i)s, but only on function evaluations at

those points, e.g.f(x(i)). This is surely suboptimal, as the spatial distribution of the function

evaluations provides information on the integrandf(x)φ(x) as a whole. To summarise, clas-

sical Monte Carlo bases its estimate on irrelevant information,g(x), and also discards relevant

information from the location of the samples. Bayesian variants of Monte Carlo integration pro-

cedures have been devised to address these objections using Gaussian process models (O’Hagan,

1991; Rasmussen and Ghahramani, 2003), and there is much future work to do in this direction.
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1.4 Summary of the remaining chapters

Chapter 2 Forms the theoretical core of the thesis, and examines the use of variational meth-

ods for obtaining lower bounds on the likelihood (for point-parameter learning) and the

marginal likelihood (in the case of Bayesian learning). The implications of VB applied

to the large family ofconjugate-exponentialgraphical models are investigated, for both

directed and undirected representations. In particular, a general algorithm for conjugate-

exponential models is derived and it is shown that existing propagation algorithms can be

employed for inference, with approximately the same complexity as for point-parameters.

In addition, the relations of VB to a number of other commonly used approximations are

covered. In particular, it is shown that the Cheeseman-Stutz (CS) score is in fact a looser

lower bound on the marginal likelihood than the VB score.

Chapter 3 Applies the results of chapter2 to hidden Markov models (HMMs). It is shown that

it is possible to recover the number of hidden states required to model a synthetic data

set, and that the variational Bayesian algorithm can outperform maximum likelihood and

maximum a posteriori parameter learning algorithms on real data in terms of generalisa-

tion.

Chapter 4 Applies the variational Bayesian method to a mixtures of factor analysers (MFA)

problem, where it is shown that the procedure can automatically determine the optimal

number of components and the local dimensionality of each component (i.e. the number

of factors in each analyser). Through a stochastic procedure for adding components to

the model, it is possible to perform the variational optimisation incrementally and avoid

local maxima. The algorithm is shown to perform well on a variety of synthetic data sets,

and is compared to a BIC-penalised maximum likelihood algorithm on a real-world data

set of hand-written digits.

This chapter also investigates the generally applicable method of drawing importance

samples from the variational approximation to estimate the marginal likelihood and the

KL divergence between the approximate and exact posterior. Specific results applying

variants of this procedure to the MFA model are analysed.

Chapter 5 Presents an application of the theorems presented in chapter2 to linear dynamical

systems (LDSs). The result is the derivation of a variational Bayesian input-dependent

Rauch-Tung-Striebel smoother, such that it is possible to infer the posterior hidden state

trajectory whilst integrating over all model parameters. Experiments on synthetic data

show that it is possible to infer the dimensionality of the hidden state space and determine

which dimensions of the inputs and the data are relevant. Also presented are prelimi-

nary experiments for elucidating gene-gene interactions in a well-studied human immune

response mechanism.
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Chapter 6 Investigates a novel application of the VB framework to approximating the marginal

likelihood of discrete-variable directed acyclic graphs (DAGs) that contain hidden vari-

ables. The VB lower bound is compared to MAP, BIC, CS, and annealed importance

sampling (AIS), on a simple (yet non-trivial) model selection task of determining which

of all possible structures within a class generated a data set.

The chapter also discusses extensions and improvements to the particular form of AIS

used, and suggests related approximations which may be of interest.

Chapter 7 Concludes the thesis with a discussion on some topics closely related to the ideas

already investigated. These include: Bethe and Kikuchi approximations, infinite models,

inferring causality using the marginal likelihood, and automated algorithm derivation.

The chapter then concludes with a summary of the main contributions of the thesis.

43


