
Chapter 2

Variational Bayesian Theory

2.1 Introduction

This chapter covers the majority of the theory for variational Bayesian learning that will be used

in rest of this thesis. It is intended to give the reader a context for the use of variational methods

as well as a insight into their general applicability and usefulness.

In a model selection task the role of a Bayesian is to calculate the posterior distribution over a

set of models given some a priori knowledge and some new observations (data). The knowledge

is represented in the form of a prior over model structuresp(m), and their parametersp(θ |m)
which define the probabilistic dependencies between the variables in the model. By Bayes’ rule,

the posterior over modelsm having seen datay is given by:

p(m |y) =
p(m)p(y |m)

p(y)
. (2.1)

The second term in the numerator is themarginal likelihoodor evidencefor a modelm, and is

the key quantity for Bayesian model selection:

p(y |m) =
∫
dθ p(θ |m)p(y |θ,m) . (2.2)

For each model structure we can compute the posterior distribution over parameters:

p(θ |y,m) =
p(θ |m)p(y |θ,m)

p(y |m)
. (2.3)

44
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We might also be interested in calculating other related quantities, such as thepredictive density

of a new datumy′ given a data sety = {y1, . . . ,yn}:

p(y′ |y,m) =
∫
dθ p(θ |y,m) p(y′ |θ,y,m) , (2.4)

which can be simplified into

p(y′ |y,m) =
∫
dθ p(θ |y,m) p(y′ |θ,m) (2.5)

if y′ is conditionally independent ofy given θ. We also may be interested in calculating the

posterior distribution of a hidden variable,x′, associated with the new observationy′

p(x′ |y′,y,m) ∝
∫
dθ p(θ |y,m) p(x′,y′ |θ,m) . (2.6)

The simplest way to approximate the above integrals is to estimate the value of the integrand

at a single point estimate ofθ, such as the maximum likelihood (ML) or the maximum a pos-

teriori (MAP) estimates, which aim to maximise respectively the second and both terms of the

integrand in (2.2),

θML = arg max
θ

p(y |θ,m) (2.7)

θMAP = arg max
θ

p(θ |m)p(y |θ,m) . (2.8)

ML and MAP examine only probabilitydensity, rather thanmass, and so can neglect poten-

tially large contributions to the integral. A more principled approach is to estimate the integral

numerically by evaluating the integrand at many differentθ via Monte Carlo methods. In the

limit of an infinite number of samples ofθ this produces an accurate result, but despite inge-

nious attempts to curb the curse of dimensionality inθ using methods such as Markov chain

Monte Carlo, these methods remain prohibitively computationally intensive in interesting mod-

els. These methods were reviewed in the last chapter, and the bulk of this chapter concentrates

on a third way of approximating the integral, usingvariational methods. The key to the varia-

tional method is to approximate the integral with a simpler form that is tractable, forming a lower

or upperbound. The integration then translates into the implementationally simpler problem of

boundoptimisation: making the bound as tight as possible to the true value.

We begin in section2.2 by describing how variational methods can be used to derive the well-

known expectation-maximisation (EM) algorithm for learning the maximum likelihood (ML)

parameters of a model. In section2.3 we concentrate on the Bayesian methodology, in which

priors are placed on the parameters of the model, and their uncertainty integrated over to give the

marginal likelihood(2.2). We then generalise the variational procedure to yield thevariational

Bayesian EM(VBEM) algorithm, which iteratively optimises a lower bound on this marginal
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VB Theory 2.2. Variational methods for ML / MAP learning

likelihood. In analogy to the EM algorithm, the iterations consist of a variational Bayesian E

(VBE) step in which the hidden variables are inferred using anensembleof models according to

their posterior probability, and a variational Bayesian M (VBM) step in which a posteriordistri-

butionover model parameters is inferred. In section2.4 we specialise this algorithm to a large

class of models which we callconjugate-exponential(CE): we present the variational Bayesian

EM algorithm for CE models and discuss the implications for both directed graphs (Bayesian

networks) and undirected graphs (Markov networks) in section2.5. In particular we show that

we can incorporate existing propagation algorithms into the variational Bayesian framework

and that the complexity of inference for the variational Bayesian treatment is approximately the

same as for the ML scenario. In section2.6 we compare VB to the BIC and Cheeseman-Stutz

criteria, and finally summarise in section2.7.

2.2 Variational methods for ML / MAP learning

In this section we review the derivation of the EM algorithm for probabilistic models with hidden

variables. The algorithm is derived using a variational approach, and has exact and approximate

versions. We investigate themes on convexity, computational tractability, and the Kullback-

Leibler divergence to give a deeper understanding of the EM algorithm. The majority of the

section concentrates on maximum likelihood (ML) learning of the parameters; at the end we

present the simple extension to maximum a posteriori (MAP) learning. The hope is that this

section provides a good stepping-stone on to the variational Bayesian EM algorithm that is

presented in the subsequent sections and used throughout the rest of this thesis.

2.2.1 The scenario for parameter learning

Consider a model with hidden variablesx and observed variablesy. The parameters describ-

ing the (potentially) stochastic dependencies between variables are given byθ. In particular

consider the generative model that produces a datasety = {y1, . . . ,yn} consisting ofn in-

dependent and identically distributed (i.i.d.) items, generated using a set of hidden variables

x = {x1, . . . ,xn} such that the likelihood can be written as a function ofθ in the following

way:

p(y |θ) =
n∏
i=1

p(yi |θ) =
n∏
i=1

∫
dxi p(xi,yi |θ) . (2.9)

The integration over hidden variablesxi is required to form the likelihood of the parameters,

as a function of just the observed datayi. We have assumed that the hidden variables are

continuous as opposed to discrete (hence an integral rather than a summation), but we do so

without loss of generality. As a point of nomenclature, note that we usexi andyi to denote

collections of|xi| hidden and|yi| observed variables respectively:xi = {xi1, . . . ,xi|xi|}, and
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yi = {yi1, . . . ,yi|yi|}. We use|·| notation to denote the size of the collection of variables. ML

learning seeks to find the parameter settingθML that maximises this likelihood, or equivalently

the logarithm of this likelihood,

L(θ) ≡ ln p(y |θ) =
n∑
i=1

ln p(yi |θ) =
n∑
i=1

ln
∫
dxi p(xi,yi |θ) (2.10)

so defining

θML ≡ arg max
θ

L(θ) . (2.11)

To keep the derivations clear, we writeL as a function ofθ only; the dependence ony is im-

plicit. In Bayesian networks without hidden variables and with independent parameters, the

log-likelihood decomposes into local terms on eachyij , and so finding the setting of each pa-

rameter of the model that maximises the likelihood is straightforward. Unfortunately, if some

of the variables are hidden this will in general induce dependencies between all the parameters

of the model and so make maximising (2.10) difficult. Moreover, for models with many hidden

variables, the integral (or sum) overx can be intractable.

We simplify the problem of maximisingL(θ) with respect toθ by introducing an auxiliary dis-

tribution over the hidden variables.Anyprobability distributionqx(x) over the hidden variables

gives rise to alower boundonL. In fact, for each data pointyi we use a distinct distribution

qxi(xi) over the hidden variables to obtain the lower bound:

L(θ) =
∑
i

ln
∫
dxi p(xi,yi |θ) (2.12)

=
∑
i

ln
∫
dxi qxi(xi)

p(xi,yi |θ)
qxi(xi)

(2.13)

≥
∑
i

∫
dxi qxi(xi) ln

p(xi,yi |θ)
qxi(xi)

(2.14)

=
∑
i

∫
dxi qxi(xi) ln p(xi,yi |θ)−

∫
dxi qxi(xi) ln qxi(xi) (2.15)

≡ F(qx1(x1), . . . , qxn(xn),θ) (2.16)

where we have made use of Jensen’s inequality (Jensen, 1906) which follows from the fact that

thelog function is concave.F(qx(x),θ) is a lower bound onL(θ) and is a functional of the free

distributionsqxi(xi) and ofθ (the dependence ony is left implicit). Here we useqx(x) to mean

the set{qxi(xi)}ni=1. Defining theenergyof a global configuration(x,y) to be− ln p(x,y |θ),
the lower boundF(qx(x),θ) ≤ L(θ) is the negative of a quantity known in statistical physics as

the free energy: the expected energy underqx(x) minus the entropy ofqx(x) (Feynman, 1972;

Neal and Hinton, 1998).
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2.2.2 EM for unconstrained (exact) optimisation

The Expectation-Maximization (EM) algorithm (Baum et al., 1970; Dempster et al., 1977) al-

ternates between an E step, which infers posterior distributions over hidden variables given a

current parameter setting, and an M step, which maximisesL(θ) with respect toθ given the

statistics gathered from the E step. Such a set of updates can be derived using the lower bound:

at each iteration, the E step maximisesF(qx(x),θ) with respect to each of theqxi(xi), and the

M step does so with respect toθ. Mathematically speaking, using a superscript(t) to denote

iteration number, starting from some initial parametersθ(0), the update equations would be:

E step: q
(t+1)
xi ← arg max

qxi

F(qx(x),θ(t)) , ∀ i ∈ {1, . . . , n} , (2.17)

M step: θ(t+1) ← arg max
θ

F(q(t+1)
x (x),θ) . (2.18)

For the E step, it turns out that the maximum overqxi(xi) of the bound (2.14) is obtained by

setting

q
(t+1)
xi (xi) = p(xi |yi,θ(t)) , ∀ i , (2.19)

at which point the bound becomes an equality. This can be proven by direct substitution of

(2.19) into (2.14):

F(q(t+1)
x (x),θ(t)) =

∑
i

∫
dxi q

(t+1)
xi (xi) ln

p(xi,yi |θ(t))

q
(t+1)
xi (xi)

(2.20)

=
∑
i

∫
dxi p(xi |yi,θ(t)) ln

p(xi,yi |θ(t))
p(xi |yi,θ(t))

(2.21)

=
∑
i

∫
dxi p(xi |yi,θ(t)) ln

p(yi |θ(t)) p(xi |yi,θ(t))
p(xi |yi,θ(t))

(2.22)

=
∑
i

∫
dxi p(xi |yi,θ(t)) ln p(yi |θ(t)) (2.23)

=
∑
i

ln p(yi |θ(t)) = L(θ(t)) , (2.24)

where the last line follows asln p(yi |θ) is not a function ofxi. After this E step the bound is

tight. The same result can be obtained by functionally differentiatingF(qx(x),θ) with respect

to qxi(xi), and setting to zero, subject to the normalisation constraints:∫
dxi qxi(xi) = 1 , ∀ i . (2.25)
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The constraints on eachqxi(xi) can be implemented using Lagrange multipliers{λi}ni=1, form-

ing the new functional:

F̃(qx(x),θ) = F(qx(x),θ) +
∑
i

λi

[∫
dxi qxi(xi)− 1

]
. (2.26)

We then take the functional derivative of this expression with respect to eachqxi(xi) and equate

to zero, obtaining the following

∂

∂qxi(xi)
F̃(qx(x),θ(t)) = ln p(xi,yi |θ(t))− ln qxi(xi)− 1 + λi = 0 (2.27)

=⇒ q
(t+1)
xi (xi) = exp (−1 + λi) p(xi,yi |θ(t)) (2.28)

= p(xi |yi,θ(t)) , ∀ i , (2.29)

where eachλi is related to the normalisation constant:

λi = 1− ln
∫
dxi p(xi,yi |θ(t)) , ∀ i . (2.30)

In the remaining derivations in this thesis we always enforce normalisation constraints using

Lagrange multiplier terms, although they may not always be explicitly written.

The M step is achieved by simply setting derivatives of (2.14) with respect toθ to zero, which is

the same as optimising the expected energy term in (2.15) since the entropy of the hidden state

distributionqx(x) is not a function ofθ:

M step: θ(t+1) ← arg max
θ

∑
i

∫
dxi p(xi |yi,θ(t)) ln p(xi,yi |θ) . (2.31)

Note that the optimisation is over the secondθ in the integrand, whilst holdingp(xi |yi,θ(t))
fixed. SinceF(q(t+1)

x (x),θ(t)) = L(θ(t)) at the beginning of each M step, and since the E

step does not change the parameters, the likelihood is guaranteed not to decrease after each

combined EM step. This is the well known lower bound interpretation of EM:F(qx(x),θ) is

an auxiliary function which lower boundsL(θ) for any qx(x), attaining equality after each E

step. These steps are shown schematically in figure2.1. Here we have expressed the E step as

obtaining the full distribution over the hidden variables for each data point. However we note

that, in general, the M step may require only a few statistics of the hidden variables, so only

these need be computed in the E step.

2.2.3 EM with constrained (approximate) optimisation

Unfortunately, in many interesting models the data are explained by multiple interacting hid-

den variables which can result in intractable posterior distributions (Williams and Hinton, 1991;
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log likelihood
ln p(y | θ(t))

KL
h
q
(t)
x ‖ p(x |y, θ(t))

i

F(q
(t)
x , θ(t))

lower bound

E step

E step makes the
lower boundtight

ln p(y | θ(t))

= F(q
(t+1)
x , θ(t))

KL
h
q
(t+1)
x ‖ p(x |y, θ(t))

i
= 0

M step

new log likelihood
ln p(y | θ(t+1))

KL
h
q
(t+1)
x ‖ p(x |y, θ(t+1))

i
F(q

(t+1)
x , θ(t+1))

newlower bound

Figure 2.1: The variational interpretation of EM for maximum likelihood learning. In the E step
the hidden variable variational posterior is set to the exact posteriorp(x |y,θ(t)), making the

bound tight. In the M step the parameters are set to maximise the lower boundF(q(t+1)
x ,θ)

while holding the distribution over hidden variablesq(t+1)
x (x) fixed.

Neal, 1992; Hinton and Zemel, 1994; Ghahramani and Jordan, 1997; Ghahramani and Hinton,

2000). In the variational approach we can constrain the posterior distributions to be of a partic-

ular tractable form, for example factorised over the variablexi = {xij}|xi|
j=1. Using calculus of

variations we can still optimiseF(qx(x),θ) as a functional of constrained distributionsqxi(xi).
The M step, which optimisesθ, is conceptually identical to that described in the previous sub-

section, except that it is based on sufficient statistics calculated with respect to the constrained

posteriorqxi(xi) instead of the exact posterior.

We can write the lower boundF(qx(x),θ) as

F(qx(x),θ) =
∑
i

∫
dxi qxi(xi) ln

p(xi,yi |θ)
qxi(xi)

(2.32)

=
∑
i

∫
dxi qxi(xi) ln p(yi |θ) +

∑
i

∫
dxi qxi(xi) ln

p(xi |yi,θ)
qxi(xi)

(2.33)

=
∑
i

ln p(yi |θ)−
∑
i

∫
dxi qxi(xi) ln

qxi(xi)
p(xi |yi,θ)

. (2.34)

Thus in the E step, maximisingF(qx(x),θ) with respect toqxi(xi) is equivalent to minimising

the following quantity∫
dxi qxi(xi) ln

qxi(xi)
p(xi |yi,θ)

≡ KL [qxi(xi) ‖ p(xi |yi,θ)] (2.35)

≥ 0 , (2.36)

which is the Kullback-Leibler divergence between the variational distributionqxi(xi) and the

exact hidden variable posteriorp(xi |yi,θ). As is shown in figure2.2, the E step does not
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Figure 2.2: The variational interpretation of constrained EM for maximum likelihood learn-
ing. In the E step the hidden variable variational posterior is set to that which minimises

KL
[
qx(x) ‖ p(x |y,θ(t))

]
, subject toqx(x) lying in the family of constrained distributions.

In the M step the parameters are set to maximise the lower boundF(q(t+1)
x ,θ) given the current

distribution over hidden variables.

generally result in the bound becoming an equality, unless of course the exact posterior lies in

the family of constrained posteriorsqx(x).

The M step looks very similar to (2.31), but is based on the current variational posterior over

hidden variables:

M step: θ(t+1) ← arg max
θ

∑
i

∫
dxi q

(t+1)
xi (xi) ln p(xi,yi |θ) . (2.37)

One can chooseqxi(xi) to be in a particular parameterised family:

qxi(xi) = qxi(xi |λi) (2.38)

whereλi = {λi1, . . . ,λir} arer variational parametersfor each datum. If we constrain each

qxi(xi |λi) to have easily computable moments (e.g. a Gaussian), and especially ifln p(xi |yi,θ)
is polynomial inxi, then we can compute the KL divergence up to a constant and, more impor-

tantly, can take its derivatives with respect to the set of variational parametersλi of eachqxi(xi)
distribution to perform the constrained E step. The E step of thevariational EMalgorithm there-

fore consists of a sub-loop in which each of theqxi(xi |λi) is optimised by taking derivatives

with respect to eachλis, for s = 1, . . . , r.
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The mean field approximation

The mean fieldapproximation is the case in which eachqxi(xi) is fully factorised over the

hidden variables:

qxi(xi) =
|xi|∏
j=1

qxij (xij) . (2.39)

In this case the expression forF(qx(x),θ) given by (2.32) becomes:

F(qx(x),θ) =
∑
i

∫
dxi

 |xi|∏
j=1

qxij (xij) ln p(xi,yi |θ)−
|xi|∏
j=1

qxij (xij) ln
|xi|∏
j=1

qxij (xij)


(2.40)

=
∑
i

∫
dxi

 |xi|∏
j=1

qxij (xij) ln p(xi,yi |θ)−
|xi|∑
j=1

qxij (xij) ln qxij (xij)

 .

(2.41)

Using a Lagrange multiplier to enforce normalisation of the each of the approximate posteriors,

we take the functional derivative of this form with respect to eachqxij (xij) and equate to zero,

obtaining:

qxij (xij) =
1
Zij

exp

∫ dxi/j

|xi|∏
j′/j

qxij′ (xij′) ln p(xi,yi |θ)

 , (2.42)

for each data pointi ∈ {1, . . . , n}, and each variational factorised componentj ∈ {1, . . . , |xi|}.
We use the notationdxi/j to denote the element of integration for all items inxi exceptxij , and

the notation
∏
j′/j to denote a product of all terms excludingj. For theith datum, it is clear that

the update equation (2.42) applied to each hidden variablej in turn represents a set of coupled

equations for the approximate posterior over each hidden variable. These fixed point equations

are calledmean-field equationsby analogy to such methods in statistical physics. Examples of

these variational approximations can be found in the following:Ghahramani(1995); Saul et al.

(1996); Jaakkola(1997); Ghahramani and Jordan(1997).

EM for maximum a posteriori learning

In MAP learning the parameter optimisation includes prior information about the parameters

p(θ), and the M step seeks to find

θMAP ≡ arg max
θ

p(θ)p(y |θ) . (2.43)
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In the case of an exact E step, the M step is simply augmented to:

M step: θ(t+1) ← arg max
θ

[
ln p(θ) +

∑
i

∫
dxi p(xi |yi,θ(t)) ln p(xi,yi |θ)

]
.

(2.44)

In the case of a constrained approximate E step, the M step is given by

M step: θ(t+1) ← arg max
θ

[
ln p(θ) +

∑
i

∫
dxi q

(t+1)
xi (xi) ln p(xi,yi |θ)

]
. (2.45)

However, as mentioned in section1.3.1, we reiterate that an undesirable feature of MAP esti-

mation is that it is inherently basis-dependent: it is always possible to find a basis in which any

particularθ∗ is the MAP solution, providedθ∗ has non-zero prior probability.

2.3 Variational methods for Bayesian learning

In this section we show how to extend the above treatment to use variational methods to ap-

proximate the integrals required for Bayesian learning. By treating the parameters as unknown

quantities as well as the hidden variables, there are now correlations between the parameters

and hidden variables in the posterior. The basic idea in the VB framework is to approximate the

distribution over both hidden variables and parameters with a simpler distribution, usually one

which assumes that the hidden states and parameters are independent given the data.

There are two main goals in Bayesian learning. The first is approximating the marginal likeli-

hoodp(y |m) in order to perform model comparison. The second is approximating the posterior

distribution over the parameters of a modelp(θ |y,m), which can then be used for prediction.

2.3.1 Deriving the learning rules

As before, lety denote the observed variables,x denote the hidden variables, andθ denote the

parameters. We assume a prior distribution over parametersp(θ |m) conditional on the model

m. The marginal likelihood of a model,p(y |m), can be lower bounded by introducing any
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distribution over both latent variables and parameters which has support wherep(x,θ |y,m)
does, by appealing to Jensen’s inequality once more:

ln p(y |m) = ln
∫
dθ dx p(x,y,θ |m) (2.46)

= ln
∫
dθ dx q(x,θ)

p(x,y,θ |m)
q(x,θ)

(2.47)

≥
∫
dθ dx q(x,θ) ln

p(x,y,θ |m)
q(x,θ)

. (2.48)

Maximising this lower bound with respect to the free distributionq(x,θ) results inq(x,θ) =
p(x,θ |y,m) which when substituted above turns the inequality into an equality (in exact

analogy with (2.19)). This does not simplify the problem since evaluating the exact poste-

rior distributionp(x,θ |y,m) requires knowing its normalising constant, the marginal likeli-

hood. Instead we constrain the posterior to be a simpler, factorised (separable) approximation

to q(x,θ) ≈ qx(x)qθ(θ):

ln p(y |m) ≥
∫
dθ dx qx(x)qθ(θ) ln

p(x,y,θ |m)
qx(x)qθ(θ)

(2.49)

=
∫
dθ qθ(θ)

[∫
dx qx(x) ln

p(x,y |θ,m)
qx(x)

+ ln
p(θ |m)
qθ(θ)

]
(2.50)

= Fm(qx(x), qθ(θ)) (2.51)

= Fm(qx1(x1), . . . , qxn(xn), qθ(θ)) , (2.52)

where the last equality is a consequence of the datay arriving i.i.d. (this is shown in theorem

2.1below). The quantityFm is a functional of the free distributions,qx(x) andqθ(θ).

The variational Bayesian algorithm iteratively maximisesFm in (2.51) with respect to the free

distributions,qx(x) andqθ(θ), which is essentially coordinate ascent in the function space of

variational distributions. The following very general theorem provides the update equations for

variational Bayesian learning.

Theorem 2.1: Variational Bayesian EM (VBEM).

Let m be a model with parametersθ giving rise to an i.i.d. data sety = {y1, . . .yn} with

corresponding hidden variablesx = {x1, . . .xn}. A lower bound on the model log marginal

likelihood is

Fm(qx(x), qθ(θ)) =
∫
dθ dx qx(x)qθ(θ) ln

p(x,y,θ |m)
qx(x)qθ(θ)

(2.53)

and this can be iteratively optimised by performing the following updates, using superscript(t)
to denote iteration number:

VBE step: q
(t+1)
xi (xi) =

1
Zxi

exp
[∫

dθ q
(t)
θ (θ) ln p(xi,yi |θ,m)

]
∀ i (2.54)
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where

q
(t+1)
x (x) =

n∏
i=1

q
(t+1)
xi (xi) , (2.55)

and

VBM step: q
(t+1)
θ (θ) =

1
Zθ

p(θ |m) exp
[∫

dx q(t+1)
x (x) ln p(x,y |θ,m)

]
. (2.56)

Moreover, the update rules converge to a local maximum ofFm(qx(x), qθ(θ)) .

Proof of qxi(xi) update: using variational calculus.

Take functional derivatives ofFm(qx(x), qθ(θ)) with respect toqx(x), and equate to zero:

∂

∂qx(x)
Fm(qx(x), qθ(θ)) =

∫
dθ qθ(θ)

[
∂

∂qx(x)

∫
dx qx(x) ln

p(x,y |θ,m)
qx(x)

]
(2.57)

=
∫
dθ qθ(θ) [ln p(x,y |θ,m)− ln qx(x)− 1] (2.58)

= 0 (2.59)

which implies

ln q(t+1)
x (x) =

∫
dθ q

(t)
θ (θ) ln p(x,y |θ,m)− lnZ(t+1)

x , (2.60)

whereZx is a normalisation constant (from a Lagrange multiplier term enforcing normalisation

of qx(x), omitted for brevity). As a consequence of the i.i.d. assumption, this update can be

broken down across then data points

ln q(t+1)
x (x) =

∫
dθ q

(t)
θ (θ)

n∑
i=1

ln p(xi,yi |θ,m)− lnZ(t+1)
x , (2.61)

which implies that the optimalq(t+1)
x (x) is factorised in the formq(t+1)

x (x) =
∏n
i=1 q

(t+1)
xi (xi),

with

ln q(t+1)
xi (xi) =

∫
dθ q

(t)
θ (θ) ln p(xi,yi |θ,m)− lnZ(t+1)

xi ∀ i , (2.62)

with Zx =
n∏
i=1

Zxi . (2.63)

Thus for a givenqθ(θ), there is a unique stationary point for eachqxi(xi).

Proof of qθ(θ) update: using variational calculus.
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Figure 2.3: The variational Bayesian EM (VBEM) algorithm. In the VBE step, the variational
posterior over hidden variablesqx(x) is set according to (2.60). In the VBM step, the variational
posterior over parameters is set according to (2.56). Each step is guaranteed to increase (or
leave unchanged) the lower bound on the marginal likelihood. (Note that the exact log marginal
likelihood is afixedquantity, and does not change with VBE or VBM steps — it is only the
lower bound which increases.)

Proceeding as above, take functional derivatives ofFm(qx(x), qθ(θ)) with respect toqθ(θ) and

equate to zero yielding:

∂

∂qθ(θ)
Fm(qx(x), qθ(θ)) =

∂

∂qθ(θ)

∫
dθ qθ(θ)

[∫
dx qx(x) ln p(x,y |θ,m) (2.64)

+ ln
p(θ |m)
qθ(θ)

]
(2.65)

=
∫
dx qx(x) ln p(x,y |θ) + ln p(θ |m)− ln qθ(θ) + c′ (2.66)

= 0 , (2.67)

which upon rearrangement produces

ln q(t+1)
θ (θ) = ln p(θ |m) +

∫
dx q(t+1)

x (x) ln p(x,y |θ)− lnZ(t+1)
θ , (2.68)

whereZθ is the normalisation constant (related to the Lagrange multiplier which has again been

omitted for succinctness). Thus for a givenqx(x), there is a unique stationary point forqθ(θ).
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At this point it is well worth noting the symmetry between the hidden variables and the param-

eters. The individual VBE steps can be written as one batch VBE step:

q
(t+1)
x (x) =

1
Zx

exp
[∫

dθ q
(t)
θ (θ) ln p(x,y |θ,m)

]
(2.69)

with Zx =
n∏
i=1

Zxi . (2.70)

On the surface, it seems that the variational update rules (2.60) and (2.56) differ only in the

prior termp(θ |m) over the parameters. There actually also exists a prior term over the hidden

variables as part ofp(x,y |θ,m), so this does not resolve the two. The distinguishing feature

between hidden variables and parameters is that the number of hidden variables increases with

data set size, whereas the number of parameters is assumed fixed.

Re-writing (2.53), it is easy to see that maximisingFm(qx(x), qθ(θ) is simply equivalent to

minimising the KL divergence betweenqx(x) qθ(θ) and the joint posterior over hidden states

and parametersp(x,θ |y,m):

ln p(y |m)−Fm(qx(x), qθ(θ)) =
∫
dθ dx qx(x) qθ(θ) ln

qx(x) qθ(θ)
p(x,θ |y,m)

(2.71)

= KL [qx(x) qθ(θ) ‖ p(x,θ |y,m)] (2.72)

≥ 0 . (2.73)

Note the similarity between expressions (2.35) and (2.72): while we minimise the former with

respect to hidden variable distributions and the parameters, the latter we minimise with respect

to the hidden variable distribution and adistributionover parameters.

The variational Bayesian EM algorithm reduces to the ordinary EM algorithm for ML estimation

if we restrict the parameter distribution to a point estimate, i.e. a Dirac delta function,qθ(θ) =
δ(θ − θ∗), in which case the M step simply involves re-estimatingθ∗. Note that the same

cannot be said in the case of MAP estimation, which is inherently basis dependent, unlike both

VB and ML algorithms. By construction, the VBEM algorithm is guaranteed to monotonically

increase an objective functionF , as a function of a distribution over parameters and hidden

variables. Since we integrate over model parameters there is a naturally incorporated model

complexity penalty. It turns out that for a large class of models (see section2.4) the VBE

step has approximately the same computational complexity as the standard E step in the ML

framework, which makes it viable as a Bayesian replacement for the EM algorithm.
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2.3.2 Discussion

The impact of the q(x,θ) ≈ qx(x)qθ(θ) factorisation

Unless we make the assumption that the posterior over parameters and hidden variables fac-

torises, we will not generally obtain the further hidden variable factorisation overn that we

have in equation (2.55). In that case, the distributions ofxi andxj will be coupled for all cases

{i, j} in the data set, greatly increasing the overall computational complexity of inference. This

further factorisation is depicted in figure2.4 for the case ofn = 3, where we see: (a) the origi-

nal directed graphical model, whereθ is the collection of parameters governing prior distribu-

tions over the hidden variablesxi and the conditional probabilityp(yi |xi,θ); (b) the moralised

graph given the data{y1,y2,y3}, which shows that the hidden variables are now dependent

in the posterior through the uncertain parameters; (c) the effective graph after the factorisation

assumption, which not only removes arcs between the parameters and hidden variables, but also

removes the dependencies between the hidden variables. This latter independence falls out from

the optimisation as a result of the i.i.d. nature of the data, and is not a further approximation.

Whilst this factorisation of the posterior distribution over hidden variables and parameters may

seem drastic, one can think of it as replacingstochasticdependencies betweenx andθ with

deterministicdependencies between relevant moments of the two sets of variables. The ad-

vantage of ignoring how fluctuations inx induce fluctuations inθ (and vice-versa) is that we

can obtain analytical approximations to the log marginal likelihood. It is these same ideas that

underlie mean-field approximations from statistical physics, from where these lower-bounding

variational approximations were inspired (Feynman, 1972; Parisi, 1988). In later chapters the

consequences of the factorisation for particular models are studied in some detail; in particular

we will use sampling methods to estimate by how much the variational bound falls short of the

marginal likelihood.

What forms for qx(x) and qθ(θ) ?

One might need to approximate the posterior further than simply the hidden-variable / parameter

factorisation. A common reason for this is that the parameter posterior may still be intractable

despite the hidden-variable / parameter factorisation. The free-form extremisation ofF nor-

mally provides us with a functional form forqθ(θ), but this may be unwieldy; we therefore

need to assume some simpler space of parameter posteriors. The most commonly used distribu-

tions are those with just a few sufficient statistics, such as the Gaussian or Dirichlet distributions.

Taking a Gaussian example,F is then explicitly extremised with respect to a set of variational

parametersζθ = (µθ,νθ) which parameterise the Gaussianqθ(θ | ζθ). We will see examples

of this approach in later chapters. There may also exist intractabilities in the hidden variable
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(b) Graph representing the
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(c) Posterior graph after the
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Figure 2.4: Graphical depiction of the hidden-variable / parameter factorisation.(a) The origi-
nal generative model forn = 3. (b) The exact posterior graph given the data. Note that for all
case pairs{i, j}, xi andxj are not directly coupled, but interact throughθ. That is to say all
the hidden variables are conditionally independent of one another, but only given the parame-
ters.(c) the posterior graph after the variational approximation between parameters and hidden
variables, which removes arcs between parameters and hidden variables. Note that, on assum-
ing this factorisation, as a consequence of the i.i.d. assumption the hidden variables become
independent.
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posterior, for which further approximations need be made (some examples are mentioned be-

low).

There is something of a dark art in discovering a factorisation amongst the hidden variables and

parameters such that the approximation remains faithful at an ‘acceptable’ level. Of course it

does not make sense to use a posterior form which holds fewer conditional independencies than

those implied by themoralgraph (see section1.1). The key to a good variational approximation

is then to remove as few arcs as possible from the moral graph such that inference becomes

tractable. In many cases the goal is to find tractable substructures (structuredapproximations)

such as trees or mixtures of trees, which capture as many of the arcs as possible. Some arcs

may capture crucial dependencies between nodes and so need be kept, whereas other arcs might

induce a weak local correlation at the expense of a long-range correlation which to first order

can be ignored; removing such an arc can have dramatic effects on the tractability.

The advantage of the variational Bayesian procedure is thatany factorisation of the posterior

yields a lower bound on the marginal likelihood. Thus in practice it may pay to approximately

evaluate the computational cost of several candidate factorisations, and implement those which

can return a completed optimisation ofF within a certain amount of computer time. One would

expect the more complex factorisations to take more computer time but also yield progressively

tighter lower bounds on average, the consequence being that the marginal likelihood estimate

improves over time. An interesting avenue of research in this vein would be to use the vari-

ational posterior resulting from a simpler factorisation as the initialisation for a slightly more

complicated factorisation, and move in a chain from simple to complicated factorisations to help

avoid local free energy minima in the optimisation. Having proposed this, it remains to be seen

if it is possible to form a coherent closely-spaced chain of distributions that are of any use, as

compared to starting from the fullest posterior approximation from the start.

Using the lower bound for model selection and averaging

The log ratio of posterior probabilities of two competing modelsm andm′ is given by

ln
p(m |y)
p(m′ |y)

= + ln p(m) + p(y |m)− ln p(m′)− ln p(y |m′) (2.74)

= + ln p(m) + F(qx,θ) + KL [q(x,θ) ‖ p(x,θ |y,m)]

− ln p(m′)−F ′(q′x,θ)−KL
[
q′(x,θ) ‖ p(x,θ |y,m′)

]
(2.75)

where we have used the form in (2.72), which is exact regardless of the quality of the bound used,

or how tightly that bound has been optimised. The lower bounds for the two models,F andF ′,
are calculated from VBEM optimisations, providing us for each model with an approximation

to the posterior over the hidden variables and parameters of that model,qx,θ andq′x,θ; these may

in general be functionally very different (we leave aside for the moment local maxima problems
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in the optimisation process which can be overcome to an extent by using several differently

initialised optimisations or in some models by employing heuristics tailored to exploit the model

structure). When we perform model selection by comparing the lower bounds,F andF ′, we

are assuming that the KL divergences in the two approximations are the same, so that we can

use just these lower bounds as guide. Unfortunately it is non-trivial to predict how tight in

theory any particular bound can be — if this were possible we could more accurately estimate

the marginal likelihood from the start.

Taking an example, we would like to know whether the bound for a model withS mixture

components is similar to that forS + 1 components, and if not then how badly this inconsis-

tency affects the posterior over this set of models. Roughly speaking, let us assume that every

component in our model contributes a (constant) KL divergence penalty ofKLs. For clarity

we use the notationL(S) andF(S) to denote the exact log marginal likelihood and lower

bounds, respectively, for a model withS components. The difference in log marginal likeli-

hoods,L(S + 1) − L(S), is the quantity we wish to estimate, but if we base this on the lower

bounds the difference becomes

L(S + 1)− L(S) = [F(S + 1) + (S + 1) KLs]− [F(S) + S KLs] (2.76)

= F(S + 1)−F(S) + KLs (2.77)

6= F(S + 1)−F(S) , (2.78)

where the last line is the result we would have basing the difference on lower bounds. Therefore

there exists a systematic error when comparing models if each component contributes indepen-

dently to the KL divergence term. Since the KL divergence is strictly positive, and we are basing

our model selection on (2.78) rather than (2.77), this analysis suggests that there is a systematic

bias towards simpler models. We will in fact see this in chapter4, where we find an importance

sampling estimate of the KL divergence showing this behaviour.

Optimising the prior distributions

Usually the parameter priors are functions of hyperparameters,a, so we can writep(θ |a,m).
In the variational Bayesian framework the lower bound can be made higher by maximisingFm
with respect to these hyperparameters:

a(t+1) = arg max
a

Fm(qx(x), qθ(θ),y,a) . (2.79)

A simple depiction of this optimisation is given in figure2.5. Unlike earlier in section2.3.1,

the marginal likelihood of modelm can now be increased with hyperparameter optimisation.

As we will see in later chapters, there are examples where these hyperparameters themselves

have governing hyperpriors, such that they can be integrated over as well. The result being that
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Figure 2.5: The variational Bayesian EM algorithm with hyperparameter optimisation. The
VBEM step consists of VBE and VBM steps, as shown in figure2.3. The hyperparameter
optimisation increases the lower bound and also improves the marginal likelihood.

we can infer distributions over these as well, just as for parameters. The reason for abstracting

from the parameters this far is that we would like to integrate out all variables whose cardinality

increases with model complexity; this standpoint will be made clearer in the following chapters.

Previous work, and general applicability of VBEM

The variational approach for lower bounding the marginal likelihood (and similar quantities)

has been explored by several researchers in the past decade, and has received a lot of attention

recently in the machine learning community. It was first proposed for one-hidden layer neural

networks (which have no hidden variables) byHinton and van Camp(1993) whereqθ(θ) was

restricted to be Gaussian with diagonal covariance. This work was later extended to show that

tractable approximations were also possible with a full covariance Gaussian (Barber and Bishop,

1998) (which in general will have the mode of the posterior at a different location than in the

diagonal case).Neal and Hinton(1998) presented a generalisation of EM which made use

of Jensen’s inequality to allow partial E-steps; in this paper the termensemble learningwas

used to describe the method since it fits an ensemble of models, each with its own parameters.

Jaakkola(1997) andJordan et al.(1999) review variational methods in a general context (i.e.

non-Bayesian). Variational Bayesian methods have been applied to various models with hidden

variables and no restrictions onqθ(θ) andqxi(xi) other than the assumption that they factorise in

some way (Waterhouse et al., 1996; Bishop, 1999; Ghahramani and Beal, 2000; Attias, 2000).

Of particular note is the variational Bayesian HMM ofMacKay (1997), in which free-form

optimisations are explicitly undertaken (see chapter3); this work was the inspiration for the

examination of Conjugate-Exponential (CE) models, discussed in the next section. An example
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of a constrained optimisation for a logistic regression model can be found inJaakkola and Jordan

(2000).

Several researchers have investigated using mixture distributions for the approximate posterior,

which allows for more flexibility whilst maintaining a degree of tractability (Lawrence et al.,

1998; Bishop et al., 1998; Lawrence and Azzouzi, 1999). The lower bound in these models

is a sum of a two terms: a first term which is a convex combination of bounds from each

mixture component, and a second term which is the mutual information between the mixture

labels and the hidden variables of the model. The first term offers no improvement over a naive

combination of bounds, but the second (which is non-negative) has to improve on the simple

bounds. Unfortunately this term contains an expectation over all configurations of the hidden

states and so has to be itself bounded with a further use of Jensen’s inequality in the form of

a convex bound on the log function (ln(x) ≤ λx − ln(λ) − 1) (Jaakkola and Jordan, 1998).

Despite this approximation drawback, empirical results in a handful of models have shown that

the approximation does improve the simple mean field bound and improves monotonically with

the number of mixture components.

A related method for approximating the integrand for Bayesian learning is based on an idea

known asassumed density filtering(ADF) (Bernardo and Giron, 1988; Stephens, 1997; Boyen

and Koller, 1998; Barber and Sollich, 2000; Frey et al., 2001), and is called the Expectation

Propagation (EP) algorithm (Minka, 2001a). This algorithm approximates the integrand of

interest with a set ofterms, and through a process of repeated deletion-inclusion of term ex-

pressions, the integrand is iteratively refined to resemble the true integrand as closely as pos-

sible. Therefore the key to the method is to use terms which can be tractably integrated. This

has the same flavour as the variational Bayesian method described here, where we iteratively

update the approximate posterior over a hidden stateqxi(xi) or over the parametersqθ(θ).
The key difference between EP and VB is that in the update process (i.e. deletion-inclusion)

EP seeks to minimise the KL divergence which averages according to the true distribution,

KL [p(x,θ |y) ‖ q(x,θ)] (which is simply a moment-matching operation for exponential fam-

ily models), whereas VB seeks to minimise the KL divergence according to the approximate

distribution,KL [q(x,θ) ‖ p(x,θ |y)]. Therefore, EP is at least attempting to average according

to the correct distribution, whereas VB has the wrong cost function at heart. However, in gen-

eral the KL divergence in EP can only be minimised separately one term at a time, while the KL

divergence in VB is minimised globally over all terms in the approximation. The result is that

EP may still not result in representative posterior distributions (for example, seeMinka, 2001a,

figure 3.6, p. 6). Having said that, it may be that more generalised deletion-inclusion steps can

be derived for EP, for example removing two or more terms at a time from the integrand, and

this may alleviate some of the ‘local’ restrictions of the EP algorithm. As in VB, EP is con-

strained to use particular parametric families with a small number of moments for tractability.

An example of EP used with an assumed Dirichlet density for the term expressions can be found

in Minka and Lafferty(2002).
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In the next section we take a closer look at the variational Bayesian EM equations, (2.54) and

(2.56), and ask the following questions:

- To which models can we apply VBEM? i.e. which forms of data distributionsp(y,x |θ)
and priorsp(θ |m) result in tractable VBEM updates?

- How does this relate formally to conventional EM?

- When can we utilise existing belief propagation algorithms in the VB framework?

2.4 Conjugate-Exponential models

2.4.1 Definition

We consider a particular class of graphical models with latent variables, which we callconjugate-

exponential(CE) models. In this section we explicitly apply the variational Bayesian method to

these parametric families, deriving a simple general form of VBEM for the class.

Conjugate-exponential models satisfy two conditions:

Condition (1). The complete-data likelihood is in the exponential family:

p(xi,yi |θ) = g(θ) f(xi,yi) eφ(θ)>u(xi,yi) , (2.80)

whereφ(θ) is the vector of natural parameters,u andf are the functions that define the expo-

nential family, andg is a normalisation constant:

g(θ)−1 =
∫
dxi dyi f(xi,yi) eφ(θ)>u(xi,yi) . (2.81)

The natural parameters for an exponential family modelφ are those that interact linearly with

the sufficient statistics of the datau. For example, for a univariate Gaussian inx with meanµ

and standard deviationσ, the necessary quantities are obtained from:

p(x |µ, σ) = exp
{
− x2

2σ2
+
xµ

σ2
− µ2

2σ2
− 1

2
ln(2πσ2)

}
(2.82)

θ =
(
σ2, µ

)
(2.83)
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and are:

φ(θ) =
(

1
σ2
,
µ

σ2

)
(2.84)

u(x) =
(
−x

2

2
, x

)
(2.85)

f(x) = 1 (2.86)

g(θ) = exp
{
− µ2

2σ2
− 1

2
ln(2πσ2)

}
. (2.87)

Note that whilst the parameterisation forθ is arbitrary, e.g. we could have letθ = (σ, µ), the

natural parametersφ are unique up to a multiplicative constant.

Condition (2). The parameter prior is conjugate to the complete-data likelihood:

p(θ | η,ν) = h(η,ν) g(θ)η eφ(θ)>ν , (2.88)

whereη andν are hyperparameters of the prior, andh is a normalisation constant:

h(η,ν)−1 =
∫
dθ g(θ)η eφ(θ)>ν . (2.89)

Condition 1 (2.80) in fact usually implies the existence of a conjugate prior which satisfies

condition 2 (2.88). The priorp(θ | η,ν) is said to be conjugate to the likelihoodp(xi,yi |θ) if

and only if the posterior

p(θ | η′,ν ′) ∝ p(θ | η,ν)p(x,y |θ) (2.90)

is of the same parametric form as the prior. In general the exponential families are the only

classes of distributions that have natural conjugate prior distributions because they are the only

distributions with a fixed number of sufficient statistics apart from some irregular cases (see

Gelman et al., 1995, p. 38). From the definition of conjugacy, we see that the hyperparameters

of a conjugate prior can be interpreted as the number (η) and values (ν) of pseudo-observations

under the corresponding likelihood.

We call models that satisfy conditions 1 (2.80) and 2 (2.88) conjugate-exponential.

The list of latent-variable models of practical interest with complete-data likelihoods in the ex-

ponential family is very long, for example: Gaussian mixtures, factor analysis, principal compo-

nents analysis, hidden Markov models and extensions, switching state-space models, discrete-

variable belief networks. Of course there are also many as yet undreamt-of models combining

Gaussian, gamma, Poisson, Dirichlet, Wishart, multinomial, and other distributions in the expo-

nential family.
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However there are some notable outcasts which do not satisfy the conditions for membership

of the CE family, namely: Boltzmann machines (Ackley et al., 1985), logistic regression and

sigmoid belief networks (Bishop, 1995), and independent components analysis (ICA) (as pre-

sented inComon, 1994; Bell and Sejnowski, 1995), all of which are widely used in the machine

learning community. As an example let us see why logistic regression is not in the conjugate-

exponential family: foryi ∈ {−1, 1}, the likelihood under a logistic regression model is

p(yi |xi,θ) =
eyiθ

>xi

eθ
>xi + e−θ>xi

, (2.91)

wherexi is the regressor for data pointi andθ is a vector of weights, potentially including a

bias. This can be rewritten as

p(yi |xi,θ) = eyiθ
>xi−f(θ,xi) , (2.92)

wheref(θ,xi) is a normalisation constant. To belong in the exponential family the normalising

constant must split into functions of onlyθ and only(xi,yi). Expandingf(θ,xi) yields a series

of powers ofθ>xi, which could be assimilated into theφ(θ)>u(xi,yi) term by augmenting

the natural parameter and sufficient statistics vectors, if it were not for the fact that the series is

infinite meaning that there would need to be an infinity of natural parameters. This means we

cannot represent the likelihood with a finite number of sufficient statistics.

Models whose complete-data likelihood is not in the exponential family can often be approxi-

mated by models which are in the exponential family and have been given additional hidden

variables. A very good example is the Independent Factor Analysis (IFA) model ofAttias

(1999a). In conventional ICA, one can think of the model as using non-Gaussian sources, or

using Gaussian sources passed through a non-linearity to make them non-Gaussian. For most

non-linearities commonly used (such as the logistic), the complete-data likelihood becomes

non-CE. Attias recasts the model as a mixture of Gaussian sources being fed into a linear mix-

ing matrix. This model is in the CE family and so can be tackled with the VB treatment. It is

an open area of research to investigate how best to bring models into the CE family, such that

inferences in the modified model resemble the original as closely as possible.

2.4.2 Variational Bayesian EM for CE models

In Bayesian inference we want to determine the posterior over parameters and hidden variables

p(x,θ |y, η,ν). In general this posterior isneitherconjugate nor in the exponential family. In

this subsection we see how the properties of the CE family make it especially amenable to the

VB approximation, and derive the VBEM algorithm for CE models.
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Theorem 2.2: Variational Bayesian EM for Conjugate-Exponential Models.

Given an i.i.d. data sety = {y1, . . .yn}, if the model satisfies conditions (1) and (2), then the

following (a), (b) and (c) hold:

(a) the VBE step yields:

qx(x) =
n∏
i=1

qxi(xi) , (2.93)

andqxi(xi) is in the exponential family:

qxi(xi) ∝ f(xi,yi) eφ
>
u(xi,yi) = p(xi |yi,φ) , (2.94)

with a natural parameter vector

φ =
∫
dθ qθ(θ)φ(θ) ≡ 〈φ(θ)〉qθ(θ) (2.95)

obtained by taking the expectation ofφ(θ) underqθ(θ) (denoted using angle-brackets

〈·〉). For invertibleφ, definingθ̃ such thatφ(θ̃) = φ, we can rewrite the approximate

posterior as

qxi(xi) = p(xi |yi, θ̃) . (2.96)

(b) the VBM step yields thatqθ(θ) is conjugate and of the form:

qθ(θ) = h(η̃, ν̃) g(θ)η̃ eφ(θ)>ν̃ , (2.97)

where

η̃ = η + n , (2.98)

ν̃ = ν +
n∑
i=1

u(yi) , (2.99)

and

u(yi) = 〈u(xi,yi)〉qxi (xi)
(2.100)

is the expectation of the sufficient statisticu. We have used〈·〉qxi (xi)
to denote expectation

under the variational posterior over the latent variable(s) associated with theith datum.

(c) parts (a) and (b) hold for every iteration of variational Bayesian EM.

Proof of (a): by direct substitution.
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Starting from the variational extrema solution (2.60) for the VBE step:

qx(x) =
1
Zx

e
〈ln p(x,y |θ,m)〉qθ(θ) , (2.101)

substitute the parametric form forp(xi,yi |θ,m) in condition 1 (2.80), which yields (omitting

iteration superscripts):

qx(x) =
1
Zx

e
Pn

i=1〈ln g(θ)+ln f(xi,yi)+φ(θ)>u(xi,yi)〉qθ(θ) (2.102)

=
1
Zx

[
n∏
i=1

f(xi,yi)

]
e

Pn
i=1 φ

>
u(xi,yi) , (2.103)

whereZx has absorbed constants independent ofx, and we have defined without loss of gener-

ality:

φ = 〈φ(θ)〉qθ(θ) . (2.104)

If φ is invertible, then there exists ãθ such thatφ = φ(θ̃), and we can rewrite (2.103) as:

qx(x) =
1
Zx

[
n∏
i=1

f(xi,yi)eφ(θ̃)>u(xi,yi)

]
(2.105)

∝
n∏
i=1

p(xi,yi | θ̃,m) (2.106)

=
n∏
i=1

qxi(xi) (2.107)

= p(x,y | θ̃,m) . (2.108)

Thus the result of the approximate VBE step, which averages over the ensemble of models

qθ(θ), is exactly the same as an exact E step, calculated at thevariational Bayes pointestimate

θ̃.

Proof of (b): by direct substitution.

Starting from the variational extrema solution (2.56) for the VBM step:

qθ(θ) =
1
Zθ

p(θ |m) e〈ln p(x,y |θ,m)〉qx(x) , (2.109)

68



VB Theory 2.4. Conjugate-Exponential models

substitute the parametric forms forp(θ |m) and p(xi,yi |θ,m) as specified in conditions 2

(2.88) and 1 (2.80) respectively, which yields (omitting iteration superscripts):

qθ(θ) =
1
Zθ

h(η,ν)g(θ)ηeφ(θ)>ν e
〈Pn

i=1 ln g(θ)+ln f(xi,yi)+φ(θ)>u(xi,yi)〉qx(x) (2.110)

=
1
Zθ

h(η,ν)g(θ)η+neφ(θ)>[ν+
Pn

i=1 u(yi)] e
Pn

i=1〈ln f(xi,yi)〉qx(x)︸ ︷︷ ︸
has noθ dependence

(2.111)

= h(η̃, ν̃)g(θ)η̃eφ(θ)>ν̃ , (2.112)

where

h(η̃, ν̃) =
1
Zθ

e
Pn

i=1〈ln f(xi,yi)〉qx(x) . (2.113)

Therefore the variational posteriorqθ(θ) in (2.112) is of conjugate form, according to condition

2 (2.88).

Proof of (c): by induction.

Assume conditions 1 (2.80) and 2 (2.88) are met (i.e. the model is in the CE family). From part

(a), the VBE step produces a posterior distributionqx(x) in the exponential family, preserving

condition 1 (2.80); the parameter distributionqθ(θ) remains unaltered, preserving condition 2

(2.88). From part (b), the VBM step produces a parameter posteriorqθ(θ) that is of conjugate

form, preserving condition 2 (2.88); qx(x) remains unaltered from the VBE step, preserving

condition 1 (2.80). Thus under both the VBE and VBM steps, conjugate-exponentiality is pre-

served, which makes the theorem applicable at every iteration of VBEM.

As before, sinceqθ(θ) andqxi(xi) are coupled, (2.97) and (2.94) do not provide an analytic

solution to the minimisation problem, so the optimisation problem is solved numerically by

iterating between the fixed point equations given by these equations. To summarise briefly:

VBE Step: Compute the expected sufficient statistics{u(yi)}ni=1 under the hidden vari-

able distributionsqxi(xi), for all i.

VBM Step: Compute the expected natural parametersφ = 〈φ(θ)〉 under the parameter

distribution given bỹη andν̃.

2.4.3 Implications

In order to really understand what the conjugate-exponential formalism buys us, let us reiterate

the main points of theorem2.2 above. The first result is that in the VBM step the analytical

form of the variational posteriorqθ(θ) does not change during iterations of VBEM — e.g.

if the posterior is Gaussian at iterationt = 1, then only a Gaussian need be represented at

future iterations. If it were able to change, which is the case in general (theorem2.1), the
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EM for MAP estimation Variational Bayesian EM

Goal: maximisep(θ |y,m) w.r.t. θ Goal: lower boundp(y |m)

E Step: compute VBE Step: compute

q
(t+1)
x (x) = p(x |y,θ(t)) q

(t+1)
x (x) = p(x |y,φ(t)

)

M Step: VBM Step:
θ(t+1) = arg maxθ

∫
dx q(t+1)

x (x) ln p(x,y,θ) q
(t+1)
θ (θ) ∝ exp

∫
dx q(t+1)

x (x) ln p(x,y,θ)

Table 2.1: Comparison of EM for ML/MAP estimation against variational Bayesian EM for CE
models.

posterior could quickly become unmanageable, and (further) approximations would be required

to prevent the algorithm becoming too complicated. The second result is that the posterior over

hidden variables calculated in the VBE step is exactly the posterior that would be calculated had

we been performing an ML/MAP E step. That is, the inferences using an ensemble of models

qθ(θ) can be represented by the effect of a point parameter,θ̃. The task of performing many

inferences, each of which corresponds to a different parameter setting, can be replaced with a

single inference step — it is possible to infer the hidden states in a conjugate exponential model

tractably while integrating over an ensemble of model parameters.

Comparison to EM for ML/MAP parameter estimation

We can draw a tight parallel between the EM algorithm for ML/MAP estimation, and our VBEM

algorithm applied specifically to conjugate-exponential models. These are summarised in table

2.1. This general result of VBEM for CE models was reported inGhahramani and Beal(2001),

and generalises the well known EM algorithm for ML estimation (Dempster et al., 1977). It

is a special case of the variational Bayesian algorithm (theorem2.1) used inGhahramani and

Beal (2000) and inAttias (2000), yet encompasses many of the models that have been so far

subjected to the variational treatment. Its particular usefulness is as a guide for the design of

models, to make them amenable to efficient approximate Bayesian inference.

The VBE step has about the same time complexity as the E step, and is in all ways identical

except that it is re-written in terms of the expected natural parameters. In particular, we can

make use of all relevant propagation algorithms such as junction tree, Kalman smoothing, or

belief propagation. The VBM step computes adistribution over parameters (in the conjugate

family) rather than a point estimate. Both ML/MAP EM and VBEM algorithms monotonically

increase an objective function, but the latter also incorporates a model complexity penalty by
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integrating over parameters so embodying an Occam’s razor effect. Several examples will be

presented in the following chapters of this thesis.

Natural parameter inversions

Unfortunately, even though the algorithmic complexity is the same, the implementations may

be hampered since the propagation algorithms need to be re-derived in terms of the natural

parameters (this is essentially the difference between the forms in (2.94) and (2.96)). For some

models, such as HMMs (see chapter3, andMacKay, 1997), this is very straightforward, whereas

the LDS model (see chapter5) quickly becomes quite involved. Automated algorithm derivation

programs are currently being written to alleviate this complication, specifically for the case

of variational Bayesian EM operations (Bishop et al., 2003), and also for generic algorithm

derivation (Buntine, 2002; Gray et al., 2003); both these projects build on results inGhahramani

and Beal(2001).

The difficulty is quite subtle and lies in the natural parameter inversion problem, which we now

briefly explain. In theorem2.2weconjecturedthe existence of ãθ such thatφ = 〈φ(θ)〉qθ(θ)
?=

φ(θ̃), which was a point of convenience. But, the operationφ−1
[
〈φ〉qθ(θ)

]
may not be well

defined if the dimensionality ofφ is greater than that ofθ. Whilst not undermining the theorem’s

result, this does mean that representationally speaking the resulting algorithm may look different

having had to be cast in terms of the natural parameters.

Online and continuous variants

The VBEM algorithm for CE models very readily lends itself to online learning scenarios in

which data arrives incrementally. I briefly present here an online version of the VBEM algorithm

above (but see alsoGhahramani and Attias, 2000; Sato, 2001). In the standard VBM step (2.97)

the variational posterior hyperparameterη̃ is updated according to the size of the datasetn

(2.98), andν̃ is updated with a simple sum of contributions from each datumu(yi), (2.99).

For the online scenario, we can take the posterior over parameters described byη̃ andν̃ to be

theprior for subsequent inferences. Let the data be split in to batches indexed byk, each of size

n(k), which are presented one by one to the model. Thus if thekth batch of data consists of the
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n(k) i.i.d. points{yi}j
(k)+n(k)−1

i=j(k) , then the online VBM step replaces equations (2.98) and (2.99)

with

η̃ = η(k−1) + n(k) , (2.114)

ν̃ = ν(k−1) +
j(k)+n(k)−1∑

i=j(k)

u(yi) . (2.115)

In the online VBE step only the hidden variables{xi}j
(k)+n(k)−1

i=j(k) need be inferred to calculate

the requiredu statistics. The online VBM and VBE steps are then iterated until convergence,

which may be fast if the size of the batchn(k) is small compared to the amount of data previously

seen
∑k−1

k′=1 n
(k′). After convergence, the prior for the next batch is set to the current posterior,

according to

η(k) ← η̃ , (2.116)

ν(k) ← ν̃ . (2.117)

The online VBEM algorithm has several benefits. First and foremost, the update equations give

us a very transparent picture of how the algorithm incorporates evidence from a new batch of

data (or single data point). The way in which it does this makes it possible to discard data from

earlier batches: the hyperparametersη̃ and ν̃ representall information gathered from previ-

ous batches, and the process of incorporating new information is not a function of the previous

batches’ statistics{u(yi)}j
(k−1)+n(k−1)−1

i=j(1)
, nor previous hyperparameter settings{η(l),ν(l)}k−2

l=1 ,

nor the previous batch sizes{n(l)}k−1
l=1 , nor the previous data{yi}j

(k−1)+n(k−1)−1

i=j(1)
. Implemen-

tationally this offers a large memory saving. Since we hold a distribution over the parameters

of the model, which is updated in a consistent way using Bayesian inference, we should hope

that the online model makes a flexible and measured response to data as it arrives. However it

has been observed (personal communication, Z. Ghahramani) that serious underfitting occurs in

this type of online algorithm; this is due to excessive self-pruning of the parameters by the VB

algorithm.

From the VBM step (2.97) we can straightforwardly propose an annealing variant of the VBEM

algorithm. This would make use of an inverse temperature parameterβ ∈ [0, 1] and adopt the

following updates for the VBM step:

η̃ = η + βn , (2.118)

ν̃ = ν + β
n∑
i=1

u(yi) , (2.119)

which is similar to the online algorithm but “introduces” the data continuously with a schedule

of β from 0 → 1. Whilst this is a tempting avenue for research, it is not clear that in this
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setting we should expect any better results than if we were to present the algorithm with all

the data (i.e.β = 1) from the start — after all, the procedure of Bayesian inference should

produce the same inferences whether presented with the data incrementally, continuously or all

at once. The advantage of an annealed model, however, is that we are giving the algorithm a

better chance of escaping the local minima in the free energy that plague EM-type algorithms,

so that the Bayesian inference procedure can be given a better chance of reaching the proper

conclusions, whilst at every iteration receiving information (albeitβ-muted) about all the data

at every iteration.

2.5 Directed and undirected graphs

In this section we present several important results which build on theorems2.1 and 2.2 by

specifying theform of the joint densityp(x,y,θ). A convenient way to do this is to use the

formalism and expressive power of graphical models. We derive variational Bayesian learn-

ing algorithms for two important classes of these models: directed graphs (Bayesian networks)

and undirected graphs (Markov networks), and also give results pertaining to CE families for

these classes. The corollaries refer to propagation algorithms material which is covered in

section1.1.2; for a tutorial on belief networks and Markov networks the reader is referred to

Pearl(1988). In the theorems and corollaries, VBEM and CE are abbreviations forvariational

Bayesian Expectation-Maximisationandconjugate-exponential.

2.5.1 Implications for directed networks

Corollary 2.1: (theorem 2.1) VBEM for Directed Graphs (Bayesian Networks).

Letm be a model with parametersθ and hidden and visible variablesz = {zi}ni=1 = {xi,yi}ni=1

that satisfy a belief network factorisation. That is, each variablezij has parentszipa(j) such

that the complete-data joint density can be written as a product of conditional distributions,

p(z |θ) =
∏
i

∏
j

p(zij | zipa(j),θ) . (2.120)

Then the approximating joint distribution form satisfies the same belief network factorisation:

qz(z) =
∏
i

qzi(zi) , qzi(zi) =
∏
j

qj(zij | zipa(j)) , (2.121)

where

qj(zij | zipa(j)) =
1
Zqj

e
〈ln p(zij | zipa(j),θ)〉

qθ(θ) ∀ {i, j} (2.122)
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are new conditional distributionsobtained by averaging overqθ(θ), andZqj
are normalising

constants.

This corollary is interesting in that it states that a Bayesian network’s posterior distribution

can be factored into the same terms as the original belief network factorisation (2.120). This

means that the inference for a particular variable depends only on those other variables in its

Markov blanket; this result is trivial for the point parameter case, but definitely non-trivial in the

Bayesian framework in which all the parameters and hidden variables are potentially coupled.

Corollary 2.2: (theorem 2.2) VBEM for CE Directed Graphs (CE Bayesian Networks).

Furthermore, ifm is a conjugate-exponential model, then the conditional distributions of the

approximate posterior joint have exactly the same form as those in the complete-data likelihood

in the original model:

qj(zij | zipa(j)) = p(zij | zipa(j), θ̃) , (2.123)

but with natural parametersφ(θ̃) = φ. Moreover, with the modified parametersθ̃, the ex-

pectations under the approximating posteriorqx(x) ∝ qz(z) required for the VBE step can be

obtained by applying the belief propagation algorithm if the network is singly connected and

the junction tree algorithm if the network is multiply-connected.

This result generalises the derivation of variational learning for HMMs (MacKay, 1997), which

uses the forward-backward algorithm as a subroutine. We investigate the variational Bayesian

HMM in more detail in chapter3. Another example isdynamic trees(Williams and Adams,

1999; Storkey, 2000; Adams et al., 2000) in which belief propagation is executed on a single

tree which represents an ensemble of singly-connected structures. Again there exists the natural

parameter inversion issue, but this is merely an implementational inconvenience.

2.5.2 Implications for undirected networks

Corollary 2.3: (theorem 2.1) VBEM for Undirected Graphs (Markov Networks).

Letm be a model with hidden and visible variablesz = {zi}ni=1 = {xi,yi}ni=1 that satisfy a

Markov network factorisation. That is, the joint density can be written as a product of clique-

potentials{ψj}Jj=1,

p(z |θ) =
1
Z
∏
i

∏
j

ψj(Cj(zi),θ) , (2.124)

where each cliqueCj is a (fixed) subset of the variables inzi, such that{C1(zi)∪· · ·∪CJ(zi)} =
zi. Then the approximating joint distribution form satisfies the same Markov network factori-

sation:

qz(z) =
∏
i

qzi(zi) , qzi(zi) =
1
Zq

∏
j

ψj(Cj(zi)) , (2.125)
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where

ψj(Cj(zi)) = e
〈lnψj(Cj(zi),θ)〉qθ(θ) ∀ {i, j} (2.126)

are new clique potentialsobtained by averaging overqθ(θ), andZq is a normalisation constant.

Corollary 2.4: (theorem 2.2) VBEM for CE Undirected Graphs (CE Markov Networks).

Furthermore, ifm is a conjugate-exponential model, then the approximating clique potentials

have exactly the same form as those in the original model:

ψj(Cj(zi)) ∝ ψj(Cj(zi), θ̃) , (2.127)

but with natural parametersφ(θ̃) = φ. Moreover, the expectations under the approximating

posteriorqx(x) ∝ qz(z) required for the VBE Step can be obtained by applying the junction

tree algorithm.

For conjugate-exponential models in which belief propagation and the junction tree algorithm

over hidden variables are intractable, further applications of Jensen’s inequality can yield tractable

factorisations (Jaakkola, 1997; Jordan et al., 1999).

2.6 Comparisons of VB to other criteria

2.6.1 BIC is recovered from VB in the limit of large data

We show here informally how the Bayesian Information Criterion (BIC, see section1.3.4) is

recovered in the large data limit of the variational Bayesian lower bound (Attias, 1999b). F can

be written as a sum of two terms:

Fm(qx(x), qθ(θ)) = −KL [qθ(θ) ‖ p(θ |m)]︸ ︷︷ ︸
Fm,pen

+
〈

ln
p(x,y |θ,m)

qx(x)

〉
qx(x) qθ(θ)︸ ︷︷ ︸

Dm

. (2.128)

Let us consider separately the limiting forms of these two terms, constraining ourselves to the

cases in which the modelm is in the CE family. In such cases, theorem2.2states thatqθ(θ) is

of conjugate form (2.97) with parameters given by (2.98) and (2.99). It can be shown that under

mild conditions exponential family distributions of this form exhibit asymptotic normality (see,

for example, the proof given inBernardo and Smith, 1994, pp. 293–4). Therefore, the entropy
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of qθ(θ) appearing inFm,pen can be calculated assuming a Gaussian form (see appendixA),

and the limit becomes

lim
n→∞

Fm,pen = lim
n→∞

[
〈ln p(θ |m)〉qθ(θ) +

d

2
ln 2π − 1

2
ln |H|

]
(2.129)

= −d
2

lnn+O(1) , (2.130)

whereH is the Hessian (matrix of second derivatives of the parameter posterior evaluated at

the mode), and we have used similar arguments to those taken in the derivation of BIC (section

1.3.4). The second term,Dm, can be analysed by appealing to the fact that the term inside the

expectation is equal toln p(y |θ,m) if and only if qx(x) = p(x |y,θ,m). Theorem2.1states

that the form of the variational posterior over hidden statesqx(x) is given by

ln qx(x) =
∫
dθ qθ(θ) ln p(x,y |θ,m)− lnZx (2.131)

(which does not depend on CE family membership conditions). Therefore asqθ(θ) becomes

concentrated aboutθMAP, this results inqx(x) = p(x |y,θMAP,m). ThenDm asymptotically

becomesln p(y |θMAP,m). Combining this with the limiting form forFm,pen given by (2.130)

results in:

lim
n→∞

Fm(qx(x), qθ(θ)) = −d
2

lnn+ ln p(y |θMAP,m) +O(1) , (2.132)

which is the BIC approximation given by (1.49). For the case of a non-CE model, we would

have to prove asymptotic normality forqθ(θ) outside of the exponential family, which may

become complicated or indeed impossible. We note that this derivation of the limiting form of

VB is heuristic in the sense that we have neglected concerns on precise regularity conditions

and identifiability.

2.6.2 Comparison to Cheeseman-Stutz (CS) approximation

In this section we present results regarding the approximation ofCheeseman and Stutz(1996),

covered in section1.3.5. We briefly review the CS criterion, as used to approximate the marginal

likelihood of finite mixture models, and then show that it is in fact a strict lower bound on the

marginal likelihood. We conclude the section by presenting a construction that proves that VB

can be used to obtain a bound that isalwaystighter than CS.

Let m be a directed acyclic graph with parametersθ giving rise to an i.i.d. data set denoted

by y = {y1, . . . ,yn} with corresponding discrete hidden variabless = {s1, . . . , sn} each of

cardinalityk. Let θ̂ be a result of an EM algorithm which has converged to a local maximum

in the likelihoodp(y |θ), and let̂s = {ŝi}ni=1 be a completion of the hidden variables, chosen
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according to the posterior distribution over hidden variables given the data andθ̂, such that

ŝij = p(sij = j |y, θ̂) ∀ i = 1, . . . , n.

Since we are completing the hidden variables with real, as opposed to discrete values, this

complete data set does not in general correspond to a realisable data set under the generative

model. This point raises the question of how its marginal probabilityp(ŝ,y |m) is defined. We

will see in the following theorem and proof (theorem2.3) that both the completion required of

the hidden variables and the completed data marginal probability are well-defined, and follow

from equations2.141and2.142below.

The CS approximation is given by

p(y |m) ≈ p(y |m)CS = p(ŝ,y |m)
p(y | θ̂)

p(ŝ,y | θ̂)
. (2.133)

The CS approximation exploits the fact that, for many models of interest, the first term on the

right-hand side, the complete-data marginal likelihood, is tractable to compute (this is the case

for discrete-variable directed acyclic graphs with Dirichlet priors, see chapter6 for details).

The term in the numerator of the second term on the right-hand side is simply the likelihood

of the data, which is an output of the EM algorithm (as is the parameter estimateθ̂), and the

denominator is a straightforward calculation that involves no summations over hidden variables

or integrations over parameters.

Theorem 2.3: Cheeseman-Stutz approximation is a lower bound on the marginal likeli-

hood.

Let θ̂ be the result of the M step of EM, and let{p(si |yi, θ̂)}ni=1 be the set of posterior distribu-

tions over the hidden variables obtained in the next E step of EM. Furthermore, letŝ = {ŝi}ni=1

be a completion of the hidden variables, such thatŝij = p(sij = j |y, θ̂) ∀ i = 1, . . . , n. Then

the CS approximation is a lower bound on the marginal likelihood:

p(y |m)CS = p(ŝ,y |m)
p(y | θ̂)

p(ŝ,y | θ̂)
≤ p(y |m) . (2.134)

This observation should be attributed toMinka (2001b), where it was noted that (in the context

of mixture models with unknown mixing proportions and component parameters) whilst the CS

approximation has been reported to obtain good performance in the literature (Cheeseman and

Stutz, 1996; Chickering and Heckerman, 1997), it was not known to be a bound on the marginal

likelihood. Here we provide a proof of this statement that is generally applicable to any model.
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Proof of theorem2.3: via marginal likelihood bounds using approximations over the posterior

distribution of only the hidden variables. The marginal likelihood can be lower bounded by

introducing a distribution over the settings of each data point’s hidden variablesqsi(si):

p(y |m) =
∫
dθ p(θ)

n∏
i=1

p(yi |θ) (2.135)

≥
∫
dθ p(θ)

n∏
i=1

exp

{∑
si

qsi(si) ln
p(si,yi |θ)
qsi(si)

}
. (2.136)

We return to this quantity shortly, but presently place a similar lower bound over the likelihood

of the data:

p(y | θ̂) =
n∏
i=1

p(yi | θ̂) ≥
n∏
i=1

exp

{∑
si

qsi(si) ln
p(si,yi | θ̂)
qsi(si)

}
(2.137)

which can be made an equality if, for each data point,q(si) is set to the exact posterior distri-

bution given the parameter settingθ (for example see equation (2.19) and the proof following

it),

p(y | θ̂) =
n∏
i=1

p(yi | θ̂) =
n∏
i=1

exp

{∑
si

q̂si(si) ln
p(si,yi | θ̂)
q̂si(si)

}
, (2.138)

where

q̂si(si) ≡ p(si |y, θ̂) , (2.139)

which is the result obtained from an exact E step with the parameters set toθ̂. Now rewrite the

marginal likelihood bound (2.136), using this same choice of̂qsi(si), separate those terms that

depend onθ from those that do not, and substitute in the form from equation (2.138) to obtain:

p(y |m) ≥
n∏
i=1

exp

{∑
si

q̂si(si) ln
1

q̂si(si)

}
·
∫
dθ p(θ)

n∏
i=1

exp

{∑
si

q̂si(si) ln p(si,yi |θ)

}
(2.140)

=
p(y | θ̂)∏n

i=1 exp
{∑

si
q̂si(si) ln p(si,yi | θ̂)

} ∫ dθ p(θ)
n∏
i=1

exp

{∑
si

q̂si(si) ln p(si,yi |θ)

}
(2.141)

=
p(y | θ̂)∏n

i=1 p(ŝi,yi | θ̂)

∫
dθ p(θ)

n∏
i=1

p(ŝi,yi |θ) , (2.142)

78



VB Theory 2.6. Comparisons of VB to other criteria

whereŝi are defined such that they satisfy:

ŝi defined such that: ln p(ŝi,y | θ̂) =
∑
si

q̂si(si) ln p(si,yi |θ) (2.143)

=
∑
si

p(si |y, θ̂) ln p(si,yi |θ) (2.144)

where the second line comes from the requirement of bound equality in (2.139). The existence

of such a completion follows from the fact that, in discrete-variable directed acyclic graphs

of the sort considered inChickering and Heckerman(1997), the hidden variables appear only

linearly in logarithm of the joint probabilityp(s,y |θ). Equation (2.142) is the Cheeseman-

Stutz criterion, and is also a lower bound on the marginal likelihood.

It is possible to derive CS-like approximations for types of graphical model other than discrete-

variables DAGs. In the above proof no constraints were placed on the forms of the joint distribu-

tions over hidden and observed variables, other than in the simplifying step in equation (2.142).

So, similar results to corollaries2.2and2.4can be derived straightforwardly to extend theorem

2.3to incorporate CE models.

The following corollary shows that variational Bayes can always obtain a tighter bound than the

Cheeseman-Stutz approximation.

Corollary 2.5: (theorem 2.3) VB is at least as tight as CS.

That is to say, it is always possible to find distributionsqs(s) andqθ(θ) such that

ln p(y |m)CS≤ Fm(qs(s), qθ(θ)) ≤ ln p(y |m) . (2.145)

Proof of corollary2.5. Consider the following forms forqs(s) andqθ(θ):

qs(s) =
n∏
i=1

qsi(si) , with qsi(si) = p(si |yi, θ̂) , (2.146)

qθ(θ) ∝ 〈ln p(θ)p(s,y |θ)〉qs(s) . (2.147)

We write the form forqθ(θ) explicitly:

qθ(θ) =
p(θ)

∏n
i=1 exp

{∑
si
qsi(si) ln p(si,yi |θ)

}∫
dθ′ p(θ′)

∏n
i=1 exp

{∑
si
qsi(si) ln p(si,yi |θ′)

} , (2.148)
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and note that this is exactly the result of a VBM step. We substitute this and the form forqs(s)
directly into the VB lower bound stated in equation (2.53) of theorem2.1, obtaining:

F(qs(s), qθ(θ)) =
∫
dθ qθ(θ)

n∑
i=1

∑
si

qsi(si) ln
p(si,yi |θ)
qsi(si)

+
∫
dθ qθ(θ) ln

p(θ)
qθ(θ)

(2.149)

=
∫
dθ qθ(θ)

n∑
i=1

∑
si

qsi(si) ln
1

qsi(si)

+
∫
dθ qθ(θ) ln

∫
dθ′ p(θ′)

n∏
i=1

exp

{∑
si

qsi(si) ln p(si,yi |θ′)

}
(2.150)

=
n∑
i=1

∑
si

qsi(si) ln
1

qsi(si)
+ ln

∫
dθ p(θ)

n∏
i=1

exp

{∑
si

qsi(si) ln p(si,yi |θ)

}
,

(2.151)

which is exactly the logarithm of equation (2.140). And so with this choice ofqθ(θ) andqs(s)
we achieve equalitybetween the CS and VB approximations in (2.145).

We complete the proof of corollary2.5by noting that any further VB optimisation is guaranteed

to increase or leave unchanged the lower bound, and hence surpass the CS lower bound. We

would expect the VB lower bound starting from the CS solution to improve upon the CS lower

bound inall cases, except in the very special case when the MAP parameterθ̂ is exactly the

variational Bayes point, defined asθBP ≡ φ−1(〈φ(θ)〉qθ(θ)) (see proof of theorem2.2(a)).

Therefore, since VB is a lower bound on the marginal likelihood, the entire statement of (2.145)

is proven.

2.7 Summary

In this chapter we have shown how a variational bound can be used to derive the EM algorithm

for ML/MAP parameter estimation, for both unconstrained and constrained representations of

the hidden variable posterior. We then moved to the Bayesian framework, and presented the

variational Bayesian EMalgorithm which iteratively optimises a lower bound on the marginal

likelihood of the model. The marginal likelihood, which integrates over model parameters, is

the key component to Bayesian model selection. The VBE and VBM steps are obtained by

taking functional derivatives with respect to variational distributions over hidden variables and

parameters respectively.

We gained a deeper understanding of the VBEM algorithm by examining the specific case of

conjugate-exponentialmodels and showed that, for this large class of models, the posterior dis-

tributionsqx(x) andqθ(θ) have intuitive and analytically stable forms. We have also presented
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VB learning algorithms for both directed and undirected graphs (Bayesian networks and Markov

networks).

We have explored the Cheeseman-Stutz model selection criterion as a lower bound of the

marginal likelihood of the data, and have explained how it is a very specific case of varia-

tional Bayes. Moreover, using this intuition, we have shown that any CS approximation can be

improved upon by building a VB approximation over it. It is tempting to derive conjugate-

exponential versions of the CS criterion, but in my opinion this is not necessary since any

implementations based on these results can be made only more accurate by using conjugate-

exponential VB instead, which is at least as general in every case. In chapter6 we present a

comprehensive comparison of VB to a variety of approximation methods, including CS, for a

model selection task involving discrete-variable DAGs.

The rest of this thesis applies the VB lower bound to several commonly used statistical models,

with a view to performing model selection, learning from both real and synthetic data sets.

Throughout we compare the variational Bayesian framework to competitor approximations,

such as those reviewed in section1.3, and also critically analyse the quality of the lower bound

using advanced sampling methods.
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