Chapter 2

Variational Bayesian Theory

2.1 Introduction

This chapter covers the majority of the theory for variational Bayesian learning that will be used
in rest of this thesis. Itis intended to give the reader a context for the use of variational methods
as well as a insight into their general applicability and usefulness.

In a model selection task the role of a Bayesian is to calculate the posterior distribution over a

set of models given some a priori knowledge and some new observations (data). The knowledge
is represented in the form of a prior over model structyxes), and their parameteyg | m)

which define the probabilistic dependencies between the variables in the model. By Bayes’ rule,

the posterior over modets having seen datg is given by:

p(m)p(y [m) 2.1)

p(m|y) = o)

The second term in the numerator is tharginal likelihoodor evidencdor a modelm, and is
the key quantity for Bayesian model selection:

by | m) = [ d6 p(® | m)p(y 6.m) 2.2)
For each model structure we can compute the posterior distribution over parameters:

p(@|m)p(y |6,m) (2.3)
p(y |m)

p(@]y,m) =
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We might also be interested in calculating other related quantities, such@ethetive density
of a new datuny’ given a data set = {y1,...,yn}:

p(y' |y, m) = / 40 p(0 |y, m) p(y’ |0, y,m) (2.9)

which can be simplified into

(' |y,m) = / a6 p(0 |y, m) p(y’ | 6,m) (2.5)

if y’ is conditionally independent gf given 8. We also may be interested in calculating the
posterior distribution of a hidden variable/, associated with the new observatigh

p(xX' |y y,m) /d6’ p(@|y,m)px',y"|6,m). (2.6)

The simplest way to approximate the above integrals is to estimate the value of the integrand
at a single point estimate @&, such as the maximum likelihood (ML) or the maximum a pos-
teriori (MAP) estimates, which aim to maximise respectively the second and both terms of the
integrand in 2.2),

OmL = argmax p(y |6, m) (2.7)
(4

Omap = arg;nax p(@|m)p(y|0,m) . (2.8)

ML and MAP examine only probabilitgensity rather tharmass and so can neglect poten-
tially large contributions to the integral. A more principled approach is to estimate the integral
numerically by evaluating the integrand at many differ@ntia Monte Carlo methods. In the
limit of an infinite number of samples @ this produces an accurate result, but despite inge-
nious attempts to curb the curse of dimensionalityinsing methods such as Markov chain
Monte Carlo, these methods remain prohibitively computationally intensive in interesting mod-
els. These methods were reviewed in the last chapter, and the bulk of this chapter concentrates
on a third way of approximating the integral, usivariational methods. The key to the varia-
tional method is to approximate the integral with a simpler form that is tractable, forming a lower
or upperbound The integration then translates into the implementationally simpler problem of
boundoptimisation making the bound as tight as possible to the true value.

We begin in sectior2.2 by describing how variational methods can be used to derive the well-
known expectation-maximisation (EM) algorithm for learning the maximum likelihood (ML)
parameters of a model. In secti@B3 we concentrate on the Bayesian methodology, in which
priors are placed on the parameters of the model, and their uncertainty integrated over to give the
marginal likelihood(2.2). We then generalise the variational procedure to yield/dreational
Bayesian EMVBEM) algorithm, which iteratively optimises a lower bound on this marginal
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VB Theory 2.2. Variational methods for ML / MAP learning

likelihood. In analogy to the EM algorithm, the iterations consist of a variational Bayesian E
(VBE) step in which the hidden variables are inferred usingresembl®f models according to

their posterior probability, and a variational Bayesian M (VBM) step in which a postisti-

bution over model parameters is inferred. In sectibAwe specialise this algorithm to a large
class of models which we catbnjugate-exponentigdlCE): we present the variational Bayesian
EM algorithm for CE models and discuss the implications for both directed graphs (Bayesian
networks) and undirected graphs (Markov networks) in se@iénin particular we show that

we can incorporate existing propagation algorithms into the variational Bayesian framework
and that the complexity of inference for the variational Bayesian treatment is approximately the
same as for the ML scenario. In sectid we compare VB to the BIC and Cheeseman-Stutz
criteria, and finally summarise in secti@rv.

2.2 Variational methods for ML / MAP learning

In this section we review the derivation of the EM algorithm for probabilistic models with hidden
variables. The algorithm is derived using a variational approach, and has exact and approximate
versions. We investigate themes on convexity, computational tractability, and the Kullback-
Leibler divergence to give a deeper understanding of the EM algorithm. The majority of the
section concentrates on maximum likelihood (ML) learning of the parameters; at the end we
present the simple extension to maximum a posteriori (MAP) learning. The hope is that this
section provides a good stepping-stone on to the variational Bayesian EM algorithm that is
presented in the subsequent sections and used throughout the rest of this thesis.

2.2.1 The scenario for parameter learning

Consider a model with hidden variablesand observed variablgs The parameters describ-

ing the (potentially) stochastic dependencies between variables are givén Ibyparticular
consider the generative model that produces a dataset{y1,...,y,} consisting ofn in-
dependent and identically distributed (i.i.d.) items, generated using a set of hidden variables
x = {xi1,...,%,} such that the likelihood can be written as a functior@df the following

way:

p(y16) = [T o(v:16) = [T [ aixi oyl 6) (2.9)
=1 =1

The integration over hidden variablgs is required to form the likelihood of the parameters,

as a function of just the observed data We have assumed that the hidden variables are
continuous as opposed to discrete (hence an integral rather than a summation), but we do so
without loss of generality. As a point of nomenclature, note that wexysmdy; to denote
collections of|x;| hidden andy;| observed variables respectively; = {x;1, ..., %, }, and
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yi = {¥i1,---,Yily; }- We us€-| notation to denote the size of the collection of variables. ML
learning seeks to find the parameter settigyg that maximises this likelihood, or equivalently
the logarithm of this likelihood,

£(6) = np(y |6) Zlnp 7:10) =Y [dxiplxiyil0)  (@10)
i=1
so defining
OuL = argmax L(0) . (2.12)
)

To keep the derivations clear, we wrifeas a function of only; the dependence gnis im-

plicit. In Bayesian networks without hidden variables and with independent parameters, the
log-likelihood decomposes into local terms on eggh and so finding the setting of each pa-
rameter of the model that maximises the likelihood is straightforward. Unfortunately, if some
of the variables are hidden this will in general induce dependencies between all the parameters
of the model and so make maximisirigy10 difficult. Moreover, for models with many hidden
variables, the integral (or sum) overcan be intractable.

We simplify the problem of maximising(€) with respect t@ by introducing an auxiliary dis-
tribution over the hidden variableAnyprobability distributiong(x) over the hidden variables
gives rise to dower boundon L. In fact, for each data point; we use a distinct distribution
gx, (x;) over the hidden variables to obtain the lower bound:

~Yn / dx; p(xi,yi16) (2.12)

B N —— p(xi,yi|0)

-3 /d s ”T( | (2.13)
(XZaYz|0)

. Z_ / s, () I p i 32 10) = [ g () () (219
= Flgx, (X1)y -+, qx, (Xn), 0) (2.16)

where we have made use of Jensen’s inequalingen1906 which follows from the fact that
thelog function is concaveF (¢« (x), @) is a lower bound orf () and is a functional of the free
distributionsgx, (x;) and ofé (the dependence gnis left implicit). Here we usex(x) to mean
the set{qx, (x;)}7,. Defining theenergyof a global configuratiorix, y) to be— Inp(x,y | 9),

the lower boundF (g« (x), @) < L(0) is the negative of a quantity known in statistical physics as
the free energy the expected energy undgr(x) minus the entropy ofx(x) (Feynman1972
Neal and Hinton1998.
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2.2.2 EM for unconstrained (exact) optimisation

The Expectation-Maximization (EM) algorithnB&um et al. 197Q Dempster et al.1977) al-
ternates between an E step, which infers posterior distributions over hidden variables given a
current parameter setting, and an M step, which maximi¥ég with respect tof given the
statistics gathered from the E step. Such a set of updates can be derived using the lower bound:
at each iteration, the E step maximis€&yx(x), @) with respect to each of thg, (x;), and the

M step does so with respect & Mathematically speaking, using a superscfigtto denote
iteration number, starting from some initial parameféPé, the update equations would be:

E step: q,(ctfl) — argmax F(gx(x),0%), Vie{l,...,n}, (2.17)
ax;

Mstep: 00T — argmax F(¢¢V(x),0). (2.18)
6

For the E step, it turns out that the maximum oygr(x;) of the bound 2.14) is obtained by
setting
e (%) = p(xi |y, 09) Vi, (2.19)

at which point the bound becomes an equality. This can be proven by direct substitution of
(2.19into (2.14):

i, yi| 0Y
Flo ™ (x),00) =3 / i gt ) o PO 1O (2.20)
i ax; (Xl)
10
=3 [ it 32,00 1 PV LO) 2:21)
i p(Xi | Yi, e(t))

1M 10
=3 [ pto v 00w PSP RO g 2
; p(x; |yi, 80)

= Z/dxz‘ p(xi|yi,6") Inp(y: | 0Y) (2.23)

= lnp(y:|6Y) = £(6Y), (2.24)
where the last line follows ds p(y; | @) is not a function ofk;. After this E step the bound is

tight. The same result can be obtained by functionally differentiafifg (x), @) with respect
to ¢x, (x;), and setting to zero, subject to the normalisation constraints:

/dxi gx,(xi) =1, Vi. (2.25)
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The constraints on eaeh, (x;) can be implemented using Lagrange multipligks}?_,, form-
ing the new functional:

Flgx(x),0) = F(gx(x),0) + Z i [ / dx; qx, (x;) — 1] . (2.26)

We then take the functional derivative of this expression with respect toggach ) and equate
to zero, obtaining the following

0

Flgx(x),0M) = Inp(xi, v; |0Y) —Ingy. (x;) =1+ X =0 2.27

e () (gx(x),0') p(xi,y:|6') x; (Xi) (2.27)
— ¢V (xs) = exp (=1 + X)) plxi, yi | 69) (2.28)
=p(xi|y:,09), Vi, (2.29)

where each\; is related to the normalisation constant:
=1 —ln/dxi p(xi,yi |0), Vi. (2.30)

In the remaining derivations in this thesis we always enforce normalisation constraints using
Lagrange multiplier terms, although they may not always be explicitly written.

The M step is achieved by simply setting derivatives2i ) with respect t@ to zero, which is
the same as optimising the expected energy terr.ith( since the entropy of the hidden state
distributiongx (x) is not a function o®:

M step: 04+ — arg max Z / dx; p(x; | yi, O(t)) Inp(x;,y:|0) . (2.312)
o i

Note that the optimisation is over the secahéh the integrand, whilst holding(x; | y;, 8%)

fixed. SinceZ (™ (x),0®) = £(6®) at the beginning of each M step, and since the E

step does not change the parameters, the likelihood is guaranteed not to decrease after each
combined EM step. This is the well known lower bound interpretation of Eix(x), €) is

an auxiliary function which lower bound$(8) for any ¢x(x), attaining equality after each E

step. These steps are shown schematically in figuteHere we have expressed the E step as
obtaining the full distribution over the hidden variables for each data point. However we note
that, in general, the M step may require only a few statistics of the hidden variables, so only
these need be computed in the E step.

2.2.3 EM with constrained (approximate) optimisation

Unfortunately, in many interesting models the data are explained by multiple interacting hid-
den variables which can result in intractable posterior distributidfiidms and Hinton 1991
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E step makes the newlower
1
F(at o))

lower boundtight

log likelihood Inp(y|6() N I
I 1

Inp(y |60) m— ) gy EEEEEEEE |

KL [¢{™) | p(x |y, 0] =0
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Figure 2.1: The variational interpretation of EM for maximum likelihood learning. In the E step
the hidden variable variational posterior is set to the exact postefiory, #*)), making the

bound tight. In the M step the parameters are set to maximise the lower Ué(lgétdq), 0
while holding the distribution over hidden varlablégr ) ) fixed.

Neal 1992 Hinton and Zemel1994 Ghahramani and Jordah997 Ghahramani and Hintgn

2000. In the variational approach we can constrain the posterior distributions to be of a partic-
ular tractable form, for example factorised over the variale- {xij}L?le. Using calculus of
variations we can still optimis#& (¢« (x), @) as a functional of constrained distributions(x;).

The M step, which optimise®, is conceptually identical to that described in the previous sub-
section, except that it is based on sufficient statistics calculated with respect to the constrained
posteriorgy, (x;) instead of the exact posterior.

We can write the lower boun# (¢« (x), 0) as

Z / dx; g (Xi) L P, yi|8) (2.32)
qxz (XZ)
= Z/dxz x, (Xi lnp yi ’ 0 + Z/dxz qX1 Xz (ZZ |(};7) ) (2.33)
gx; \Xq
= Zlnp vil0) — Z:/dxZ x; (X;) (X (y ) 5 (2.34)

Thus in the E step, maximising(¢x(x), @) with respect tay, (x;) is equivalent to minimising
the following quantity

IR -1 ¢ ) B ) (x| v
o) 2P0 = KL g () | a1, (2.35)

>0 (2.36)

)

which is the Kullback-Leibler divergence between the variational distribugiofx;) and the
exact hidden variable posterip(x; | y;,8). As is shown in figure2.2, the E step does not
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Figure 2.2: The variational interpretation of constrained EM for maximum likelihood learn-
ing. In the E step the hidden variable variational posterior is set to that which minimises

KL |gx(x) || p(x |y, 0%)], subject togy(x) lying in the family of constrained distributions.

In the M step the parameters are set to maximise the lower bﬁl(lqﬁl), 0) given the current
distribution over hidden variables.

generally result in the bound becoming an equality, unless of course the exact posterior lies in
the family of constrained posteriogg (x).

The M step looks very similar ta2(31), but is based on the current variational posterior over
hidden variables:

M step: 0+ — argmax Z/dxl- q,(ffl)(xi) Inp(x;,y:]0) . (2.37)
6 i

One can choosg, (x;) to be in a particular parameterised family:
Gx; (Xi) = ax; (X | Ai) (2.38)

whereA; = {A\;1,..., A} arer variational parametergor each datum. If we constrain each
gx, (xi | A;) to have easily computable moments (e.g. a Gaussian), and espediaflisif | y;, 0)

is polynomial inx;, then we can compute the KL divergence up to a constant and, more impor-
tantly, can take its derivatives with respect to the set of variational paramgtefgachyy, (x;)
distribution to perform the constrained E step. The E step ofdhiational EMalgorithm there-

fore consists of a sub-loop in which each of the(x; | A;) is optimised by taking derivatives
with respect to each;,, fors =1,...,r.
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The mean field approximation

The mean fieldapproximation is the case in which eagh (x;) is fully factorised over the
hidden variables:

||

a4, (%5) quu (xi) (2.39)

In this case the expression f61(¢x(x), 8) given by .32 becomes:

—lxv‘ || ||

= Z / dx; H qx;; ng) lnp Xi Yi | 0 H dx;; Xz] ln H qx;; Xzy
7 _] 1
(2.40)
[1xi| |
= Z / dx; H Oxj (Xij) lnp(x,;, Yi | 0) - Z Ax;; (Xij) In Axj (Xij)
i =1 j=1
(2.42)

Using a Lagrange multiplier to enforce normalisation of the each of the approximate posteriors,
we take the functional derivative of this form with respect to each(x;;) and equate to zero,
obtaining:

||

1
Ox;; (Xij) = 2 eXP /dxz’/j quij’ (xij) Inp(xi,y:10)| (2.42)
" i'/i
for each data pointe {1,...,n}, and each variational factorised compongrt {1,. .., |x;|}.

We use the notatioitx;, ; to denote the element of integration for all itemscrexceptx;;, and

the notatiorHj,/j to denote a product of all terms excludipgFor theith datum, itis clear that

the update equatior2 (42 applied to each hidden variabjan turn represents a set of coupled
equations for the approximate posterior over each hidden variable. These fixed point equations
are callednean-field equationisy analogy to such methods in statistical physics. Examples of
these variational approximations can be found in the followfBgahraman(1995; Saul et al.

(1996); Jaakkola1997); Ghahramani and Jord&h997).

EM for maximum a posteriori learning

In MAP learning the parameter optimisation includes prior information about the parameters
p(0), and the M step seeks to find

Omap = arg max p(0)p(y[6) . (2.43)
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In the case of an exact E step, the M step is simply augmented to:

M step: 0+ — argmax [lnp(@) + Z / dx; p(xi | yi, 00) Inp(x;,yi | 9)] :
6 ,
(2.44)

In the case of a constrained approximate E step, the M step is given by

M step: 04+ — arg max [lnp(@) + Z / dax; q,(éﬂ)(xi) In p(x;,y; | 9)] . (2.45)
0 i

However, as mentioned in sectidrB.], we reiterate that an undesirable feature of MAP esti-
mation is that it is inherently basis-dependent: it is always possible to find a basis in which any
particular@* is the MAP solution, provide@* has non-zero prior probability.

2.3 \Variational methods for Bayesian learning

In this section we show how to extend the above treatment to use variational methods to ap-
proximate the integrals required for Bayesian learning. By treating the parameters as unknown
guantities as well as the hidden variables, there are now correlations between the parameters
and hidden variables in the posterior. The basic idea in the VB framework is to approximate the
distribution over both hidden variables and parameters with a simpler distribution, usually one
which assumes that the hidden states and parameters are independent given the data.

There are two main goals in Bayesian learning. The first is approximating the marginal likeli-
hoodp(y | m) in order to perform model comparison. The second is approximating the posterior
distribution over the parameters of a mogdé¥ | y, m), which can then be used for prediction.

2.3.1 Deriving the learning rules

As before, lety denote the observed variablasgenote the hidden variables, afidienote the
parameters. We assume a prior distribution over paramet@rsn) conditional on the model
m. The marginal likelihood of a modeh(y | m), can be lower bounded by introducing any
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distribution over both latent variables and parameters which has support wlxee|y, m)
does, by appealing to Jensen’s inequality once more:

Inp(y|m) = ln/dO dx p(x,y,0|m) (2.46)
I < o(x. 0 LY 01m)

=1 /ded q(x,0) 7= 0) (2.47)
p(x,y,0|m)

> /d@ dx q(x,0)In 4(x.0) (2.48)

Maximising this lower bound with respect to the free distributigr, 8) results ing(x, 0) =

p(x,0 |y, m) which when substituted above turns the inequality into an equality (in exact
analogy with 2.19). This does not simplify the problem since evaluating the exact poste-
rior distributionp(x, 8 | y, m) requires knowing its normalising constant, the marginal likeli-
hood. Instead we constrain the posterior to be a simpler, factorised (separable) approximation
tog(x,0) ~ gx(x)qe(0):

p(x,y,0|m)
Inp(y | m) > / 0 e gx(x)10(6) In 25X ) (2.49)
_ < ol o Py [0:m) ) p(8]m)
= /do q0(0) Ud ax(x)1 ey +1 1000 (2.50)
= fm(Qx(X)7qe(G)) (251)
- ]:m(%q (X1>7 <o Qxy, (Xn)v qg(a)) ) (252)

where the last equality is a consequence of the gladariving i.i.d. (this is shown in theorem
2.1below). The quantityF,, is a functional of the free distributiong, (x) andge(0).

The variational Bayesian algorithm iteratively maximisg€s in (2.51) with respect to the free
distributions,gx (x) andge (@), which is essentially coordinate ascent in the function space of
variational distributions. The following very general theorem provides the update equations for
variational Bayesian learning.

Theorem 2.1: Variational Bayesian EM (VBEM).

Let m be a model with paramete® giving rise to an i.i.d. data sef = {yi,...y»} with
corresponding hidden variables = {xi,...x,}. A lower bound on the model log marginal
likelihood is

Fm(ax(x), q0(0)) = / d0 dx gx(x)qe(0) In W (2.53)

and this can be iteratively optimised by performing the following updates, using supefstript
to denote iteration number:

VBE step: q)((zfi+1)(xi) = Zi exp [/ de qg)(e) Inp(x;,y;|0,m)| Vi (2.54)

Xi
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where
aY( H ¢ (x; (2.55)
and

VBM step: qu“)(e) = Zl p(@|m) exp [/ dx q(tH)( ) Inp(x,y|60,m)| . (2.56)

Moreover, the update rules converge to a local maximutf,pfqx(x), ¢e(0)) .

Proof of ¢, (x;) update: using variational calculus.

Take functional derivatives of,,, (gx(x), go(0)) with respect taj(x), and equate to zero:

0 B 0 p(x,y|0,m)
(%) Fn(gx(x),q0(0)) = /d@ qe(0) {&]X(x) /dx dx(x) In 7%((}() (2.57)
— [ 6 40(6) I plx.y6,m) ~ I ge() — 1 (2.58)
= (2.59)
which implies
lnq t+1 /d@ qp’(0) Inp(x,y |0, m) —In Z,((H_l) , (2.60)

whereZ, is a normalisation constant (from a Lagrange multiplier term enforcing normalisation
of gx(x), omitted for brevity). As a consequence of the i.i.d. assumption, this update can be
broken down across thedata points

In gt (x) = /do g Zlnp (xi,yi|0,m) —In 28TV | (2.61)
=1

which implies that the optimajl ™ (x) is factorised in the form{™ (x) = %, ¢ (x,),

with

In q(t+ )( i) = /dG q(t)(O) Inp(xi,yi|0,m) —In Z)(ciﬂ) Vi, (2.62)
with  Ze =[] 2« - (2.63)
i=1
Thus for a givenye(0), there is a unique stationary point for eagh(x; ). O

Proof of g¢(0) update: using variational calculus.
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log marginal likelihood
Inp(y [ m) EE—— A — o 2P(Y ™)

(t1) (1)
KL lgx g lp(x,01y)
KL [0 a6 11p0x, 01 )] [ )

KL [0l 5" | p(x, 0 | 3)]
newerlower bound
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VBE step VBM step

Figure 2.3: The variational Bayesian EM (VBEM) algorithm. In the VBE step, the variational
posterior over hidden variableg(x) is set according taX.60). In the VBM step, the variational
posterior over parameters is set according2®®. Each step is guaranteed to increase (or
leave unchanged) the lower bound on the marginal likelihood. (Note that the exact log marginal
likelihood is afixed quantity, and does not change with VBE or VBM steps — it is only the
lower bound which increases.)

Proceeding as above, take functional derivatives,gfqgx(x), go(0)) with respect taje(6) and
equate to zero yielding:

Y )
8q9(0)fm(qX(X)aQO(0)) = 940(0) /d@ q6(0) {/ dx qx(x) Inp(x,y |0, m) (2.64)
p(6|m)
T ) ] (2.65)
:/dx ¢x(x) np(x,y | 6) +1np(6 | m) — Inge(6) + ¢ (2.66)
=0, (2.67)

which upon rearrangement produces
In ng)(O) =Inp(@|m)+ /dx q,((tH)(X) Inp(x,y|6) —1In Zétﬂ) , (2.68)
whereZy is the normalisation constant (related to the Lagrange multiplier which has again been

omitted for succinctness). Thus for a givgr(x), there is a unique stationary point f@s(0).
O
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At this point it is well worth noting the symmetry between the hidden variables and the param-
eters. The individual VBE steps can be written as one batch VBE step:

1
o (x) = Z, o [ / d6 45 (0) np(x.y | 97m)] (2.69)

with 2o =[] 2« - (2.70)

On the surface, it seems that the variational update r@dé)(and .56 differ only in the

prior termp(@ | m) over the parameters. There actually also exists a prior term over the hidden
variables as part gi(x,y | @, m), so this does not resolve the two. The distinguishing feature
between hidden variables and parameters is that the number of hidden variables increases with
data set size, whereas the number of parameters is assumed fixed.

Re-writing .53, it is easy to see that maximising,, (¢x(x), g9(0) is simply equivalent to
minimising the KL divergence betweeg (x) ¢go9(0) and the joint posterior over hidden states
and parameters(x, 8 |y, m):

qx(x) qo(0)

Inp(y | m) — Fn(qx(x),q6(0)) = /d9 dx gx(x) ge(6) In o(x.0y.m) (2.71)
= KL [gx(x) ¢6(0) | p(x, 0 |y, m)] (2.72)
>0. (2.73)

Note the similarity between expressiorzs3H and @.72: while we minimise the former with
respect to hidden variable distributions and the parameters, the latter we minimise with respect
to the hidden variable distribution andiestributionover parameters.

The variational Bayesian EM algorithm reduces to the ordinary EM algorithm for ML estimation

if we restrict the parameter distribution to a point estimate, i.e. a Dirac delta funggi@), =

5(6 — 6%), in which case the M step simply involves re-estimatéig Note that the same
cannot be said in the case of MAP estimation, which is inherently basis dependent, unlike both
VB and ML algorithms. By construction, the VBEM algorithm is guaranteed to monotonically
increase an objective functiafi, as a function of a distribution over parameters and hidden
variables. Since we integrate over model parameters there is a naturally incorporated model
complexity penalty. It turns out that for a large class of models (see seztibrihe VBE

step has approximately the same computational complexity as the standard E step in the ML
framework, which makes it viable as a Bayesian replacement for the EM algorithm.
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VB Theory 2.3. Variational methods for Bayesian learning

2.3.2 Discussion

The impact of the ¢(x, ) ~ ¢x(x)qg(0) factorisation

Unless we make the assumption that the posterior over parameters and hidden variables fac-
torises, we will not generally obtain the further hidden variable factorisation oveat we

have in equationZ.55. In that case, the distributions &f andx; will be coupled for all cases

{i,j} in the data set, greatly increasing the overall computational complexity of inference. This
further factorisation is depicted in figue4 for the case ofr = 3, where we see: (a) the origi-

nal directed graphical model, whefies the collection of parameters governing prior distribu-
tions over the hidden variables and the conditional probability(y; | x;, 8); (b) the moralised

graph given the datdy,y2,ys3}, which shows that the hidden variables are now dependent

in the posterior through the uncertain parameters; (c) the effective graph after the factorisation
assumption, which not only removes arcs between the parameters and hidden variables, but also
removes the dependencies between the hidden variables. This latter independence falls out from
the optimisation as a result of the i.i.d. nature of the data, and is not a further approximation.

Whilst this factorisation of the posterior distribution over hidden variables and parameters may
seem drastic, one can think of it as replacstgchasticdependencies betweenand 6 with
deterministicdependencies between relevant moments of the two sets of variables. The ad-
vantage of ignoring how fluctuations #induce fluctuations ir® (and vice-versa) is that we

can obtain analytical approximations to the log marginal likelihood. It is these same ideas that
underlie mean-field approximations from statistical physics, from where these lower-bounding
variational approximations were inspirelgefynman 1972 Parisi 1988. In later chapters the
consequences of the factorisation for particular models are studied in some detail; in particular
we will use sampling methods to estimate by how much the variational bound falls short of the
marginal likelihood.

What forms for gx(x) and gg(0) ?

One might need to approximate the posterior further than simply the hidden-variable / parameter
factorisation. A common reason for this is that the parameter posterior may still be intractable
despite the hidden-variable / parameter factorisation. The free-form extremisatibmoi-

mally provides us with a functional form fajy(6), but this may be unwieldy; we therefore

need to assume some simpler space of parameter posteriors. The most commonly used distribu-
tions are those with just a few sufficient statistics, such as the Gaussian or Dirichlet distributions.
Taking a Gaussian examplé, is then explicitly extremised with respect to a set of variational
parametergy = (g, vg) Which parameterise the Gaussigii@ | (o). We will see examples

of this approach in later chapters. There may also exist intractabilities in the hidden variable
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(a) The generative graphical (b) Graph representing the
model. exact posterior.

OB ONNO

(c) Posterior graph after the
variational approximation.

Figure 2.4: Graphical depiction of the hidden-variable / parameter factorisé#ipmhe origi-

nal generative model far = 3. (b) The exact posterior graph given the data. Note that for all

case pairgi, j }, x; andx; are not directly coupled, but interact through That is to say all

the hidden variables are conditionally independent of one another, but only given the parame-
ters. (c) the posterior graph after the variational approximation between parameters and hidden
variables, which removes arcs between parameters and hidden variables. Note that, on assum-
ing this factorisation, as a consequence of the i.i.d. assumption the hidden variables become

independent.

59



VB Theory 2.3. Variational methods for Bayesian learning

posterior, for which further approximations need be made (some examples are mentioned be-
low).

There is something of a dark art in discovering a factorisation amongst the hidden variables and
parameters such that the approximation remains faithful at an ‘acceptable’ level. Of course it
does not make sense to use a posterior form which holds fewer conditional independencies than
those implied by thenoralgraph (see sectioh1). The key to a good variational approximation

is then to remove as few arcs as possible from the moral graph such that inference becomes
tractable. In many cases the goal is to find tractable substructtrast(redapproximations)

such as trees or mixtures of trees, which capture as many of the arcs as possible. Some arcs
may capture crucial dependencies between nodes and so need be kept, whereas other arcs might
induce a weak local correlation at the expense of a long-range correlation which to first order
can be ignored; removing such an arc can have dramatic effects on the tractability.

The advantage of the variational Bayesian procedure isatmafactorisation of the posterior
yields a lower bound on the marginal likelihood. Thus in practice it may pay to approximately
evaluate the computational cost of several candidate factorisations, and implement those which
can return a completed optimisationBfwithin a certain amount of computer time. One would
expect the more complex factorisations to take more computer time but also yield progressively
tighter lower bounds on average, the consequence being that the marginal likelihood estimate
improves over time. An interesting avenue of research in this vein would be to use the vari-
ational posterior resulting from a simpler factorisation as the initialisation for a slightly more
complicated factorisation, and move in a chain from simple to complicated factorisations to help
avoid local free energy minima in the optimisation. Having proposed this, it remains to be seen
if it is possible to form a coherent closely-spaced chain of distributions that are of any use, as
compared to starting from the fullest posterior approximation from the start.

Using the lower bound for model selection and averaging

The log ratio of posterior probabilities of two competing modelandm’ is given by

In m = +Inp(m) + p(y | m) — Inp(m) — Inply | m') (2.78)
=+Inp(m) + F(gxe) +KLg(x,0)]|p(x,0]y,m)]

—Inp(m') — F' (¢, 9) — KL [¢'(x,0) || p(x,0 |y, m')] (2.75)

where we have used the form A 72, which is exact regardless of the quality of the bound used,
or how tightly that bound has been optimised. The lower bounds for the two mddats) 7,

are calculated from VBEM optimisations, providing us for each model with an approximation
to the posterior over the hidden variables and parameters of that rqg,@elndq;ﬂ; these may

in general be functionally very different (we leave aside for the moment local maxima problems
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in the optimisation process which can be overcome to an extent by using several differently
initialised optimisations or in some models by employing heuristics tailored to exploit the model
structure). When we perform model selection by comparing the lower botmhdsd 7', we

are assuming that the KL divergences in the two approximations are the same, so that we can
use just these lower bounds as guide. Unfortunately it is non-trivial to predict how tight in
theory any particular bound can be — if this were possible we could more accurately estimate
the marginal likelihood from the start.

Taking an example, we would like to know whether the bound for a model Sithixture
components is similar to that f&f + 1 components, and if not then how badly this inconsis-
tency affects the posterior over this set of models. Roughly speaking, let us assume that every
component in our model contributes a (constant) KL divergence penal§lLof For clarity

we use the notatior’(S) and F(S) to denote the exact log marginal likelihood and lower
bounds, respectively, for a model wihcomponents. The difference in log marginal likeli-
hoods,L(S + 1) — L(S), is the quantity we wish to estimate, but if we base this on the lower
bounds the difference becomes

L(S+1) = L(S) = [F(S +1) + (S + 1) KLg] — [F(S) + S KL] (2.76)
= F(S+1) — F(S) + KL, (2.77)
£ F(S+1)— F(S), (2.78)

where the last line is the result we would have basing the difference on lower bounds. Therefore
there exists a systematic error when comparing models if each component contributes indepen-
dently to the KL divergence term. Since the KL divergence is strictly positive, and we are basing
our model selection or2(78 rather than2.77), this analysis suggests that there is a systematic
bias towards simpler models. We will in fact see this in chapterhere we find an importance
sampling estimate of the KL divergence showing this behaviour.

Optimising the prior distributions

Usually the parameter priors are functions of hyperparameiess) we can writen(0 | a, m).
In the variational Bayesian framework the lower bound can be made higher by maxitfijsing
with respect to these hyperparameters:

al™) = argmax F,,,(gx(x), 6(6),y, a) . (2.79)
a

A simple depiction of this optimisation is given in figugeb. Unlike earlier in sectior?.3.],

the marginal likelihood of model: can now be increased with hyperparameter optimisation.

As we will see in later chapters, there are examples where these hyperparameters themselves
have governing hyperpriors, such that they can be integrated over as well. The result being that
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new optimised

log marginal likelihood
ERLLLL Inp(y | al*), m)

log marginal Iikelihoot{ log marginal Iikelihood1
—————— - 1) ——

p(y [al?),m) np(y|a®,m) S N
KL {q}({t+l)qét+l) lp(x, 01y, a(t+l))}
KL [q’((t+1)qét+l) Il p(x, 01y, a(t))]

newlower bound

KL [ ag” 1 p(x.01y,a(*)] _t_ F(al™ (), af (0), aH1)
newlower bound
F@eo, 0 zmmebeaeas

5™ (0),a")
—_— | A 0.45 (6).2) I
VBEM step hyperparameter optimisation

Figure 2.5: The variational Bayesian EM algorithm with hyperparameter optimisation. The
VBEM step consists of VBE and VBM steps, as shown in figeré@ The hyperparameter
optimisation increases the lower bound and also improves the marginal likelihood.

we can infer distributions over these as well, just as for parameters. The reason for abstracting
from the parameters this far is that we would like to integrate out all variables whose cardinality
increases with model complexity; this standpoint will be made clearer in the following chapters.

Previous work, and general applicability of VBEM

The variational approach for lower bounding the marginal likelihood (and similar quantities)
has been explored by several researchers in the past decade, and has received a lot of attention
recently in the machine learning community. It was first proposed for one-hidden layer neural
networks (which have no hidden variables) Binton and van Camgl993 wheregg(0) was
restricted to be Gaussian with diagonal covariance. This work was later extended to show that
tractable approximations were also possible with a full covariance GauBsidmef and Bishop

1998 (which in general will have the mode of the posterior at a different location than in the
diagonal case).Neal and Hinton(1998 presented a generalisation of EM which made use

of Jensen’s inequality to allow partial E-steps; in this paper the tmsemble learningvas

used to describe the method since it fits an ensemble of models, each with its own parameters.
Jaakkola(1997 andJordan et al(1999 review variational methods in a general context (i.e.
non-Bayesian). Variational Bayesian methods have been applied to various models with hidden
variables and no restrictions gg(@) andgx, (x;) other than the assumption that they factorise in
some way {aterhouse et 311996 Bishop 1999 Ghahramani and Bea200Q Attias, 2000).

Of particular note is the variational Bayesian HMM MglacKay (1997, in which free-form
optimisations are explicitly undertaken (see cha@erthis work was the inspiration for the
examination of Conjugate-Exponential (CE) models, discussed in the next section. An example
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of a constrained optimisation for a logistic regression model can be foulzdikkola and Jordan
(2000.

Several researchers have investigated using mixture distributions for the approximate posterior,
which allows for more flexibility whilst maintaining a degree of tractabilibagrence et a.

1998 Bishop et al. 1998 Lawrence and Azzouzil999. The lower bound in these models

is a sum of a two terms: a first term which is a convex combination of bounds from each
mixture component, and a second term which is the mutual information between the mixture
labels and the hidden variables of the model. The first term offers no improvement over a naive
combination of bounds, but the second (which is non-negative) has to improve on the simple
bounds. Unfortunately this term contains an expectation over all configurations of the hidden
states and so has to be itself bounded with a further use of Jensen’s inequality in the form of
a convex bound on the log functiom(z) < Az — In(\) — 1) (Jaakkola and Jordat998.
Despite this approximation drawback, empirical results in a handful of models have shown that
the approximation does improve the simple mean field bound and improves monotonically with
the number of mixture components.

A related method for approximating the integrand for Bayesian learning is based on an idea
known asassumed density filtering\DF) (Bernardo and Girornl988 Stephensl1997 Boyen

and Koller, 1998 Barber and Sollich200Q Frey et al, 2001, and is called the Expectation
Propagation (EP) algorithmMinka, 20013. This algorithm approximates the integrand of
interest with a set oferms and through a process of repeated deletion-inclusion of term ex-
pressions, the integrand is iteratively refined to resemble the true integrand as closely as pos-
sible. Therefore the key to the method is to use terms which can be tractably integrated. This
has the same flavour as the variational Bayesian method described here, where we iteratively
update the approximate posterior over a hidden sfatéx;) or over the parameterg(0).

The key difference between EP and VB is that in the update process (i.e. deletion-inclusion)
EP seeks to minimise the KL divergence which averages according to the true distribution,
KL [p(x,0]y) || ¢(x,0)] (which is simply a moment-matching operation for exponential fam-

ily models), whereas VB seeks to minimise the KL divergence according to the approximate
distribution,KL [¢(x, 0) || p(x, 0 | y)]. Therefore, EP is at least attempting to average according

to the correct distribution, whereas VB has the wrong cost function at heart. However, in gen-
eral the KL divergence in EP can only be minimised separately one term at a time, while the KL
divergence in VB is minimised globally over all terms in the approximation. The result is that
EP may still not result in representative posterior distributions (for exampldyisdgea, 2001a

figure 3.6, p. 6). Having said that, it may be that more generalised deletion-inclusion steps can
be derived for EP, for example removing two or more terms at a time from the integrand, and
this may alleviate some of the ‘local’ restrictions of the EP algorithm. As in VB, EP is con-
strained to use particular parametric families with a small number of moments for tractability.
An example of EP used with an assumed Dirichlet density for the term expressions can be found
in Minka and Lafferty(2002.
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In the next section we take a closer look at the variational Bayesian EM equafids$,and
(2.56), and ask the following questions:

- To which models can we apply VBEM? i.e. which forms of data distributjeiys x | 0)
and priorsp(€ | m) result in tractable VBEM updates?

- How does this relate formally to conventional EM?

- When can we utilise existing belief propagation algorithms in the VB framework?

2.4 Conjugate-Exponential models

2.4.1 Definition

We consider a particular class of graphical models with latent variables, which veecplbate-
exponentia(CE) models. In this section we explicitly apply the variational Bayesian method to
these parametric families, deriving a simple general form of VBEM for the class.

Conjugate-exponential models satisfy two conditions:

Condition (1). The complete-data likelihood is in the exponential family:
p(xi,yi|0) = g(6) f(xi,y;) e?® ulxivi) (2.80)

whereg(0) is the vector of natural parametera,and f are the functions that define the expo-
nential family, andy is a normalisation constant:

9(0)"! = /dXi dyi f(xi,y;) e?(®) ubxivi) (2.81)

The natural parameters for an exponential family mapl@re those that interact linearly with
the sufficient statistics of the data For example, for a univariate Gaussianrimvith meany
and standard deviatian, the necessary quantities are obtained from:

x? TR 1 9
6= (0% 1) (2.83)
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and are:
$(8) — (;2 ;‘2) (2.84)
o= (2. o9
fla)=1 (2.86)
g(8) = exp {—2‘;22 - ;ln(2ﬂ'o2)} : (2.87)

Note that whilst the parameterisation #@rs arbitrary, e.g. we could have 18t= (o, 1), the
natural parameterg are unigque up to a multiplicative constant.

Condition (2). The parameter prior is conjugate to the complete-data likelihood:
p(O]n,v) = h(n,v) g(8)" OV, (2.88)
wheren andv are hyperparameters of the prior, ardis a normalisation constant:

h(n,v)~ ! = /dG g(0)" R ONS (2.89)

Condition 1 @.80 in fact usually implies the existence of a conjugate prior which satisfies
condition 2 .89. The priorp(0 | n,v) is said to be conjugate to the likelihopdx;, y; | 0) if
and only if the posterior

p(@[n',V) ocp(@|n,v)p(x,y|0) (2.90)

is of the same parametric form as the prior. In general the exponential families are the only
classes of distributions that have natural conjugate prior distributions because they are the only
distributions with a fixed humber of sufficient statistics apart from some irregular cases (see
Gelman et al.1995 p. 38). From the definition of conjugacy, we see that the hyperparameters
of a conjugate prior can be interpreted as the numiearid valuesi¥) of pseudo-observations
under the corresponding likelihood.

We call models that satisfy conditions 2.80 and 2 £.88 conjugate-exponential

The list of latent-variable models of practical interest with complete-data likelihoods in the ex-
ponential family is very long, for example: Gaussian mixtures, factor analysis, principal compo-
nents analysis, hidden Markov models and extensions, switching state-space models, discrete-
variable belief networks. Of course there are also many as yet undreamt-of models combining
Gaussian, gamma, Poisson, Dirichlet, Wishart, multinomial, and other distributions in the expo-
nential family.
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However there are some notable outcasts which do not satisfy the conditions for membership
of the CE family, namely: Boltzmann machinesckley et al, 1985, logistic regression and
sigmoid belief networksRishop 1995, and independent components analysis (ICA) (as pre-
sented inComon 1994 Bell and Sejnowskil995), all of which are widely used in the machine
learning community. As an example let us see why logistic regression is not in the conjugate-
exponential family: fory; € {—1, 1}, the likelihood under a logistic regression model is

einTxi
p(yi | xi,0) = m ) (2.91)
wherex; is the regressor for data poinand@ is a vector of weights, potentially including a

bias. This can be rewritten as
p(y; | xi,0) = v xi—1(0xi) (2.92)

wheref (6, x;) is a normalisation constant. To belong in the exponential family the normalising
constant must split into functions of onfyand only(x;, y;). Expandingf (0, x;) yields a series

of powers off " x;, which could be assimilated into theb(8) Tu(x;, y;) term by augmenting

the natural parameter and sufficient statistics vectors, if it were not for the fact that the series is
infinite meaning that there would need to be an infinity of natural parameters. This means we
cannot represent the likelihood with a finite number of sufficient statistics.

Models whose complete-data likelihood is not in the exponential family can often be approxi-
mated by models which are in the exponential family and have been given additional hidden
variables. A very good example is the Independent Factor Analysis (IFA) mod&ttiak

(19993. In conventional ICA, one can think of the model as using non-Gaussian sources, or
using Gaussian sources passed through a non-linearity to make them non-Gaussian. For most
non-linearities commonly used (such as the logistic), the complete-data likelihood becomes
non-CE. Attias recasts the model as a mixture of Gaussian sources being fed into a linear mix-
ing matrix. This model is in the CE family and so can be tackled with the VB treatment. It is

an open area of research to investigate how best to bring models into the CE family, such that
inferences in the modified model resemble the original as closely as possible.

2.4.2 Variational Bayesian EM for CE models

In Bayesian inference we want to determine the posterior over parameters and hidden variables
p(x,0|y,n,v). In general this posterior iseitherconjugate nor in the exponential family. In

this subsection we see how the properties of the CE family make it especially amenable to the
VB approximation, and derive the VBEM algorithm for CE models.
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Theorem 2.2: Variational Bayesian EM for Conjugate-Exponential Models.
Given an i.i.d. data sey = {y1,...yx}, if the model satisfies conditions (1) and (2), then the
following (a), (b) and (c) hold:

(a) the VBE step yields:
(%) = [ [ o (i) , (2.93)
=1
and g, (x;) is in the exponential family:

G, (i) o< f(xq,y5) e® WY = p(x;|yi, @), (2.94)

with a natural parameter vector
= [ 46 10(6)8(6) = (2(60)), 5 (2.95)

obtained by taking the expectation ¢{60) undergg(0) (denoted using angle-brackets
(-)). For invertible ¢, definingd such that¢(é) = ¢, we can rewrite the approximate
posterior as

Ox; (xi) = p(xi | yi,0) . (2.96)

(b) the VBM step yields tha () is conjugate and of the form:

a0(6) = h(il, ) g(6)7 e ¥, (2.97)
where
n=n+n, (2.98)
p=v+ zn:ﬁ(yi) : (2.99)
=1
and
u(yi) = (u(Xi, ¥i)) gy (x,) (2.100)

is the expectation of the sufficient statisticWe have usefl), (x,) {0 denote expectation

under the variational posterior over the latent variable(s) associated withitthéatum.

(c) parts (a) and (b) hold for every iteration of variational Bayesian EM.

Proof of (a): by direct substitution.
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Starting from the variational extrema solutichg0 for the VBE step:
1 n X m
ax(x) = - Y100 (2.101)

substitute the parametric form fp(x;, y; | @, m) in condition 1 .80, which yields (omitting
iteration superscripts):

62?:1 (In g(8)+1n f(xi,y:)+b(0) Tu(x; 7Yi)>q9 ®) (2.102)

[T 7 y)] s @ ulxiv) (2.103)
i=1

whereZ, has absorbed constants independent, @nd we have defined without loss of gener-
ality:

@ =(6(9))y,0) - (2.104)
If ¢ is invertible, then there existsthsuch thaip = ¢(6), and we can rewrite(103 as:
1 - T
= — v )e®O) ulxiyi
ax(x) = Z ]:[1 f(x5,y:)e®™) oy 1 (2.105)
x [[p(xi,yi16,m) (2.106)
=1
=[] (i) (2.107)
=1
=p(x,y|0,m). (2.108)

Thus the result of the approximate VBE step, which averages over the ensemble of models
qe(0), is exactly the same as an exact E step, calculated attiegional Bayes poinéstimate
6. O

Proof of (b): by direct substitution.

Starting from the variational extrema solutichg6) for the VBM step:

1

= 2 p(0]m) PV IO (2.109)
(4

q0(0)
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substitute the parametric forms fp(@ | m) and p(x;,y; |8, m) as specified in conditions 2
(2.88 and 1 .80 respectively, which yields (omitting iteration superscripts):

qe(g) _ i h(fr]7 V)g(a)n€¢(9)TV e<2,?:1 In g(0)+1n f(xi,yi)+¢(9)Tu(xi,yi)>qx(x) (2110)

Zg
— Zlg h(n, V)g(g)n+n€¢>(9)T[u+Z?:1 U(yi)] iy (0 f(Xi¥i)) gy () (2.111)
has nof dependence
— h(i, 2)g(0)7e? @7 (2.112)
where
h(i, ) = ;ezzganf(xi,yi»qx(x) _ (2.113)
Therefore the variational posterigg(0) in (2.112 is of conjugate form, according to condition
2 (2.88. O

Proof of (c): by induction.

Assume conditions 12(80 and 2 .88 are met (i.e. the model is in the CE family). From part
(a), the VBE step produces a posterior distributifix) in the exponential family, preserving
condition 1 .80); the parameter distributiogy(0) remains unaltered, preserving condition 2
(2.89. From part (b), the VBM step produces a parameter postegi@) that is of conjugate
form, preserving condition 22(89; ¢x(x) remains unaltered from the VBE step, preserving
condition 1 @.80. Thus under both the VBE and VBM steps, conjugate-exponentiality is pre-
served, which makes the theorem applicable at every iteration of VBEM. O

As before, sinceyy(0) and ¢, (x;) are coupled,Z.97 and @.94) do not provide an analytic
solution to the minimisation problem, so the optimisation problem is solved numerically by
iterating between the fixed point equations given by these equations. To summarise briefly:

VBE Step: Compute the expected sufficient statistiagy;)}?" , under the hidden vari-
able distributionsyy, (x;), for all 7.

VBM Step: Compute the expected natural parametérs- (¢(0)) under the parameter
distribution given byj and .

2.4.3 Implications

In order to really understand what the conjugate-exponential formalism buys us, let us reiterate
the main points of theorerd.2 above. The first result is that in the VBM step the analytical
form of the variational posteriogg(@) does not change during iterations of VBEM — e.g.

if the posterior is Gaussian at iteration= 1, then only a Gaussian need be represented at
future iterations. If it were able to change, which is the case in general (theb@nthe
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EM for MAP estimation Variational Bayesian EM
Goal: maximisep(0 |y, m) w.r.t. 0 Goal: lower boundp(y | m)
E Step: compute VBE Step: compute
—(t)
o (x) = plx|y,00) W (x) =pxly.¢")
M Step: VBM Step:
6+ = arg max, [dx q,((t+1)(x) Inp(x,y,0) q‘(gtH)(H) x exp [ dx q,(cH'l)(x) Inp(x,y,0)

Table 2.1: Comparison of EM for ML/MAP estimation against variational Bayesian EM for CE
models.

posterior could quickly become unmanageable, and (further) approximations would be required
to prevent the algorithm becoming too complicated. The second result is that the posterior over
hidden variables calculated in the VBE step is exactly the posterior that would be calculated had
we been performing an ML/MAP E step. That is, the inferences using an ensemble of models
qe(0) can be represented by the effect of a point paramétethe task of performing many
inferences, each of which corresponds to a different parameter setting, can be replaced with a
single inference step — it is possible to infer the hidden states in a conjugate exponential model
tractably while integrating over an ensemble of model parameters.

Comparison to EM for ML/IMAP parameter estimation

We can draw a tight parallel between the EM algorithm for ML/MAP estimation, and our VBEM
algorithm applied specifically to conjugate-exponential models. These are summarised in table
2.1 This general result of VBEM for CE models was reporteGtmahramani and Be§2001),

and generalises the well known EM algorithm for ML estimati@eihpster et al.1977). It

is a special case of the variational Bayesian algorithm (the@é&jrused inGhahramani and

Beal (2000 and inAttias (2000, yet encompasses many of the models that have been so far
subjected to the variational treatment. Its particular usefulness is as a guide for the design of
models, to make them amenable to efficient approximate Bayesian inference.

The VBE step has about the same time complexity as the E step, and is in all ways identical
except that it is re-written in terms of the expected natural parameters. In particular, we can
make use of all relevant propagation algorithms such as junction tree, Kalman smoothing, or
belief propagation. The VBM step computesliatribution over parameters (in the conjugate
family) rather than a point estimate. Both ML/MAP EM and VBEM algorithms monotonically
increase an objective function, but the latter also incorporates a model complexity penalty by
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integrating over parameters so embodying an Occam’s razor effect. Several examples will be
presented in the following chapters of this thesis.

Natural parameter inversions

Unfortunately, even though the algorithmic complexity is the same, the implementations may
be hampered since the propagation algorithms need to be re-derived in terms of the natural
parameters (this is essentially the difference between the forn2sdd @nd €.96)). For some
models, such as HMMs (see cha@eandMacKay, 1997, this is very straightforward, whereas

the LDS model (see chapt8yquickly becomes quite involved. Automated algorithm derivation
programs are currently being written to alleviate this complication, specifically for the case
of variational Bayesian EM operationBighop et al. 2003, and also for generic algorithm
derivation Bunting 2002 Gray et al, 2003; both these projects build on resultS&mahramani

and Beal2001).

The difficulty is quite subtle and lies in the natural parameter inversion problem, which we now
briefly explain. In theorer@.2we conjecturedhe existence of & such thaip = <¢(0))q9(9) L

¢(8), which was a point of convenience. But, the operaijort [(qb)qg(e)} may not be well
defined if the dimensionality ap is greater than that &. Whilst not undermining the theorem’s
result, this does mean that representationally speaking the resulting algorithm may look different
having had to be cast in terms of the natural parameters.

Online and continuous variants

The VBEM algorithm for CE models very readily lends itself to online learning scenarios in
which data arrives incrementally. | briefly present here an online version of the VBEM algorithm
above (but see alg8hahramani and Attia200Q Satq 2001J). In the standard VBM ste2(97)

the variational posterior hyperparametgis updated according to the size of the dataset
(2.99, andr is updated with a simple sum of contributions from each daiiim ), (2.99.

For the online scenario, we can take the posterior over parameters describeshddy to be
theprior for subsequent inferences. Let the data be split in to batches indexeabygh of size
n®), which are presented one by one to the model. Thus ifthéatch of data consists of the
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n®) i.id. pomts{yZ}J( S -1 , then the online VBM step replaces equatioh98 and .99
with

i =" 4+ k) (2.114)
§F) 4n (k) 1
v=vE D4 > u(y). (2.115)
i=j(k)

In the online VBE step only the hidden variabl@a}zg(tf(k)_l need be inferred to calculate
the requireda statistics. The online VBM and VBE steps are then iterated until convergence,
which may be fast if the size of the batef”) is small compared to the amount of data previously
seenzk, 1 n(¥) . After convergence, the prior for the next batch is set to the current posterior,
according to

i, (2.116)
v o (2.117)

The online VBEM algorithm has several benefits. First and foremost, the update equations give
us a very transparent picture of how the algorithm incorporates evidence from a new batch of
data (or single data point). The way in which it does this makes it possible to discard data from
earlier batches: the hyperparametgrand  representll information gathered from previ-

ous batches, and the process of incorporating new information is not a function of the previous

- [(k—1)
batches’ statlstlc@i(yi)}?fj(;+”(k , nor previous hyperparameter settifgé), v f 12,
nor the previous batch sizs()}* 1 1 , hor the previous datayZ}J(k Dl -1 . Implemen-

tationally this offers a large memory saving. Since we hold a dlstrlbution over the parameters
of the model, which is updated in a consistent way using Bayesian inference, we should hope
that the online model makes a flexible and measured response to data as it arrives. However it
has been observed (personal communication, Z. Ghahramani) that serious underfitting occurs in
this type of online algorithm; this is due to excessive self-pruning of the parameters by the VB
algorithm.

From the VBM stepZ2.97) we can straightforwardly propose an annealing variant of the VBEM
algorithm. This would make use of an inverse temperature pararietej0, 1] and adopt the
following updates for the VBM step:

i=n+pn, (2.118)

v=v+pY uly), (2.119)

which is similar to the online algorithm but “introduces” the data continuously with a schedule
of g from 0 — 1. Whilst this is a tempting avenue for research, it is not clear that in this
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setting we should expect any better results than if we were to present the algorithm with all
the data (i.e3 = 1) from the start — after all, the procedure of Bayesian inference should
produce the same inferences whether presented with the data incrementally, continuously or all
at once. The advantage of an annealed model, however, is that we are giving the algorithm a
better chance of escaping the local minima in the free energy that plague EM-type algorithms,
so that the Bayesian inference procedure can be given a better chance of reaching the proper
conclusions, whilst at every iteration receiving information (allfernuted) about all the data

at every iteration.

2.5 Directed and undirected graphs

In this section we present several important results which build on thedzelhand 2.2 by
specifying theform of the joint densityp(x,y, #). A convenient way to do this is to use the
formalism and expressive power of graphical models. We derive variational Bayesian learn-
ing algorithms for two important classes of these models: directed graphs (Bayesian networks)
and undirected graphs (Markov networks), and also give results pertaining to CE families for
these classes. The corollaries refer to propagation algorithms material which is covered in
sectionl1.1.2 for a tutorial on belief networks and Markov networks the reader is referred to
Pearl(1988. In the theorems and corollaries, VBEM and CE are abbreviationggational
Bayesian Expectation-Maximisatiamdconjugate-exponential

2.5.1 Implications for directed networks

Corollary 2.1: (theorem 2.1) VBEM for Directed Graphs (Bayesian Networks).

Letm be a model with parameteésand hidden and visible variables= {z;}!' ; = {x;,yi}-;
that satisfy a belief network factorisation. That is, each variahlehas parent, ;) such
that the complete-data joint density can be written as a product of conditional distributions,

p(z|0) = [ [ 2(zi | Zipag). 0) - (2.120)
(A
Then the approximating joint distribution fer satisfies the same belief network factorisation:

4z(z) = qui(zi) ) Gz, (2i) = qu(zij |Zipa(j)) ) (2.121)
@ J

where 1
T, (2ij | Zipag) = ?€<lnp(zij (200 O g0 v (i 4} (2.122)
a5
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are new conditional distributionebtained by averaging oveyp(6), and Zg, are normalising
constants.

This corollary is interesting in that it states that a Bayesian network’s posterior distribution
can be factored into the same terms as the original belief network factorisatiditQ( This

means that the inference for a particular variable depends only on those other variables in its
Markov blanketthis result is trivial for the point parameter case, but definitely non-trivial in the
Bayesian framework in which all the parameters and hidden variables are potentially coupled.

Corollary 2.2: (theorem 2.2) VBEM for CE Directed Graphs (CE Bayesian Networks).
Furthermore, ifm is a conjugate-exponential model, then the conditional distributions of the
approximate posterior joint have exactly the same form as those in the complete-data likelihood
in the original model:

T;(2ij | Zipa(j) = P(2ij | Zipa(j), 0) , (2.123)

but with natural parameteraﬁ(é) — ¢. Moreover, with the modified parametefs the ex-
pectations under the approximating posterigi(x) o ¢,(z) required for the VBE step can be
obtained by applying the belief propagation algorithm if the network is singly connected and
the junction tree algorithm if the network is multiply-connected.

This result generalises the derivation of variational learning for HMMadKay, 1997, which

uses the forward-backward algorithm as a subroutine. We investigate the variational Bayesian
HMM in more detail in chapteB. Another example islynamic treegWilliams and Adams

1999 Storkey 2000 Adams et al.2000 in which belief propagation is executed on a single

tree which represents an ensemble of singly-connected structures. Again there exists the natural
parameter inversion issue, but this is merely an implementational inconvenience.

2.5.2 Implications for undirected networks

Corollary 2.3: (theorem 2.1) VBEM for Undirected Graphs (Markov Networks).
Letm be a model with hidden and visible variabtes= {z;}} ; = {x;,y;}]~, that satisfy a
Markov network factorisation. That is, the joint density can be written as a product of clique-

potentials{q; }7_;,

p(2]6) = %H]‘[%(cj(zi),a), (2.124)
i g

where each cliqu€’; is a (fixed) subset of the variablesan such thaf{ C (z;)U- - -UC(z;) } =
z;. Then the approximating joint distribution far satisfies the same Markov network factori-
sation:

0(2) = [0 (21) . () = zi [1¢;Ciz)) . (2.125)
i 7 4
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where
G;(Cy(z3)) = MV G a0y g, ) (2.126)

are new clique potentialsbtained by averaging ovep(6), and Z, is a normalisation constant.

Corollary 2.4: (theorem 2.2) VBEM for CE Undirected Graphs (CE Markov Networks).
Furthermore, ifm is a conjugate-exponential model, then the approximating clique potentials
have exactly the same form as those in the original model:

V;(Cj(2)) o< 1(Cj(24),0) (2.127)

but with natural parametera&(é) = ¢. Moreover, the expectations under the approximating
posterior g« (x)  ¢,(z) required for the VBE Step can be obtained by applying the junction
tree algorithm.

For conjugate-exponential models in which belief propagation and the junction tree algorithm
over hidden variables are intractable, further applications of Jensen’s inequality can yield tractable
factorisations Jaakkola1997 Jordan et a].1999.

2.6 Comparisons of VB to other criteria

2.6.1 BIC s recovered from VB in the limit of large data

We show here informally how the Bayesian Information Criterion (BIC, see setti#) is
recovered in the large data limit of the variational Bayesian lower bo@tigsg, 19991. F can
be written as a sum of two terms:

Fm(ax(x), q0(0)) = —KL [qo(0) || p(6 | m)] + <IHW> (x)q0(6)

f'm,pen Dm

(2.128)

Let us consider separately the limiting forms of these two terms, constraining ourselves to the
cases in which the model is in the CE family. In such cases, theor@m states thatjg(€) is

of conjugate form2.97) with parameters given by2(98 and €.99. It can be shown that under

mild conditions exponential family distributions of this form exhibit asymptotic normality (see,
for example, the proof given iBernardo and Smithl994 pp. 293-4). Therefore, the entropy
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of gg(0@) appearing inF,, pen Can be calculated assuming a Gaussian form (see app@andix
and the limit becomes

d 1
lim Foypen = nan;O (Inp(6m)),, e + B In 271 — B In |H| (2.129)

n—oo

_ —glnn—i—O(l), (2.130)

where H is the Hessian (matrix of second derivatives of the parameter posterior evaluated at
the mode), and we have used similar arguments to those taken in the derivation of BIC (section
1.3.4. The second tern®,,, can be analysed by appealing to the fact that the term inside the
expectation is equal th p(y | 8, m) if and only if ¢x(x) = p(x |y, 8, m). Theoren?.1 states

that the form of the variational posterior over hidden staiés) is given by

Ingx(x) = /d9 qe(0)Inp(x,y|0,m) — In Zx (2.131)

(which does not depend on CE family membership conditions). Therefajg(8$ becomes
concentrated aboWtyap, this results ing,(x) = p(x |y, Oumap, m). ThenD,, asymptotically
becomesn p(y | Omar, m). Combining this with the limiting form fotF,,, ,.., given by @.130
results in:

. d
lim F,(gx(x),q0(0)) = —3 Inn + lnp(y|Owap,m) + O(1), (2.132)

n—oo

which is the BIC approximation given by.49. For the case of a non-CE model, we would
have to prove asymptotic normality fgp (@) outside of the exponential family, which may
become complicated or indeed impossible. We note that this derivation of the limiting form of
VB is heuristic in the sense that we have neglected concerns on precise regularity conditions
and identifiability.

2.6.2 Comparison to Cheeseman-Stutz (CS) approximation

In this section we present results regarding the approximati@heeseman and Stu{z996,
covered in sectiofi.3.5 We briefly review the CS criterion, as used to approximate the marginal
likelihood of finite mixture models, and then show that it is in fact a strict lower bound on the
marginal likelihood. We conclude the section by presenting a construction that proves that VB
can be used to obtain a bound thahbwaystighter than CS.

Let m be a directed acyclic graph with paramet@rgiving rise to an i.i.d. data set denoted
byy = {y1,...,yn} With corresponding discrete hidden variabdes- {si,...,s,} each of
cardinalityk. Let @ be a result of an EM algorithm which has converged to a local maximum
in the likelihoodp(y | 6), and lets = {§;}I_; be a completion of the hidden variables, chosen
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according to the posterior distribution over hidden variables given the dat#,asuch that
Sij =p(sij=7ly,0)Vi=1,.

Since we are completing the hidden variables with real, as opposed to discrete values, this
complete data set does not in general correspond to a realisable data set under the generative
model. This point raises the question of how its marginal probabilgyy | m) is defined. We

will see in the following theorem and proof (theorén®) that both the completion required of

the hidden variables and the completed data marginal probability are well-defined, and follow
from equation®.141and2.142below.

The CS approximation is given by

ply |

oy ;) . (2.133)

p(y |m) = p(y | m)cs=p(8,y|m)
The CS approximation exploits the fact that, for many models of interest, the first term on the
right-hand side, the complete-data marginal likelihood, is tractable to compute (this is the case
for discrete-variable directed acyclic graphs with Dirichlet priors, see chépter details).
The term in the numerator of the second term on the right-hand side is simply the likelihood
of the data, which is an output of the EM algorithm (as is the parameter estﬁmaaed the
denominator is a straightforward calculation that involves no summations over hidden variables
or integrations over parameters.

Theorem 2.3: Cheeseman-Stutz approximation is a lower bound on the marginal likeli-
hood.

Let® be the result of the M step of EM, and {gf(s; | y:, 8) }_, be the set of posterior distribu-
tions over the hidden variables obtained in the next E step of EM. FurthermogeA€s; }" ;
be a completion of the hidden variables, such $at= p(s;; = j |y, 9) Vi=1,...,n. Then
the CS approximation is a lower bound on the marginal likelihood:

p(y|6
p(3,y10)

~—

p(y|m)cs=p(8,y |m) <ply|m). (2.134)

This observation should be attributediinka (20018, where it was noted that (in the context

of mixture models with unknown mixing proportions and component parameters) whilst the CS
approximation has been reported to obtain good performance in the liter@ugegeman and
Stutz 1996 Chickering and Heckermat997), it was not known to be a bound on the marginal
likelihood. Here we provide a proof of this statement that is generally applicable to any model.
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Proof of theorem2.3: via marginal likelihood bounds using approximations over the posterior
distribution of only the hidden variables. The marginal likelihood can be lower bounded by
introducing a distribution over the settings of each data point’s hidden variab(es):

ply|m) = [ a6 p(6) [[ iyl 6) (2.135)
- S;,yYi o
> /d@ p(0) H exp {; gs,;(s;) In W} . (2.136)

We return to this quantity shortly, but presently place a similar lower bound over the likelihood
of the data:

Py 1) = prz|0>Hexp{quZs@ S“y”")} (2.137)

gs, (Sz)

which can be made an equality if, for each data paj(d;) is set to the exact posterior distri-
bution given the parameter settifigffor example see equatiof.(9 and the proof following

it),

sz,yz\G)
0 i|0) ex s; (Si) - , 2.138
p(y|0) ||py| || p{E q 3. (5) } ( )
where
ds,(si) = p(si |y, ), (2.139)

which is the result obtained from an exact E step with the parameters@eNmw rewrite the
marginal likelihood bound2.139, using this same choice gf, (s;), separate those terms that
depend or@ from those that do not, and substitute in the form from equa&ot3g to obtain:

ply|m) >HeXp{ZqSZ si) p .)}-/de(O)HeXp{ZQS¢(Sz')lnp(Si,yl'l9)}
s, (si i=1 Si

(2.140)

- Py10) 10 p0)| exp{ oo (1) In (s y-w)}
[Ti=i exp {Zsi Gs; (si) Inp(si,yi | é)} / zl_Il ; Z

(2.141)

- py19) de p(6 T s, 16 2.142
H?lp(éi,yilé)/ o )gp(suyz! ), (2.142)
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wheres; are defined such that they satisfy:

§; definedsuchthat: Inp(8;,y|0) = ds,(s;) Inp(si,y: | 0) (2.143)

= p(sily,0)Inp(si,yi| 0) (2.144)
Si
where the second line comes from the requirement of bound equali2ylifg. The existence
of such a completion follows from the fact that, in discrete-variable directed acyclic graphs
of the sort considered i@hickering and Heckermaf1997), the hidden variables appear only
linearly in logarithm of the joint probabilitp(s,y | @). Equation .14 is the Cheeseman-
Stutz criterion, and is also a lower bound on the marginal likelihood. O

It is possible to derive CS-like approximations for types of graphical model other than discrete-
variables DAGs. In the above proof no constraints were placed on the forms of the joint distribu-
tions over hidden and observed variables, other than in the simplifying step in equatidéf (

So, similar results to corollaries2and2.4 can be derived straightforwardly to extend theorem
2.3to incorporate CE models.

The following corollary shows that variational Bayes can always obtain a tighter bound than the
Cheeseman-Stutz approximation.

Corollary 2.5: (theorem 2.3) VB is at least as tight as CS.
That is to say, it is always possible to find distributiggés) andge(€) such that

Inp(y [m)cs < Fin(gs(s),q0(0)) < Inp(y|m) . (2.145)

Proof of corollary2.5. Consider the following forms fags(s) andgg(0):

qS(S) = Hqsi (S’L) ’ with qSi<Si) = p(si | Yi, é) ) (2146)
=1
qe(0) o< (Inp(0)p(s,y [6)),.s) - (2.147)

We write the form forge(0) explicitly:

P(8) TTi=y exp {35, ¢si(si) Inp(si, yi| 0) }

%(9) N f de’ p(9/) H?:l exp {z:sZ qSi(Si) lnp(Si, Yi ‘ 0/)} ’

(2.148)
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and note that this is exactly the result of a VBM step. We substitute this and the forg($or
directly into the VB lower bound stated in equatiéhg3 of theorem2.1, obtaining:

f(qs(S),Qe(G))—/dG q0(0 21& si) S}(y ‘)0) /da 7(6) In (2(09)

(2.149)

=1 s;

+/d0 qe(0) ln/d@’ Ch Hexp{qul S; lnp(sl,yl|0)} (2.150)

=1
S Y [ a9 p<e>Hexp{zqsxsinnp(si,yie>} ,
i=1 sy s ( i=1 S

(2.151)

which is exactly the logarithm of equatioB.(40. And so with this choice ofg(0) andgs(s)
we achieve equalithetween the CS and VB approximations 21(45.

We complete the proof of corollag/5by noting that any further VB optimisation is guaranteed

to increase or leave unchanged the lower bound, and hence surpass the CS lower bound. We
would expect the VB lower bound starting from the CS solution to improve upon the CS lower
bound inall cases, except in the very special case when the MAP paraf?ndﬂeasxactly the
variational Bayes pointdefined a¥figp = ¢*1(<¢(0)>q9(9)) (see proof of theorern2.2(a)).
Therefore, since VB is a lower bound on the marginal likelihood, the entire statement 45§(

is proven. O

2.7 Summary

In this chapter we have shown how a variational bound can be used to derive the EM algorithm
for ML/MAP parameter estimation, for both unconstrained and constrained representations of
the hidden variable posterior. We then moved to the Bayesian framework, and presented the
variational Bayesian EMalgorithm which iteratively optimises a lower bound on the marginal
likelihood of the model. The marginal likelihood, which integrates over model parameters, is
the key component to Bayesian model selection. The VBE and VBM steps are obtained by
taking functional derivatives with respect to variational distributions over hidden variables and
parameters respectively.

We gained a deeper understanding of the VBEM algorithm by examining the specific case of
conjugate-exponentiahodels and showed that, for this large class of models, the posterior dis-
tributionsgx (x) andge(€) have intuitive and analytically stable forms. We have also presented
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VB learning algorithms for both directed and undirected graphs (Bayesian networks and Markov
networks).

We have explored the Cheeseman-Stutz model selection criterion as a lower bound of the
marginal likelihood of the data, and have explained how it is a very specific case of varia-
tional Bayes. Moreover, using this intuition, we have shown that any CS approximation can be
improved upon by building a VB approximation over it. It is tempting to derive conjugate-
exponential versions of the CS criterion, but in my opinion this is not necessary since any
implementations based on these results can be made only more accurate by using conjugate-
exponential VB instead, which is at least as general in every case. In claptepresent a
comprehensive comparison of VB to a variety of approximation methods, including CS, for a
model selection task involving discrete-variable DAGSs.

The rest of this thesis applies the VB lower bound to several commonly used statistical models,
with a view to performing model selection, learning from both real and synthetic data sets.
Throughout we compare the variational Bayesian framework to competitor approximations,
such as those reviewed in sectibi3, and also critically analyse the quality of the lower bound
using advanced sampling methods.
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