
Chapter 4

Variational Bayesian Mixtures of

Factor Analysers

4.1 Introduction

This chapter is concerned with learning good representations of high dimensional data, with

the goal being to perform well in density estimation and pattern classification tasks. The work

described here builds on work inGhahramani and Beal(2000), which first introduced the vari-

ational method for Bayesian learning of a mixtures of factor analysers model, resulting in a

tractable means of integrating over all the parameters in order to avoid overfitting.

In the following subsections we introduce factor analysis (FA), and the mixtures of factor anal-

ysers (MFA) model which can be thought of as a mixture of reduced-parameter Gaussians. In

section4.2 we explain why an exact Bayesian treatment of MFAs is intractable, and present a

variational Bayesian algorithm for learning. We show how to learn distributions over the pa-

rameters of the MFA model, how to optimise its hyperparameters, and how to automatically

determine the dimensionality of each analyser using automatic relevance determination (ARD)

methods. In section4.3 we propose heuristics for efficiently exploring the (one-dimensional)

space of the number of components in the mixture, and in section4.5we present synthetic exper-

iments showing that the model can simultaneously learn the number of analysers and their intrin-

sic dimensionalities. In section4.6 we apply the VBMFA to the real-world task of classifying

digits, and show improved performance over a BIC-penalised maximum likelihood approach.

In section4.7we examine the tightness of the VB lower bound using importance sampling es-

timates of the exact marginal likelihood, using as importance distributions the posteriors from

the VB optimisation. We also investigate the effectiveness of using heavy-tailed and mixture

distributions in this procedure. We then conclude in section4.8 with a brief outlook on recent

research progress in this area.
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VB Mixtures of Factor Analysers 4.1. Introduction

4.1.1 Dimensionality reduction using factor analysis

Factor analysis is a method for modelling correlations in multidimensional data, by expressing

the correlations in a lower-dimensional, oriented subspace. Let the data set bey = {y1, . . . ,yn}.
The model assumes that eachp-dimensional data vectoryi was generated by first linearly trans-

forming ak < p dimensional vector of unobserved independent zero-mean unit-variance Gaus-

sian sources (factors),xi = [xi1, . . . ,xik], translating by a fixed amountµ in the data space,

followed by addingp-dimensional zero-mean Gaussian noise,ni, with diagonal covariance ma-

trix Ψ (whose entries are sometimes referred to as theuniquenesses). Expressed mathematically,

we have

yi = Λxi + µ + ni (4.1)

xi ∼ N(0, I), ni ∼ N(0,Ψ) , (4.2)

whereΛ (p × k) is the linear transformation known as thefactor loadingmatrix, andµ is the

mean of the analyser. Integrating outxi andni, it is simple to show that the marginal density of

yi is Gaussian about the displacementµ,

p(yi |Λ,µ,Ψ) =
∫
dxi p(xi)p(yi |xi,Λ,µ,Ψ) = N(yi |µ,ΛΛ> + Ψ) , (4.3)

and the probability of an i.i.d. data sety = {yi}ni=1 is given by

p(y |Λ,µ,Ψ) =
n∏
i=1

p(yi |Λ,µ,Ψ) . (4.4)

Given a data sety having covariance matrixΣ∗ and meanµ∗, factor analysis finds theΛ, µ and

Ψ that optimally fitΣ∗ in the maximum likelihood sense. Sincek < p, a factor analyser can

be seen as a reduced parameterisation of a full-covariance Gaussian. The (diagonal) entries of

theΨ matrix concentrate on fitting the axis-aligned (sensor) noise in the data, leaving the factor

loadings inΛ to model the remaining (assumed-interesting) covariance structure.

The effect of the mean termµ can be assimilated into the factor loading matrix by augmenting

the vector of factors with a constant bias dimension of1, and adding a corresponding columnµ

to the matrixΛ. With these modifications, learning theΛ matrix incorporates learning the mean;

in the equations of this chapter we keep the parameters separate, although the implementations

consider the combined quantity.
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Dimensionality of the latent space,k

A central problem in factor analysis is deciding on the dimensionality of the latent space. If too

low a value ofk is chosen, then the model has to discard some of the covariance in the data as

noise, and ifk is given too high a value this causes the model to fit spurious correlations in the

data. Later we describe a Bayesian technique to determine this value automatically, but here

we first give an understanding for an upper bound on the required value fork, by comparing

the number of degrees of freedom in the covariance specification of the data set and the degrees

of freedom that the FA parameterisation has in its parameters. We need to distinguish between

the number of parameters and the degrees of freedom, which is really a measure of how many

independent directions in parameter space there are that affect the generative probability of the

data. The number of degrees of freedom in a factor analyser with latent space dimensionalityk

cannot exceed the number of degrees of freedom of a full covariance matrix,1
2p(p+ 1), nor can

it exceed the degrees of freedom offered by the parameterisation of the analyser, which is given

by d(k),

d(k) = kp+ p− 1
2
k(k − 1) . (4.5)

The first two terms on the right hand side are the degrees of freedom in theΛ andΨ matrices

respectively, and the last term is the degrees of freedom in a(k × k) orthonormal matrix. This

last term needs to be subtracted because it represents a redundancy in the factor analysis param-

eterisation, namely that an arbitrary rotation or reflection of the latent vector space leaves the

covariance model of the data unchanged:

underΛ→ ΛU, ΛΛ> + Ψ→ ΛU(ΛU)> + Ψ (4.6)

= ΛUU>Λ> + Ψ (4.7)

= ΛΛ> + Ψ . (4.8)

That is to say we must subtract the degrees of freedom from degeneracies inΛ associated with

arbitrary arrangements of the (a priori identical) hidden factors{xij}kj=1. Since ap-dimensional

covariance matrix containsp(p + 1)/2 pieces of information, in order to be able to perfectly

capture the covariance structure of the data the number of degrees of freedom in the analyser

(4.5) would have to exceed this. This inequality is a simple quadratic problem, fork ≤ p

kp+ p− 1
2
k(k − 1) ≥ 1

2
p(p+ 1) (4.9)

whose solution is given by

kmax =
⌈
p+

1
2

[
1−

√
1 + 8p

]⌉
. (4.10)

We might be tempted to conclude that we only needkmax factors to model an arbitrary covariance

in p dimensions. However this neglects the constraint that all the diagonal elements ofΨ have
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to be positive. We conjecture that because of this constraint the number of factors needed to

model a full covariance matrix isp− 1. This implies that for high dimensional data, if we want

to be able to model a full covariance structure, we cannot expect to be able to reduce the number

of parameters by that much at all using factor analysis. Fortunately, for many real data sets we

have good reason to believe that, at least locally, the data lies on a low dimensional manifold

which we can capture with only a few factors. The fact that this is a good approximation only

locally, when the manifold may be globally non-linear, is the motivation for mixture models,

discussed next.

4.1.2 Mixture models for manifold learning

It is often the case that apparently high dimensional data in fact lies, to a good approximation,

on a low dimensional manifold. For example, consider the data set consisting of many different

images of the same digit, given in terms of the pixel intensities. This data has as many dimen-

sions as there are pixels in each image. To explain this data we could first specify a mean digit

image, which is a point in this high dimensional space representing a set of pixel intensities, and

then specify a small number of transformations away from that digit that would cover small vari-

ations in style or perhaps intensity. In factor analysis, each factor dictates the amount of each

linear transformation on the pixel intensities. However, with factor analysis we are restricted

to linear transformations, and so any one analyser can only explain well a small region of the

manifold in which it is locally linear, even though the manifold is globally non-linear.

One way to overcome this is to use mixture models to tile the data manifold. A mixture of

factor analysers models the density for a data pointyi as a weighted average of factor analyser

densities

p(yi |π,Λ,µ,Ψ) =
S∑

si=1

p(si |π)p(yi | si,Λ,µ,Ψ) . (4.11)

Here,S is the number of mixture components in the model,π is the vector of mixing propor-

tions,si is a discrete indicator variable for the mixture component chosen to model data point

i, Λ = {Λs}Ss=1 is a set of factor loadings withΛs being the factor loading matrix for analyser

s, andµ = {µs}Ss=1 is the set of analyser means. The last term in the above probability is just

the single analyser density, given in equation (4.3). The directed acyclic graph for this model is

depicted in figure4.1, which uses theplatenotation to denote repetitions over a data set of size

n. Note that there are different indicator variablessi and latent space variablesxi for each plate.

By exploiting the factor analysis parameterisation of covariance matrices, a mixture of factor

analysers can be used to fit a mixture of Gaussians to correlated high dimensional data without

requiringO(p2) parameters, or undesirable compromises such as axis-aligned covariance ma-

trices. In an MFA each Gaussian cluster has intrinsic dimensionalityk, or ks if the dimensions

are allowed to vary across mixture components. Consequently, the mixture of factor analysers
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Figure 4.1: Generative model for Maximum Likelihood MFA. Circles denote random variables,
solid rectangles parameters, and the dashed rectangle the plate (repetitions) over the data.

simultaneously addresses the problems of clustering and local dimensionality reduction. When

Ψ is a multiple of the identity the model becomes a mixture of probabilistic PCAs (pPCA).

Tractable maximum likelihood (ML) procedures for fitting MFA and pPCA models can be de-

rived from the Expectation Maximisation algorithm, see for exampleGhahramani and Hinton

(1996b); Tipping and Bishop(1999). Factor analysis and its relationship to PCA and mixture

models is reviewed inRoweis and Ghahramani(1999).

4.2 Bayesian Mixture of Factor Analysers

The maximum likelihood approach to fitting an MFA has several drawbacks. The EM algorithm

can easily get caught in local maxima, and often many restarts are required before a good max-

imum is reached. Technically speaking the log likelihoods in equations (4.3) and (4.11) are not

bounded from above, unless constraints are placed on the variances of the components of the

mixture. In practice this means that the covariance matrixΛsΛs> + Ψ can become singular if

a particular factor analyser models fewer points than the degrees of freedom in its covariance

matrix. Most importantly, the maximum likelihood approach for fitting MFA models has the

severe drawback that it fails to take into account model complexity. For example the likelihood

can be increased by adding more analyser components to the mixture, up to the extreme where

each component models a single data point, and it can be further increased by supplying more

factors in each of the analysers.
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A Bayesian approach overcomes these problems by treating the parameters of the model as

unknown quantities and averaging over the ensemble of models they produce. Definingθ =
(Λ,µ,π,Ψ), we write the probability of the data averaged over a prior for parameters:

p(y) =
∫
dθ p(θ)p(y |θ) (4.12)

=
∫
dθ p(θ)

n∏
i=1

p(yi |θ) (4.13)

=
∫
dπ p(π)

∫
dΛ p(Λ)

∫
dµ p(µ)·

n∏
i=1

[
S∑

si=1

p(si |π)
∫
dxi p(xi)p(yi | si,xi,Λ,µ,Ψ)

]
. (4.14)

Equation (4.14) is the marginal likelihood of a dataset (called the marginal probability of the

data set by some researchers to avoid confusion with the likelihood of theparameters). By in-

tegrating out all those parameters whose number increase as the model complexity grows, we

effectively penalise models with more degrees of freedom, since they can a priori model a larger

range of data sets. By model complexity, we mean the number of components and the dimen-

sionality of each component. Integrating out the parameters naturally embodies the principle of

Occam’s razor (MacKay, 1992; Jefferys and Berger, 1992). As a result no parameters are ever

fit to the data, but rather their posteriordistributionsare inferred and used to make predictions

about new data. For this chapter, we have chosen not to integrate overΨ, although this could

also be done (see, for example, chapter5). Since the number of degrees of freedom inΨ does

not grow with the number of analysers or their dimensions, we treat it as a hyperparameter and

optimise it, even though this might result in some small degree of overfitting.

4.2.1 Parameter priors for MFA

While arbitrary choices can be made for the priors in (4.14), choosing priors that are conjugate

to the likelihood terms greatly simplifies inference and interpretability. Therefore we choose a

symmetric Dirichlet prior for the mixing proportionπ, with strengthα∗,

p(π |α∗m∗) = Dir(π |α∗m∗) , such that m∗ =
[

1
S
, . . . ,

1
S

]
. (4.15)

In this way the prior has a single hyperparameter, its strengthα∗, regardless of the dimensional-

ity of π. This hyperparameter is a measure of how we expect the mixing proportions to deviate

from being equal. One could imagine schemes in which we have non-symmetric prior mixing

proportion; an example could be making the hyperparameter in the Dirichlet prior an exponen-

tially decaying vector with a single decay rate hyperparameter, which induces a natural ordering

in the mixture components and so removes some identifiability problems. Nevertheless for our
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purposes a symmetric prior suffices, and expresses the notion that each component has equal a

priori chance of being used to generate each data point.

For the entries of the factor loading matrices,{Λs}Ss=1, we choose a hierarchical prior in order to

perform automatic relevance determination (ARD). Each column of each factor loading matrix

has a Gaussian prior with mean zero and a different precision parameter (drawn from a gamma

distribution with fixed hyperparameters, see equation (4.18) below):

p(Λ |ν) =
S∏
s=1

p(Λs |νs) =
S∏
s=1

ks∏
j=1

p(Λs·j | νsj ) =
S∏
s=1

ks∏
j=1

N(Λs·j |0, I/νsj ) , (4.16)

whereΛs·j denotes the vector of entries in thejth column of thesth analyser in the mixture,

andνsj is the same scalar precision for each entry in the corresponding column. The role of

these precision hyperparameters is explained in section4.2.2. Note that because the spherical

Gaussian prior is separable into each of itsp dimensions, the prior can equivalently be thought

of as a Gaussian with axis-aligned elliptical covariance on each row of each analyser:

p(Λ |ν) =
S∏
s=1

p∏
q=1

p(Λsq· |νs) =
S∏
s=1

p∏
q=1

N(Λsq· |0,diag (νs)−1) , (4.17)

where hereΛsq· is used to denote theqth row of thesth analyser. It will turn out to be simpler

to have the prior in this form conceptually for learning, since the likelihood terms forΛ factor

across its rows.

Since the number of hyperparameters inν = {{νsj }
ks
j=1}Ss=1 increases with the number of anal-

ysers and also with the dimensionality of each analyser, we place a hyperprior on every element

of eachνs precision vector, as follows:

p(ν | a∗, b∗) =
S∏
s=1

p(νs | a∗, b∗) =
S∏
s=1

ks∏
j=1

p(νsj | a∗, b∗) =
S∏
s=1

ks∏
j=1

Ga(νsj | a∗, b∗) , (4.18)

wherea∗ andb∗ are shape and inverse-scale hyperhyperparameters for a gamma distribution

(see appendixA for a definition and properties of the gamma distribution). Note that the same

hyperprior is used for every element inν. As a point of interest, combining the priors forΛ and

ν, and integrating outν, we find that the marginal prior over eachΛs is Student-t distributed.

We will not need to make use of this result right here, but will return to it in section4.7.1.

Lastly, the means of each analyser in the mixture need to be integrated out. A Gaussian prior

with meanµ∗ and axis-aligned precisiondiag (ν∗) is placed on each meanµs. Note that these
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hyperparameters hold2p degrees of freedom, which is not a function of the size of the model.

The prior is the same for every analyser:

p(µ |µ∗,ν∗) =
S∏
s=1

p(µs |µ∗,ν∗) =
S∏
s=1

N(µs |µ∗,diag (ν∗)−1) (4.19)

Note that this prior has a different precision for each dimension of the output, whereas the prior

over the entries in the factor loading matrix uses the same precision on each row, and is different

only for each column of each analyser.

If we are to use the implementational convenience of augmenting the latent space with a constant

bias dimension, and adding a further column to each factor loading matrix to represent its mean,

then the prior over all the entries in the augmented factor loading matrix no longer factorises

over rows (4.17) or columns (4.18), but has to be expressed as a product of terms over every

entry of the matrix. This point will be made clearer when we derive the posterior distribution

over the augmented factor loading matrix.

We useΘ to denote the set of hyperparameters of the model:

Θ = (α∗m∗, a∗, b∗,µ∗,ν∗,Ψ) . (4.20)

The directed acyclic graph for the generative model for this Bayesian MFA is shown graph-

ically in figure 4.2. Contrasting with the ML graphical model in figure4.1, we can see that

all the model parameters (with the exception of the sensor noiseΨ) have been replaced with

uncertain variables, denoted with circles, and now have hyperparameters governing their prior

distributions. The generative model for the data remains the same, with the plate over the data

denoting i.i.d. instances of the hidden factorsxi, each of which gives rise to an outputyi. We

keep the graphical model concise by also using a plate over theS analysers, which clearly shows

the role of the hyperpriors.

As an aside, we do not place a prior on the number of components,S. We instead place a sym-

metric Dirichlet prior over the mixing proportions. Technically, we should include a (square

boxed) nodeS, as the parent of both the plate over analysers and the hyperparameterαm. We

have also not placed priors over the number of factors of each analyser,{ks}Ss=1; this is inten-

tional as there exists an explicit penalty for using more dimensions — the extra entries in factor

loading matrixΛs need to be explained under a hyperprior distribution (4.16) which is gov-

erned by a new hyperparameterνs, which itself has to be explained under the hyperhyperprior

p(νs | a, b) of equation (4.18).
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Figure 4.2: A Bayesian formulation for MFA. Here the plate notation is used to denote repeti-
tions over datan and over theS analysers in the generative model. Note that all the parameters
in the ML formulation, exceptΨ, have now become uncertain random variables in the Bayesian
model (circled nodes in the graph), and are governed by hyperparameters (square boxes). The
number of hyperparameters in the model is constant and is not a function of the number of
analysers or their dimensionalities.

4.2.2 Inferring dimensionality using ARD

Each factor analysers in the MFA models its local data as a linear projection ofks-dimensional

spherical Gaussian noise into thep-dimensional space. If a maximum dimensionalitykmax is

set, then there existkmax× · · · × kmax = (kmax)S possible subspace configurations amongst

theS analysers. Thus determining the optimal configuration is exponentially intractable if a

discrete search is employed over analyser dimensionalities. Automatic relevance determination

(ARD) solves this discrete search problem with the use of continuous variables that allow asoft

blendof dimensionalities. Each factor analyser’s dimensionality is set tokmax and we use priors

that discourage large factor loadings. The width of each prior is controlled by a hyperparameter

(explained below), and the result of learning with this method is that only those hidden factor

dimensions that are required remain active after learning — the remaining dimensions are effec-

tively ‘switched off’. This general method was proposed by MacKay and Neal (seeMacKay,

1996, for example), and was used inBishop(1999) for Bayesian PCA, and is closely related to

the method given inNeal(1998a) for determining the relevance of inputs to a neural network.

Considering for the moment a single factor analyser. The ARD scheme uses a Gaussian prior

with a zero mean for the entries of the factor loading matrix, as shown in (4.16), given again

here:

p(Λs |νs) =
kmax∏
j=1

p(Λs·j | νsj ) =
kmax∏
j=1

N(Λs·j |0, I/νsj ) , (4.21)

whereνs = {νs1, . . . , νskmax
} are the precisions on the columns ofΛs, which themselves are de-

noted by{Λ·1, . . . ,Λ·kmax}. This zero-mean prior couples within-column entries inΛs, favour-

ing lower magnitude values.
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If we apply this prior to each analyser in the mixture, each column of each factor loading matrix

is then governed by a separateνsl parameter. If one of these precisionsνsl → ∞ then the

outgoing weights (columnl entries inΛs) for the lth factor in thesth analyser will have to be

very close to zero in order to maintain a high likelihood under this prior, and this in turn leads the

analyser to ignore this factor, and thus allows the model to reduce the intrinsic dimensionality of

x in the locale of that analyserif the data does not warrant this added dimension. We have not

yet explained how some of these precisions come to tend to infinity; this will be made clearer in

the derivations of the learning rules in section4.2.5.

The fully Bayesian application requires that we integrate out all parameters that scale with the

number of analyser components and their dimensions; for this reason we use the conjugate prior

for a precision variable, a gamma distribution with shapea∗ and inverse scaleb∗, to integrate

over the ARD hyperparameters. Since we are integrating over the hyperparameters, it now

makes sense to consider removing a redundant factor loading when theposterior distribution

over the hyperparameterνsl has most of its mass near infinity. In practice we take the mean

of this posterior to be indicative of its position, and perform removal when it becomes very

large. This reduces the coding cost of the parameters, and as a redundant factor is not used

to model the data, this must increase the marginal likelihoodp(y). We can be harsher still,

and prematurely remove those factors which haveνsl escaping to infinity, provided the resulting

marginal likelihood is better (we do not implement this scheme in our experiments).

4.2.3 Variational Bayesian derivation

Now that we have priors over the parameters of our model, we can set about computing the

marginal likelihood of data. But unfortunately, computing the marginal likelihood in equation

(4.14) is intractable because integrating over the parameters of the model induces correlations

in the posterior distributions between the hidden variables in all then plates. As mentioned in

section1.3, there are several methods that are used to approximate such integrals, for example

MCMC sampling techniques, the Laplace approximation, and the asymptotic BIC criterion.

For MFA and similar models, MCMC methods for Bayesian approaches have only recently

been applied byFokoúe and Titterington(2003), with searches over model complexity in terms

of both the number of components and their dimensionalities carried out by reversible jump

techniques (Green, 1995). In related models, Laplace and asymptotic approximations have been

used to approximate Bayesian integration in mixtures of Gaussians (Roberts et al., 1998). Here

our focus is on analytically tractable approximations based on lower bounding the marginal

likelihood.

We begin with the log marginal likelihood of the data and first construct a lower bound using

a variational distribution over the parameters{π,ν,Λ,µ}, and then perform a similar lower
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bounding using a variational distribution for the hidden variables{si,xi}ni=1. As a point of

nomenclature, just as we have been using the same notationp(·) for every prior distribution,

even though they may be Gaussian, gamma, Dirichlet etc., in what follows we also use the same

q(·) to denote different variational distributions for different parameters. The form ofq(·) will

be clear from its arguments.

Combining (4.14) with the priors discussed above including the hierarchical prior onΛ, we

obtain the log marginal likelihood of the data, denotedL,

L ≡ ln p(y) = ln

(∫
dπ p(π |α∗m∗)

∫
dν p(ν | a∗, b∗)

∫
dΛ p(Λ |ν)

∫
dµ p(µ |µ∗,ν∗)·

n∏
i=1

[
S∑

si=1

p(si |π)
∫
dxi p(xi)p(yi | si,xi,Λ,µ,Ψ)

])
. (4.22)

The marginal likelihoodL is in fact a function of the hyperparameters(α∗m∗, a∗, b∗,µ∗,ν∗),
and the sensor noiseΨ; this dependence is left implicit in this derivation. We introduce an arbi-

trary distributionq(π,ν,Λ,µ) to lower bound (4.22), followed by a second set of distributions

{q(si,xi)}ni=1 to further lower bound the bound,

L ≥
∫
dπ dν dΛ dµ q(π,ν,Λ,µ)

(
ln
p(π |α∗m∗)p(ν | a∗, b∗)p(Λ |ν)p(µ |µ∗,ν∗)

q(π,ν,Λ,µ)

+
n∑
i=1

ln

[
S∑

si=1

p(si |π)
∫
dxi p(xi)p(yi | si,xi,Λ,µ,Ψ)

])
(4.23)

≥
∫
dπ dν dΛ dµ q(π,ν,Λ,µ)

(
ln
p(π |α∗m∗)p(ν | a∗, b∗)p(Λ |ν)p(µ |µ∗,ν∗)

q(π,ν,Λ,µ)

+
n∑
i=1

[
S∑

si=1

∫
dxi q(si,xi)

(
ln
p(si |π)p(xi)
q(si,xi)

+ ln p(yi | si,xi,Λ,µ,Ψ)
)])

.

(4.24)

In the first inequality, the term on the second line is simply the log likelihood ofyi for a fixed

setting of parameters, which is then further lower bounded in the second inequality using a set

of distributions over the hidden variables{q(si,xi)}ni=1. These distributions areindependentof

the settings of the parametersπ,ν,Λ, andµ, and they correspond to the standard variational

approximation of the factorisation between the parameters and the hidden variables:

p(π,ν,Λ,µ, {si,xi}ni=1 |y) ≈ q(π,ν,Λ,µ)
n∏
i=1

q(si,xi) . (4.25)

The distribution of hidden variables factorises across the plates because both the generative

model is i.i.d.and we have made the approximation that the parameters and hidden variables

are independent (see proof of theorem2.1in section2.3.1). Here we use a further variational ap-
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proximation amongst the parameters, which can be explained by equating the functional deriva-

tives of equation (4.24) with respect toq(π,ν,Λ,µ) to zero. One finds that

q(π,ν,Λ,µ) ∝ p(π |α∗m∗)p(ν | a∗, b∗)p(Λ |ν)p(µ |µ∗,ν∗) ·

exp

[
n∑
i=1

S∑
si=1

〈ln p(si |π)p(yi | si,xi,Λ,µ,Ψ)〉q(si,xi)

]
(4.26)

= q(π)q(ν,Λ,µ) (4.27)

≈ q(π)q(ν)q(Λ,µ) . (4.28)

In the second line, the approximate posterior factorises exactly into a contribution from the mix-

ing proportions and the remaining parameters. Unfortunately it is not easy to take expectations

with respect to the joint distribution overΛ and its parent parameterν, and therefore we make

the second variational approximation in the last line, equation (4.28). The very last termq(Λ,µ)
turns out to be jointly Gaussian, and so is of tractable form.

We should note that except for the initial factorisation between the hidden variables and the

parameters, the factorisationq(ν,Λ,µ) ≈ q(ν)q(Λ,µ) is the only other approximating factori-

sation we make; all other factorisations fall out naturally from the conditional independencies in

the model. Note that the complete-data likelihood for mixtures of factor analysers is in the expo-

nential family, even after the inclusion of the precision parametersν. We could therefore apply

the results of section2.4, but this would entail finding expectations over gamma-Gaussian distri-

butions jointly overν andΛ. Although it is possible to take these expectations, for convenience

we choose a separable variational posterior onν andΛ.

From this point on we assimilate each analyser’s mean positionµs into its factor loading matrix,

in order to keep the presentation concise. The derivations useΛ̃ to denote the concatenated result

[Λ µ]. Therefore the prior over the entire factor loadingsΛ̃ is now a function of the precision

parameters{νs}Ss=1 (which themselves have hyperparametersa, b) and the hyperparameters

µ∗,ν∗. Also, the variational posteriorq(Λ,µ) becomesq(Λ̃).
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Substituting the factorised approximations (4.25) and (4.28) into the lower bound (4.24) results

in the following lower bound for the marginal likelihood,

L ≥
∫
dπ q(π) ln

p(π |α∗,m∗)
q(π)

+
S∑
s=1

∫
dνs q(νs)

[
ln
p(νs | a∗, b∗)

q(νs)
+
∫
dΛ̃s q(Λ̃s) ln

p(Λ̃s |νs,µ∗,ν∗)
q(Λ̃s)

]

+
n∑
i=1

S∑
si=1

q(si)
[∫

dπ q(π) ln
p(si |π)
q(si)

+
∫
dxi q(xi | si) ln

p(xi)
q(xi | si)

+
∫
dΛ̃ q(Λ̃)

∫
dxi q(xi | si) ln p(yi | si,xi, Λ̃,Ψ)

]
(4.29)

≡ F(q(π), {q(νs), q(Λ̃s), {q(si), q(xi | si)}ni=1}Ss=1, α
∗m∗, a∗, b∗,µ∗,ν∗,Ψ,y) (4.30)

= F(q(θ), q(s,x),Θ) . (4.31)

Thus the lower bound is a functional of the variational posterior distributions over the param-

eters, collectively denotedq(θ), a functional of the variational posterior distribution over the

hidden variables of every data point, collectively denotedq(s,x), and also a function of the set

of hyperparameters in the modelΘ, as given in (4.20). In the last line above, we have dropped

y as an argument for the lower bound since it is fixed. The full variational posterior is

p(π,ν,Λ,µ, s,x |y) ≈ q(π)
S∏
s=1

q(νs)q(Λ̃s) ·
n∏
i=1

S∏
si=1

q(si)q(xi | si) . (4.32)

Note that if we had not made the factorisationq(ν,Λ,µ) ≈ q(ν)q(Λ,µ), then the last term

in F would have required averages not overq(Λ̃), but also over the combinedq(ν, Λ̃), which

would have become fairly cumbersome, although not intractable.

Decomposition ofF

The goal of learning is then to maximiseF , thus increasing the lower bound onL, the exact

marginal likelihood. Note that there is an interesting trade-off at play here. The last term in

equation (4.29) is the log likelihood of the data set averaged over the uncertainty we have in the

hidden variables and parameters. We can increase this term by alteringΨ and the variational

posterior distributionsq(θ) andq(s,x) so as to maximise this contribution. However the first

three lines of (4.29) contain terms that are negative Kullback-Leibler (KL) divergences between

the approximate posteriors over the parameters and the priors we hold on them. So to increase

the lower bound on the marginal likelihood (which does not necessarily imply that the marginal

likelihood itself increases, since the bound is not tight), we should also consider moving our

approximate posteriors towards the priors, thus decreasing the respective KL divergences. In

this mannerF elegantly incorporates the trade-off between modelling the data and remaining
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consistent with our prior beliefs. Indeed if there were no contributions from the data (i.e. the

last term in equation (4.29) were zero) then the optimal approximate posteriors would default to

the prior distributions.

At this stage it is worth noting that, with the exception of the first term in equation (4.29),F can

be broken down into contributions from each component of the mixture (indexed bys). This

fact that will be useful later when we wish to compare how well each component of the mixture

is modelling its respective data.

4.2.4 Optimising the lower bound

To optimise the lower bound we simply take functional derivatives with respect to each of the

q(·) distributions and equate these to zero to find the distributions that extremiseF (see chapter

2). Synchronous updating of the variational posteriors is not guaranteed to increaseF but

consecutive updating of dependent distributions is. The result is that each update is guaranteed

to monotonically and maximally increaseF .

The update for the variational posterior over mixing proportionsπ:

∂F
∂q(π)

= ln p(π |α∗m∗) +
n∑
i=1

S∑
si=1

q(si) ln p(si |π)− ln q(π) + c (4.33)

= ln

[
S∏
s=1

πα
∗m∗

s−1
s ·

n∏
i=1

S∏
si=1

πq(si)
si

]
− ln q(π) + c (4.34)

= ln

[
S∏
s=1

π
α∗m∗

s+
Pn

i=1 q(si)−1
s

]
− ln q(π) + c (4.35)

=⇒ q(π) = Dir(π |αm) , (4.36)

where each element of the variational parameterαm is given by:

αms = α∗m∗
s +

n∑
i=1

q(si) , (4.37)

which givesα = α∗+n. Thus the strength of our posterior belief in the meanm increases with

the amount of data in a very simple fashion. For this update we have takenm∗
s = 1/S from

(4.15), and used
∑S

s=1ms = 1.
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The variational posterior in the precision parameter for thelth column of thesth factor loading

matrixΛs,

∂F
∂q(νsl )

= ln p(νsl | a∗, b∗) +
∫
dΛs q(Λs) ln p(Λsl | νsl )− ln q(νsl ) + c (4.38)

= (a∗ − 1) ln νsl − b∗νsl +
1
2

p∑
q=1

[
ln νsl − νsl

〈
Λsql

2
〉
q(Λs)

]
− ln q(νsl ) + c , (4.39)

which implies that the precision is Gamma distributed:

q(νsl ) = Ga(νsl | a∗ +
p

2
, b∗ +

1
2

p∑
q=1

〈
Λsql

2
〉
q(Λs)

) = Ga(νsl | a, bsl ) , (4.40)

Note that these updates constitute the key steps for the ARD mechanisms in place over the

columns of the factor loading matrices.

The variational posterior over the centres and factor loadings of each analyser is obtained by

taking functional derivatives with respect toq(Λ̃):

∂F
∂q(Λ̃s)

=
∫
dνs q(νs) ln p(Λ̃s |νs,µ∗,ν∗)

+
n∑
i=1

q(si)
∫
dxi q(xi | si) ln p(yi | si,xi, Λ̃si ,Ψ)− ln q(Λ̃s) + c (4.41)

=
1
2

∫
dνs q(νs)

p∑
q=1

k∑
l=1

[
ln νsl − νsl Λsql

2
]

+
1
2

p∑
q=1

[
ln ν∗q − ν∗q

(
µsq − µ∗q

)2] − ln q(Λs,µs) + c

− 1
2

n∑
i=1

q(si)tr

Ψ−1

〈(
yi −

[
Λs µs

] [xi
1

])(
yi −

[
Λs µs

] [xi
1

])>〉
q(xi | si)


(4.42)

where were have moved from thẽΛ notation to using bothΛ andµ separately to express the

different prior form separately. In (4.42), there are two summations over the rows of the factor

loading matrix, and a trace term, which can also be written as a sum over rows. Therefore the

posterior factorises over the rows ofΛ̃s,

q(Λ̃s) =
p∏
q=1

q(Λ̃sq·) =
p∏
q=1

N(Λ̃sq· | Λ̃
s

q·, Γ̃
s
q) , (4.43)
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whereΛ̃sq· denotes the column vector corresponding to theqth row of Λ̃s, which hasks + 1

dimensions. To clarify the notation, this vector then has meanΛ̃
s

q·, and covariance matrix̃Γsq.
These variational posterior parameters are given by:

Γ̃sq =

[
Σq,s

ΛΛ
−1 Σq,s

Λµ
−1

Σq,s
µΛ

−1 Σq,s
µµ

−1

]−1

of size(ks + 1)× (ks + 1) (4.44)

Λ̃
s

q· =

[
Λsq·
µsq

]
of size(ks + 1)× 1 (4.45)

with

Σq,s
ΛΛ

−1 = diag 〈νs〉q(νs) + Ψ−1
qq

n∑
i=1

q(si)
〈
xixi>

〉
q(xi | si)

(4.46)

Σq,s
µµ

−1 = ν∗q + Ψ−1
qq

n∑
i=1

q(si) (4.47)

Σq,s
Λµ

−1 = Ψ−1
qq

n∑
i=1

q(si) 〈xi〉q(xi | si)
= Σq,s

µΛ
−1> (4.48)

Λsq· =
[
Γ̃sq
]
ΛΛ

(
Ψ−1
qq

n∑
i=1

q(si)yi,q 〈xi〉q(xi | si)

)
(4.49)

µsq =
[
Γ̃sq
]
µµ

(
Ψ−1
qq

n∑
i=1

q(si)yi,q + ν∗qµ
∗
q

)
. (4.50)

This somewhat complicated posterior is the result of maintaining a tractable joint over the cen-

tres and factor loadings of each analyser. Note that the optimal distribution for eachΛ̃s matrix

as a whole now has block diagonal covariance structure: even though eachΛ̃s is a(p× (ks+1))
matrix, its covariance only hasO(p(ks + 1)2) parameters — a direct consequence of the likeli-

hood factorising over the output dimensions.

The variational posterior for the hidden factorsxi, conditioned on the indicator variablesi, is

given by taking functional derivatives with respect toq(xi | si):

∂F
∂q(xi | si)

= q(si) ln p(xi) +
∫
dΛ̃si q(Λ̃si)q(si) ln p(yi | si,xi, Λ̃si ,Ψ)

− q(si) ln q(xi | si) + c (4.51)

= q(si)

−1
2
xi> I xi −

1
2
tr

Ψ−1

〈(
yi − Λ̃si

[
xi
1

])(
yi − Λ̃si

[
xi
1

])>〉
q(Λsi )


− ln q(xi | si)

]
+ c (4.52)
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which, regardless of the value ofq(si), produces the Gaussian posterior inxi for each setting of

si:

q(xi | s) = N(xi |xsi ,Σs) (4.53)

with [Σs]−1 = I +
〈
Λs>Ψ−1Λs

〉
q(Λ̃s)

(4.54)

xsi = Σs
〈
Λs>Ψ−1(yi − µs)

〉
q(Λ̃s)

(4.55)

Note that the covarianceΣs of the hidden state is the same for every data point, and is not a

function of the posterior responsibilityq(si), as in ordinary factor analysis — only themeanof

the posterior overxi is a function of the datayi. Note also that thexsi depend indirectly on the

q(si) through (4.49), which is the update for the factor loadings and centre position of analyser

s.

The variational posterior for the set of indicator variabless = {si}ni=1 is given by

∂F
∂q(si)

=
∫
dπ q(π) ln p(si |π)−

∫
dxi q(xi | si) ln q(xi | si)

+
∫
dΛ̃si q(Λ̃si)

∫
dxi q(xi | si) ln p(yi | si,xi, Λ̃si ,Ψ)− ln q(si) + c (4.56)

which, utilising a result of Dirichlet distributions given in appendixA, yields

q(si) =
1
Zi

exp

[
ψ(αmsi)− ψ(α) +

1
2

ln |Σsi |

− 1
2
tr

Ψ−1

〈(
yi − Λ̃si

[
xi
1

])(
yi − Λ̃si

[
xi
1

])>〉
q(Λ̃si )q(xi | si)

  ,

(4.57)

whereZi is a normalisation constant for each data point, such that
∑S

si=1 q(si) = 1, andψ(·)
is the digamma function.

By examining the dependencies of each variational posterior’s update rules on the other distribu-

tions, it becomes clear that certain update orderings are more efficient than others in increasing

F . For example, theq(xi | si), q(Λ̃) andq(si) distributions are highly coupled and it therefore

might make sense to perform these updates several times before updatingq(π) or q(ν).

4.2.5 Optimising the hyperparameters

The hyperparameters for a Bayesian MFA areΘ = (α∗m∗, a∗, b∗,µ∗,ν∗,Ψ).
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Beginning withΨ, we simply take derivatives ofF with respect toΨ−1, leading to:

∂F
∂Ψ−1

= −1
2

n∑
i=1

S∑
si=1

q(si)
∫
dΛ̃si q(Λ̃si)

∫
dxi q(xi | si)·

∂

∂Ψ−1

(yi − Λ̃si

[
xi
1

])>
Ψ−1

(
yi − Λ̃si

[
xi
1

])
+ ln |Ψ|

 (4.58)

=⇒ Ψ−1 = diag

 1
N

n∑
i=1

〈(
yi − Λ̃s

[
xi
1

])(
yi − Λ̃s

[
xi
1

])>〉
q(Λ̃s)q(si)q(xi | si)


(4.59)

where here we usediag as the operator which sets off-diagonal terms to zero.

By writing F as a function ofa∗ andb∗ only, we can differentiate with respect to these hyper-

parameters to yield the fixed point equations:

F(a∗, b∗) =
S∑
s=1

∫
dνs q(νs) ln p(νs | a∗, b∗) + c (4.60)

=
S∑
s=1

k∑
l=1

∫
dνsl q(ν

s
l ) [a∗ ln b∗ − ln Γ(a∗) + (a∗ − 1) ln νsl − b∗νsl ] + c , (4.61)

∂F
∂a∗

= 0 =⇒ ψ(a∗) = ln(b∗) +
1
Sk

S∑
s=1

k∑
l=1

〈ln νsl 〉q(νs
l ) (4.62)

∂F
∂b∗

= 0 =⇒ b∗−1 =
1

a∗Sk

S∑
s=1

k∑
l=1

〈νsl 〉q(νs
l ) . (4.63)

Solving for the fixed point amounts to setting the prior distribution’s first moment and first log-

arithmic moment to the respective averages of those quantities over the factor loading matrices.

The expectations for the gamma random variables are given in appendixA.

Similarly, by writingF as a function ofα∗ andm∗ only, we obtain

F(α∗,m∗) =
∫
dπ q(π) ln p(π |α∗m∗) (4.64)

=
∫
dπ q(π)

[
ln Γ(α∗)−

S∑
s=1

[ln Γ(α∗m∗
s)− (α∗m∗

s − 1) lnπs]

]
. (4.65)
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Bearing in mind thatq(π) is Dirichlet with parameterαm, and that we have a scaled prior

m∗
s = 1/S as given in (4.15), we can express the lower bound as a function ofα∗ only:

F(α∗) = lnΓ(α∗)− S ln Γ
(
α∗

S

)
+
(
α∗

S
− 1
) S∑
s=1

[ψ(αms)− ψ(α)] (4.66)

Taking derivatives of this quantity with respect toα∗ and setting to zero, we obtain:

ψ(α∗)− ψ(
α∗

S
) =

1
S

S∑
s=1

[ψ(α)− ψ(αms)] . (4.67)

The second derivative with respect toα∗ of (4.66) is negative forα∗ > 0, which implies the

solution of (4.67) is a maximum. This maximum can be found using gradient following tech-

niques such as Newton-Raphson. The update form∗ is not required, since we assume that the

prior over the mixing proportions is symmetric.

The update for the prior over the centres{µs}SS=1 of each of the factor analysers is given by

considering terms inF that are functions ofµ∗ andν∗:

F(µ∗,ν∗) =
∫
dµ q(µ) ln p(µ |µ∗,ν∗) (4.68)

=
1
2

S∑
s=1

∫
dµs q(µs)

[
ln |diag (ν∗)| − (µs − µ∗)>diag (ν∗) (µs − µ∗)

]
.

(4.69)

Taking derivatives with respect toµ∗ first, and thenν∗, equating each to zero yields the updates

µ∗ =
1
S

S∑
s=1

〈µs〉q(µs) (4.70)

ν∗ = [ν∗1 , . . . , ν
∗
p ], with ν∗q =

1
S

S∑
s=1

〈
(µsq − µ∗q)(µsq − µ∗q)

〉
q(µs)

, (4.71)

where the update forν∗ uses the already updatedµ∗.

4.3 Model exploration: birth and death

We already have an ARD mechanism in place to discover the local dimensionality for each

analyser in the mixture, as part of the inference procedure over the precisionsν. However we

have not yet addressed the problem of inferring the number of analysers.

The advantage of the Bayesian framework is that different model structures can be compared

without having to rely on heuristic penalty or cost functions to compare their complexities;
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ideally different model structuresm andm′ should be compared using the difference of log

marginal likelihoodsL(m) andL(m′). In this work we useF(m) andF(m′) as guides to the

intractable log marginal likelihoods.

This has advantages over unpenalised maximum likelihood methods where, for example, in the

split and merge algorithm described inUeda et al.(2000) changes to model complexity are

limited to simultaneous split and merge operations such that the number of components in the

mixture remain the same. Whilst this approach is unable to explore differing sizes of models,

it is successful in avoiding some local maxima in the optimisation process. For example, a

Gaussian component straddled between two distinct clusters of data is an ideal candidate for

a split operation — unfortunately their method requires that this split be accompanied with a

merging of two other components elsewhere to keep the number of components fixed.

In our Bayesian model, though, we are allowed to propose any changes to the number of com-

ponents in the mixture. We look at the simple cases of incremental and decremental changes to

the total number,S, since we do not expect wild changes to the model structure to be an effi-

cient method for exploring the space. This is achieved throughbirth anddeath‘moves’, where

a component is removed from or introduced into the mixture model. This modified model is

then trained further as described in section4.2.4until a measure of convergence is reached (see

below), at which point the proposal is accepted or rejected based on the change inF . Another

proposal is then made and the procedure repeated, up to a point when no further proposals are

accepted. In this model (although not in a general application) component death occurs natu-

rally as a by-product of the optimisation; the following sections explain the death mechanism,

and address some interesting aspects of the birth process, which we have more control over.

Our method is similar to that of Reversible Jump Markov chain Monte Carlo (RJMCMC)

(Green, 1995) applied to mixture models, where birth and death moves can also be used to

navigate amongst different sized models (Richardson and Green, 1997). By sampling in the full

space of model parameters for all structures, RJMCMC methods converge to the exact poste-

rior distribution over structures. However, in order to ensure reversibility of the Markov chain,

complicated Metropolis-Hastings acceptance functions need to be derived and evaluated for

each proposal from one parameter subspace to another. Moreover, the method suffers from the

usual problems of MCMC methods, namely difficulty in assessing convergence and long simu-

lation run time. The variational Bayesian method attempts to estimate the posterior distribution

directly, not by obtaining samples of parameters and structures, but by attempting to directly

integrate over the parameters using a lower bound arrived at deterministically. Moreover, we

can obtain a surrogate for the posterior distribution over model structures,p(m |y), which is

not represented as some large set of samples, but is obtained using a quantity proportional to

p(m) exp{F(m)}, whereF(m) is the optimal (highest) lower bound achieved for a modelm

of particular structure.
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4.3.1 Heuristics for component death

There are two routes for a component death occurring in this model, the first is by natural causes

and the second through intervention. Each is explained in turn below.

When optimisingF , occasionally one finds that for some mixture components′:
∑n

i=1 q(s
′
i) =

0 (to machine precision), even though the component still has non-zero prior probability of

being used in the mixture,p(s′i) =
∫
dπp(π)p(s′i |π). This is equivalent to saying that it has

no responsibility for any of the data, and as a result its parameter posterior distributions have

defaulted exactly to the priors. For example, the mean location of the centre of the analyser

component is at the centre of the prior distribution (this can be deduced from examining (4.50)

for the case ofq(s′i) = 0 ∀ i), and the factor loadings have mean zero and high precisions

νs
′
, referring to (4.40). If the mean of the prior over analyser centres is not located near data

(see next removal method below), then this component is effectively redundant (it cannot even

model data with the uniquenesses matrixΨ, say), and can be removed from the model. How

does the removal of this component affect the lower bound on the marginal likelihood,F? Since

the posterior responsibility of the component is zero it does not contribute to the last term of

(4.29), which sums over the data,n. Also, since its variational posteriors over the parameters

are all in accord with the priors, then the KL divergence terms in (4.29) are all zero,exceptfor

the very first term which is the negative KL divergence between the variational posterior and

prior distribution over the mixing proportionsπ. Whilst the removal of the component leaves

all other terms inF unchanged, not having this ‘barren’ dimensions′ to integrate over should

increase this term.

It seems counter-intuitive that the mean of the prior over factor analyser centres might be far

from data, as suggested in the previous paragraph, given that the hyperparameters of the prior

are updated to reflect the position of the analysers. However, there are cases in which the dis-

tribution of data is ‘hollow’ (see, for example, the spiral data set of section4.5.3), and in this

case redundant components are very easily identified with zero responsibilities, and removed.

If the redundant components default to a position which is close to data, their posterior respon-

sibilities may not fall to exactly zero, being able to still use the covariance given inΨ to model

the data. In this case a more aggressive pruning procedure is required, where we examine the

change inF that occurs after removing a component we suspect is becoming, or has become,

redundant. We gain by not having to code its parameters, but we may lose if the data in its locale

are being uniquely modelled by it, in which caseF may drop. IfF should drop, there is the

option of continuing the optimisation to see ifF eventually improves (see next section on birth

processes), and rejecting the removal operation if it does not. We do not implement this ‘testing’

method in our experiments, and rely solely on the first method and remove components once

their total posterior responsibilities fall below a reasonable level (in practice less than one data

point’s worth).
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This mechanism for (automatic) removal of components is useful as it allows the data to dictate

how many mixture components are required. However we should note that if the data is not

distributed as a mixture of Gaussian components, the size of the data set will affect the returned

number of components. Thus the number of components should not be taken to mean the

number of ‘clusters’.

4.3.2 Heuristics for component birth

Component birth does not happen spontaneously during learning, so we have to introduce a

heuristic. Even though changes in model structure may be proposed at any point during learning,

it makes sense only to do so when learning has plateaued, so as to exploit (in terms ofF) the

current structure to the full. We define anepochas that period of learning beginning with a

proposal of a model alteration, up to the point of convergence of the variational learning rules.

One possible heuristic for deciding at which point to end an epoch can be constructed by looking

at the rate of change of the lower bound with iterations of variational EM. If∆F = F (t)−F (t−1)

falls below a critical value then we can assume that we have plateaued. However it is not easy to

define such simple thresholds in a manner that scales appropriately with both model complexity

and amount of data. An alternative (implemented in the experiments) is to examine the rate of

change of the posterior class-conditional responsibilities, as given in theq(si) matrix (n × S).
A suitable function of this sort can be such that it does not depend directly on the data size,

dimensionality, or current model complexity. In this work we consider the end of an epoch to be

when therate of change of responsibilityfor each analyser, averaged over all data, falls below a

tolerance — this has the intuitive interpretation that the components are no longer ‘in flux’ and

are modelling their data as best they can in that configuration. We shall call this quantity the

agitation:

agitation(s)(t) ≡
∑n

i=1

q(si)(t) − q(si)(t−1)
∑n

i=1 q(si)(t)
, (4.72)

where(t) denotes the iteration number of VBEM. We can see that the agitation of each analyser

does not directly scale with number of analysers, data points, or dimensionality of the data. Thus

a fixed tolerance for this quantity can be chosen that is applicable throughout the optimisation

process. We should note that this measure is one of many possible, such as using squared norms

etc.

A sensible way to introduce a component into the model is to create that component in the

image of an existing component, which we shall call theparent. Simply reproducing the exact

parameters of the parent does not suffice as the symmetry of the resulting pair needs to be broken

for them to model the data differently.
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One possible approach would be to remove the parent component,s′, andreplaceit with two

components, the ‘children’, with their means displaced symmetrically about the parent’s mean,

by a vector sampled from the parent’s distribution, its covariance ellipsoid given byΛs
′
Λs

′>
+Ψ.

We call this aspatialsplit. This appeals to the notion that one might expect areas of data that

are currently being modelled by one elongated Gaussian to be modelled better by two, displaced

most probably along the major axis of variance of that data. However this approach is hard to

fine tune so that it scales well with the data dimensionality,p. For example, if the displacement

is slightly too large then it becomes very likely in high dimensions that both children model the

data poorly and die naturally as a result. If it is too small then the components will diverge very

slowly.

Again appealing to the class-conditional responsibilities for the data, we can define a procedure

for splitting components that is not directly a function of the dimensionality, or any length scale

of the local data. The approach taken in this work uses a partition of the parent’s posterior

responsibilities for each of the data,q(si = s′), along a directionds
′
sampled from the parent’s

covariance ellipsoid. Those data having a positive dot product with the sampled direction donate

their responsibilities to one childsa, and vice-versa for the other childsb. Mathematically, we

sample a directiond and define an allocation indicator variable for each data point,

d ∼ N(d | 〈µs′〉q(µs′ ), 〈Λ
s′Λs

′>〉q(Λs′ ) + Ψ) (4.73)

ri =

1 if (yi − µs
′
)>d ≥ 0

0 if (yi − µs
′
)>d < 0

for i = 1, . . . , n . (4.74)

We then set the posterior probabilities inq(si) to reflect these assignments, introducing ahard-

nessparameterαh, ranging from.5 to 1:

q(sai ) = q(s′i) [αhri + (1− αh)(1− ri)] (4.75)

q(sbi) = q(s′i) [(1− αh)ri + αh(1− ri)] (4.76)

Whenαh = 1, all the responsibility is transferred to the assigned child, and whenαh = .5 the

responsibility is shared equally. In the experiments in this chapter we useαh = 1.

The advantage of this approach is that the birth is made inresponsibilityspace rather than

data-space, and is therefore dimension-insensitive. The optimisation then continues, with thes′

analyser removed and thesa andsb analysers in its place. The first variational updates should

be for q(Λs
a
) andq(Λs

b
) since these immediately reflect the change (note that the update for

q(xi) is not a function of the responsibilities — see equation (4.53)).

The mechanism that chooses which component is to be the parent of a pair-birth operation must

allow the space of models to be explored fully. A simple method would be to pick the component

at random amongst those present. This has an advantage over a deterministic method, in that
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the latter could preclude some components from ever being considered. Interestingly though,

there is information inF that can be used to guide the choice of component to split: with

the exception of the first term in equation (4.29), the remaining terms can be decomposed into

component-specific contributions,Fs. An ordering for parent choice can be defined usingFs,
with the result that is it possible to concentrate attempted births on those components that are

not currently modelling their data well. This mirrors the approach taken inUeda et al.(2000),

where the criterion was the (KL) discrepancy between each analyser’s local density model and

the empirical density of the data.

If, at the end of an epoch, we reject the proposed birth so returning to the original configuration,

we may either attempt to split the same component again, but with a new randomly sampled di-

rection, or move on to the next ‘best’ component in the ordering. We use the following function

to defineFs, from which the ordering is recalculated after every successful epoch:

Fs = F({Q}, α∗m∗, a∗, b∗,µ∗,ν∗,Ψ |Y )

=
∫
dνs q(νs)

[
ln
p(νs | a∗, b∗)

q(νs)
+
∫
dΛ̃s q(Λ̃s)

p(Λ̃s |νs,µ∗,ν∗)
q(Λ̃s)

]

+
1∑n

i=1 q(si)

n∑
i=1

q(si)
[∫

dπ q(π) ln
p(si |π)
q(si)

+
∫
dxi q(xi | si) ln

p(xi)
q(xi | si)

+
∫
dΛ̃s q(Λ̃s)

∫
dxi q(xi | si) ln p(yi | si,xi, Λ̃s,Ψ)

]
(4.77)

This has the intuitive interpretation as being the likelihood of the data (weighted by its data

responsibilities) under analysers, normalised by its overall responsibility, with the relevant

(KL) penalty terms as inF . Those components with lowerFs are preferentially split. The

optimisation completes when all existing mixture components have been considered as parents,

with no accepted epochs.

Toward the end of an optimisation, the remaining required changes to model structure are mainly

local in nature and it becomes computationally wasteful to update the parameters of all the com-

ponents of the mixture model at each iteration of the variational optimisation. For this reason

only those components whose responsibilities are in flux (to some threshold) are updated. This

partial optimisation approach still guarantees an increase inF , as we simply perform updates

that guarantee to increase parts of theF term in4.29.

It should be noted that no matter which heuristics are used for birth and death, ultimately the

results are always compared in terms ofF , the lower bound on the log marginal likelihood

L. Therefore different choices of heuristic can only affect theefficiencyof the search over

model structures and not the theoretical validity of the variational approximation. For example,

although it is perfectly possible to start the model with many components and let them die, it
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is computationally more efficient and equally valid to start with one component and allow it to

spawn more when necessary.

4.3.3 Heuristics for the optimisation endgame

In the previous subsection we proposed a heuristic for terminating the optimisation, namely

that every component should be unsuccessfully split a number of times. However, working in

the space of components seems very inefficient. Moreover, there are several pathological birth-

death scenarios which raise problems when counting the number of times each component has

been split; for example, the identities of nearby components can be switched during an epoch

(parent splits into two children, first child usurps an existing other component and models its

data, whilst that component switches to model the old parent’s data, and the second child dies).

One possible solution (personal communication, Y. Teh) is based on a responsibility accumula-

tion method. Whenever a components is chosen for a split, we store its responsibility vector

(of lengthn) for all the data pointsq(s) = [q(s1) q(s2) . . . q(sn)], and proceed with the op-

timisation involving its two children. At the end of the epoch, if we have not increasedF ,

we addq(s) to a running total of ‘split data’ responsibilities,t = (t1, t2, . . . , tn). That is

∀i : ti ← min(ti + q(si), tmax), wheretmax is some saturation point. If by the end of the epoch

we have managed to increaseF , then the accumulatort is reset to zero for every data point.

From this construction we can derive a stochastic procedure for choosing which component to

split, using the softmax of the quantityc(s) = β
∑n

i=1(tmax− ti)q(si). If c(s) is large for some

components, then the data it is responsible for has not ‘experienced’ many birth attempts, and

so it should be a strong candidate for a split. Hereβ ≥ 0 is a temperature parameter to be set

as we wish. Asβ tends to infinity the choice of component to split becomes deterministic, and

is based on which has least responsibility overlap with already-split data. Ifβ is very small

(but non-zero) the splits become more random. Whatever setting ofβ, attempted splits will

be automatically focused on those components with more data and unexplored regions of data

space. Furthermore, a termination criterion is automatic: continue splitting components until

every entry of thet vector has reached saturation — this corresponds to splitting everydata

point a certain number of times (in terms of its responsibility under the split parent), before we

terminate the entire optimisation. This idea was conceived of only after the experiments were

completed, and so has not been thoroughly investigated.

4.4 Handling the predictive density

In this section we set about trying to get a handle on the predictive density of VBMFA models

using bounds on approximations (in section4.7.1 we will show how to estimate the density
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using sampling methods). In order to perform density estimation or classification of a new test

example, we need to have access to the predictive density

p(y′ |y) =
p(y′,y)
p(y)

=
∫
dθ p(θ |y)p(y′ |θ) (4.78)

wherey′ is a set of test examplesy′ = {y′1, . . . ,y′n′}, andy is the training data. This quantity

is simply the probability of observing the test examples for a particular setting of the model

parameters, averaged over the posterior distribution of the parameters given a training set. Un-

fortunately, the very intractability of the marginal likelihood in equation (4.14) means that the

predictive density is also intractable to compute exactly.

A poor man’s approximation uses the variational posterior distribution in place of the posterior

distribution:

p(y′ |y) ≈
∫
dθ q(θ)p(y′ |θ) . (4.79)

However we might expect this to overestimate the density ofy′ in typical regions of space (in

terms of where the training data lie), as the variational posterior tends to over-neglect areas of

low posterior probability in parameter space. This is a result of the asymmetric KL divergence

measure penalty in the optimisation process.

Substituting the form for MFAs given in (4.14) into (4.79)

p(y′ |y) ≈
∫
dπ

∫
dΛ̃ q(π, Λ̃)

[
n′∏
i=1

S∑
si=1

p(si |π)p(y′i | si, Λ̃,Ψ)

]
, (4.80)
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which is still intractable for the same reason that the marginal likelihoods of training set were

so. We can lower bound the log of the predictive density using variational distributions over the

hidden variables corresponding to each test case:

ln p(y′ |y) ≈ ln
∫
dπ

∫
dΛ̃ q(π, Λ̃)

[
n′∏
i=1

S∑
si=1

p(si |π)p(y′i | si, Λ̃,Ψ)

]
(4.81)

≥
n′∑
i=1

∫
dπ

∫
dΛ̃ q(π, Λ̃)

[
ln

S∑
si=1

p(si |π)p(y′i | si, Λ̃,Ψ)

]
(4.82)

=
n′∑
i=1

∫
dπ q(π)

∫
dΛ̃ q(Λ̃)

[
ln

S∑
si=1

q(si)
p(si |π)p(y′i | si, Λ̃,Ψ)

q(si)

]
(4.83)

≥
n′∑
i=1

∫
dπ q(π)

∫
dΛ̃ q(Λ̃)

S∑
si=1

q(si) ln
p(si |π)p(y′i | si, Λ̃,Ψ)

q(si)
(4.84)

≥
n′∑
i=1

S∑
si=1

q(si)
[∫

dπ q(π) ln
p(si |π)
q(si)

+
∫
dxi q(xi | si) ln

p(xi)
q(xi | si)

+
∫
dΛ̃si q(Λ̃si)

∫
dxi q(xi | si) ln p(y′i | si,xi, Λ̃si ,Ψ)

]
. (4.85)

The first inequality is a simple Jensen bound, the second is another which introduces a set

of variational distributionsq(si), and the third a further set of distributions over the hidden

variablesq(xi | si). Note that these distributions correspond to thetestdata, indexed fromi =
1, . . . , n′. This estimate of the predictive density is then very similar to the lower bound of

the marginal likelihood of the training data (4.29), except that the training datayi has been

replaced with the test datay′i, and the KL penalty terms on the parameters have been removed.

This carries the interpretation that the distribution over parameters of the model is decided upon

and fixed (i.e. the variational posterior), and we simply need to explain the test data under this

ensemble of models.

This lower bound on the approximation to the predictive density can be optimised in justtwo

updatesfor each test point. First, infer the distributionq(xi | si) for each test data point, using

the analogous form of update (4.53). Then update the distributionq(si) based on the resulting

distributions overq(xi | si) using the analogous form of update (4.57). Since theq(xi | si) up-

date was not a function ofq(si), we do not need to iterate the optimisation further to improve

the bound.

4.5 Synthetic experiments

In this section we present three toy experiments on synthetic data which demonstrate certain

features of a Bayesian mixture of factor analysers. The first experiment shows the ability of the
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algorithm’s birth and death processes to find the number of clusters in a dataset. The second

experiment shows more ambitiously how we can simultaneously recover the number of clusters

and their dimensionalities, and how the complexity of the model depends on the amount of data

support. The last synthetic experiment shows the ability of the model to fit a low dimensional

manifold embedded in three-dimensional space.

4.5.1 Determining the number of components

In this toy example we tested the model on synthetic data generated from a mixture of 18 Gaus-

sians with 50 points per cluster, as shown in figure4.3(a). The algorithm was initialised with a

single analyser component positioned at the mean of the data. Birth proposals were made using

spatial splits (as described above). Also shown is the progress of the algorithm after 7, 14, 16

and 22 accepted epochs (figures4.3(b)-4.3(e)). The variational algorithm has little difficulty

finding the correct number of components and the birth heuristics are successful at avoiding

local maxima.

After finding the 18 Gaussians repeated splits are attempted and mostly rejected. Those epochs

that are accepted always involve the birth of a component followed at some point by the death

of another component, such that the number of components remain 18; the increase inF over

these epochs is extremely small, usually due to the refinement of other components.

4.5.2 Embedded Gaussian clusters

In this experiment we examine the ability of the Bayesian mixture of factor analysers to auto-

matically determine the local dimensionality of high dimensional data. We generated a synthetic

data set consisting of 300 data points drawn from each of 6 Gaussian clusters with intrinsic di-

mensionalities (7 4 3 2 2 1), embedded at random orientations in a 10-dimensional space. The

means of the Gaussians were drawn uniformly under[0, 3] in each of the data dimensions, all

Gaussian variances set to 1, and sensor noise of covariance.01 added in each dimension.

A Bayesian MFA was initialised with one mixture component centred about the data mean, and

trained for a total of 200 iterations of variational EM with spatial split heuristics for the birth

proposals. All the analysers were created with a maximum dimensionality of 7. The variational

Bayesian approach correctly inferred both the number of Gaussians and their intrinsic dimen-

sionalities, as shown in figure4.4. The dimensionalities were determined by examining the

posterior distributions over the precisions of each factor analyser’s columns, and thresholding

on the mean of each distribution.

We then varied the number of data points in each cluster and trained models on successively

smaller data sets. Table4.1 shows how the Bayesian MFA partitioned the data set. With large
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(a) The data, consisting of 18 Gaussian clus-
ters.

(b) After 7 accepted epochs. (c) After 14 accepted epochs.

(d) After 16 accepted epochs. (e) After 22 accepted epochs.

Figure 4.3: The original data, and the configuration of the mixture model at points during the
optimisation process. Plotted are the 2 s.d. covariance ellipsoids for each analyser in the mix-
ture. To be more precise, the centre of the ellipsoid is positioned at the mean of the variational
posterior over the analyser’s centre, and each covariance ellipsoid is the expected covariance
under the variational posterior.
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Figure 4.4: Learning the local intrinsic dimensionality. The maximum dimensionality of each
analyser was set to 7. Shown are Hinton diagrams for the means of the factor loading matrices
{Λs}Ss=1 for each of the 6 components, after training on the data set with 300 data points per
cluster. Note that empty columns correspond to unused factors where the mass ofq(νsl ) is at
very high values, so the learnt dimensionalities are (7,2,2,4,3,1).

number of points 

  per cluster		 1	 7	 4	 3	 2	 2



	   8		  	       2			       1

	   8		      1			      2

	  16		 1		       4			 2

	  32		 1	 6	 3	 3	 2	 2

	  64		 1	 7	 4	 3	 2	 2

	 128		 1	 7	 4	 3	 2	 2

intrinsic dimensionalities

Table 4.1: The recovered number of analysers and their intrinsic dimensionalities. The numbers
in the table are the dimensionalities of the analysers and the boxes represent analysers modelling
data from more than one cluster. For a large number of data points per cluster (≥ 64), the
Bayesian MFA recovers the generative model. As we decrease the amount of data, the model
reduces the dimensionality of the analysers and begins to model data from different clusters
with the same analyser. The two entries for 8 data points are two observed configurations that
the model converged on.

amounts of data the model agrees with the true model, both in the number of analysers and their

dimensionalities. As the number of points per cluster is reduced there is insufficient evidence to

support the full intrinsic dimensionality, and with even less data the number of analysers drop

and they begin to model data from more than one cluster.

4.5.3 Spiral dataset

Here we present a simple synthetic example of how Bayesian MFA can learn locally linear

models to tile a manifold for globally non-linear data. We used the dataset of 800 data points

from a noisy shrinking spiral, as used inUeda et al.(2000), given by

yi = [(13− 0.5ti) cos ti, −(13− 0.5ti) sin ti, ti)] + wi (4.86)

where ti ∈ [0, 4π] , wi ∼ N(0,diag ([.5 .5 .5])) (4.87)
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(a) An elevated view of the spiral data set (see
text for reference).

(b) The same data set viewed perpendicular to
the third axis.

Figure 4.5: The spiral data set as used inUeda et al.(2000). Note that the data lie on a 1-
dimensional manifold embedded non-linearly in the 3-dimensional data space.

where the parametert determines the point along the spiral in one dimension. The spiral is

shown in figure4.5, viewed from two angles. Note the spiral data set is really a 1-dimensional

manifold embedded non-linearly in the 3-dimensional data space and corrupted by noise.

As before we initialised a variational Bayesian MFA model with a single analyser at the mean

of the data, and imposed a maximum dimensionality ofk = 2 for each analyser. For this exper-

iment, as for the previous synthetic experiments, the spatial splitting heuristic was used. Again

local maxima did not pose a problem and the algorithm always found between 12-14 Gaussians.

This result was repeatable even when the algorithm was initialised with 200 randomly posi-

tioned analysers. The run starting from a single analyser took about 3-4 minutes on a 500MHz

Alpha EV6 processor. Figure4.6shows the state of the algorithm after 6, 9, 12 and 17 accepted

epochs.

Figure4.7shows the evolution of the lower bound used to approximate the marginal likelihood

of the data. Thick and thin lines in the plot correspond to accepted and rejected epochs, respec-

tively. There are several interesting aspects one should note. First, at the beginning of most of

the epochs there is a drop inF corresponding to a component birth. This is because the model

now has to code the parameters of the new analyser component, and initially the model is not

fit well to the data. Second, most of the compute time is spent on accepted epochs, suggesting

that our heuristics for choosing which components to split, and how to split them, are good.

Referring back to figure4.6, it turns out that it is often components that are straddling arms of

the spiral that have lowFs, as given by (4.77), and these are being correctly chosen for splitting

ahead of other components modelling their local data better (for example, those aligned on the

spiral). Third, after about 1300 iterations, most of the proposed changes to model structure are

rejected, and those that are accepted give only a small increase inF .
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(a) After 6 accepted epochs. (b) After 9 accepted epochs.

(c) After 12 accepted epochs. (d) After 17 accepted epochs.

Figure 4.6: The evolution of the variational Bayesian MFA algorithm over several epochs.
Shown are the 1 s.d. covariance ellipses for each analyser: these are theexpectedcovariances,
since the analysers have distributions over their factor loadings. After 17 accepted epochs the
algorithm has converged to a solution with 14 components in the mixture. Local optima, where
components are straddled across two arms of the spiral (see(b) for example), are successfully
avoided by the algorithm.

0 500 1000 1500 2000
-7800

-7600

-7400

-7200

-7000

-6800

-6600

-6400

Figure 4.7: Evolution of the lower boundF , as a function of iterations of variational Bayesian
EM, for the spiral problem on a typical run. Drops inF constitute component births. The thick
and thin lines represent whole epochs in which a change to model structure was proposed and
then eventually accepted or rejected, respectively.
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Figure 4.8: Some examples of the digits 0-9 in the training and test data sets. Each digit is8× 8
pixels with gray scale 0 to 255. This data set was normalised before passing to VBMFA for
training.

4.6 Digit experiments

In this section we present results of using variational Bayesian MFA to learn both supervised

and unsupervised models of images of8 × 8 digits taken from the CEDAR database (Hull,

1994). This data set was collected from hand-written digits from postal codes, and are labelled

with the classes 0 through to 9. Examples of these digits are given in figure4.8. The entire data

set was normalised before being passed to the VBMFA algorithm, by first subtracting the mean

image from every example, and then rescaling each individual pixel to have variance 1 across

all the examples. The data set was then partitioned into 700 training and 200 test examples for

each digit. Based on density models learnt from the digits, we can build classifiers for a test

data set. Histograms of the pixel intensities after this normalisation are quite non-Gaussian, and

so factor analysis is perhaps not a good model for this data. Before normalising, we could have

considered taking the logarithm or some other non-linear transformation of the intensities to

improve the non-Gaussianity, but this was not done.

4.6.1 Fully-unsupervised learning

A singleVBMFA model was trained on 700 examples of every digit 0-9, using birth proposals

and death processes as explained in section4.3. The maximum dimensionality for each analyser

kmax was set to 6, and the number of components initialised to be 1. Responsibility-based splits

were used for the birth proposals (section4.3.2) as we would expect these to perform better than

spatial-splits given the high dimensionality of the data (using the fraction of accepted splits as

a criterion, this was indeed confirmed in preliminary experiments with high dimensional data

sets). The choice of when to finish an epoch of learning was based on the rate of change of the
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2 4 3 4 3 3

3 5 5 2 4

1 5 3 4 3 4 3 3 2 2 1 4 5 5 5 4 4 5 5 5

5 4 5 4 5 4 5 4 5

3 4 5 5 4 2 4 5 3 2

2 4 4 5 5 4 3 5

5 5 3 4 4 4 4 4 4

3 5 5 3 4 3 4 3

4 4 5 3 4 5 5 4 4

4 5 3 5 3 5 4 3

Figure 4.9: A typical model learnt by fully-unsupervised VBMFA using the birth and death
processes. Each digit shown represents an analyser in the mixture, and the pixel intensities
are the means of the posterior distribution over the centre of the analyser,〈µs〉q(µs). These
means can be thought of astemplates. These intensities have been inversely-processed to show
pixel intensities with the same scalings as the training data. The number to the right of each
image is that analyser’s dimensionality. In this experiment the maximum dimensionality of the
latent space was set tokmax = 6. As can be seen from these numbers, the highest required
dimensionality was 5. The within-row ordering indicates the creation order of the analysers
during learning, and we have arranged the templates across different rows according to the 10
different digits in4.8. This was done by performing a sort of higher-level clustering which
the unsupervised algorithm cannot in fact do. Even though the algorithm itself was not given
the labels of the data, we as experimenters can examine the posterior responsibilities of each
analyser for every item in the training set (whose labels we have access to), and find the majority
class for that analyser, and then assign that analyser to the row corresponding to the class label.
This is purely a visual aid — in practice if the data is not labelled we have no choice but to call
each mixture component in the model a separate class, and have the mean of each analyser as
the class template.

component posterior responsibilities (section4.3.2). The optimisation was terminated when no

further changes to model structure managed to increaseF (based on three unsuccessful splits

for every component in the model).

Figure4.9 shows the final model returned from the optimisation. In this figure, each row cor-

responds to a different digit, and each digit image in the row corresponds to the mean of the

posterior over the centre position of each factor analyser component of the mixture. We refer to

these as ‘templates’ because they represent the mean of clusters of similar examples of the same

digit. The number to the right of each template is the dimensionality of the analyser, determined

from examining the posterior over the precisions governing that factor loading matrix’s columns

q(νs) = [q(νs1), . . . , q(ν
s
kmax

)].

For some digits the VBMFA needs to use more templates than others. These templates represent

distinctively different styles for the same digit. For example, some 1’s are written slanting to the

left and others to the right, or the digit 2 may or may not contain a loop. These different styles

are in very different areas of the high dimensional data space; so each template explains all the
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Figure 4.10: Confusion tables for digit classification on the training (700) and test (200) sets.
The mixture of factor analysers with 92 components obtains 8.8% and 7.9% training and test
classification errors respectively.

examples of that style that can be modelled with a linear transformation of the pixel intensities.

The number of dimensions of each analyser component for each digit template corresponds very

roughly to the number of degrees of freedom there are for that template, and the degree with

which each template’s factor analyser’s linear transformation can extrapolate to the data between

the different templates. By using a few linear operations on the pixel intensities of the template

image, the analyser can mimic small amounts of shear, rotation, scaling, and translation, and so

can capture the main trends in its local data.

When presented with a test example digit from 0-9, we can classify it by asking the model which

analyser has the highest posterior responsibility for the test example (i.e. a hard assignment), and

then finding which digit class that analyser is clustered into (see discussion above). The result

of classifying the training and test data sets are shown in figure4.10, in confusion matrix form.

Each row corresponds to the true class labelling of the digit, and each column corresponds to the

digit cluster that the example was assigned to, via the most-responsible analyser in the trained

VBMFA model. We see that, for example, about1/7 of the training data 8’s are misclassified as

a variety of classes, and about1/7 of the training data 7’s are misclassified as 9’s (although the

converse result is not as poor). These trends are also seen in the classifications of the test data.

The overall classification performance of the model was 91.2% and 92.1% for the training and

test sets respectively. This can be compared to simpleK-means (using an isotropic distance

measure on the identically pre-processed data), with the number of clusters set to the same as

inferred in the VBMFA optimisation. The result is thatK-means achieves only 87.8% and

86.7% accuracy respectively, despite being initialised with part of the VB solution.
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Computation time

The full optimisation for the VBMFA model trained on all 7000 64-dimensional digit examples

took approximately 4 CPU days on a Pentium III 500 MHz laptop computer. We would expect

the optimisation to take considerably less time if any of the following heuristics were employed.

First, one could use partial VBEM updates forF to update the parameter distributions of only

those components that are currently in flux; this corresponds to assuming that changing the

modelling configuration of a few analysers in one part of the data space often does not affect the

parameter distributions of the overwhelming majority of remaining analysers. In fact, partial

updates can be derived that are guaranteed to increaseF , simply by placing constraints on the

posterior responsibilities of the fixed analysers. Second, the time for each iteration of VBEM can

be reduced significantly by removing factors that have been made extinct by the ARD priors; this

can even be done prematurely if it increasesF . In the implementation used for these experiments

all analysers always held factor loading matrix sizes of(p × kmax), despite many of them having

far fewer active factors.

4.6.2 Classification performance of BIC and VB models

In these experiments VBMFA was compared to a BIC-penalised maximum likelihood MFA

model, in a digit classification task. Each algorithm learnt separate models for each of the

digits 0-9, and attempted to classify a data set of test examples based on the predictive densities

under each of the learnt digit models. For the VB model, computing the predictive density is

intractable (see section4.4) and so an approximation is required. The experiment was carried

out for 7 different training data set sizes ranging from(100, 200, . . . 700), and repeated 10 times

with different parameter initialisations and random subsets of the full 700 images for each digit.

The maximum dimensionality of any analyser component for BIC or VB was set tokmax = 5.

This corresponds to the maximum dimensionality required by the fully-unsupervised VB model

in the previous section’s experiments. For the BIC MFA implementation there is no mechanism

to prune the factors from the analysers, so all 5 dimensions in each BIC analyser are used all the

time.

The same heuristics were used for model search in both types of model, as described in section

4.3. In order to compute a component split ordering, the ML method used the empirical KL

divergence to measure the quality of each analyser’s fit to its local data (seeUeda et al., 2000,

for details). The criterion for ending any particular epoch was again based on the rate of change

of component posterior responsibilities. The termination criterion for both algorithms was, as

before, three unsuccessful splits of every mixture component in a row. For the ML model,

a constraint had to be placed on theΨ matrix, allowing a minimum variance of10−5 in any

direction in the normalised space in which the data has identity covariance. This constraint was
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% correct test classifications
n BIC MLMFA VBMFA

100 88.8± .3 89.3± .5
200 90.6± .4 91.9± .3
300 91.1± .3 92.7± .2
400 91.6± .3 92.8± .2
500 92.2± .3 92.9± .2
600 93.0± .2 93.3± .1
700 93.2± .2 93.4± .2

Table 4.2: Test classification performance of BIC ML and VB mixture models with increasing
data. The standard errors are derived from 10 repetitions of learning with randomly selected
training subsets.

introduced to prevent the data likelihood from diverging as a result of the covariance collapsing

to zero about any data points.

For the BIC-penalised likelihood, the approximation to the marginal likelihood is given by

ln p(y) ≈ ln p(y |θML )− D

2
lnn (4.88)

wheren is the number of training data (which varied from 100 to 700), andD is the number of

degrees of freedom in an MFA model withS analysers with dimensionalities{ks}Ss=1 (seed(k)
of equation (4.5)), which we approximate by

D = S − 1 + p+
S∑
s=1

[
p+ pks −

1
2
ks(ks − 1)

]
. (4.89)

This quantity is derived from:S − 1 degrees of freedom in the prior mixture proportionsπ,

the number of parameters in the output noise covariance (constrained to be diagonal),p, and the

degrees of freedom in the mean and factor loadings of each analyser component. Note thatD is

only an approximation to the number of degrees of freedom, as discussed in section4.1.1.

The results of classification experiments for BIC ML and VB are given in table4.2. VB consis-

tently and significantly outperforms BIC, and in fact surpasses the 92.1% test error performance

of the fully-unsupervised VB model on 700 training points. The latter comment is not surpris-

ing given that this algorithm receives labelled data. We should note that neither method comes

close to state-of-the-art discriminative methods such as support vector machines and convolu-

tional networks, for exampleLeNet(LeCun and Bengio, 1995). This may indicate limitations

of the mixture of factor analysers as a generative model for digits.

Figure 4.11 displays the constituents of the mixture models for both BIC and VB for train-

ing set sizes{100,200,. . . ,700}. On average, BIC ML tends to use models with slightly more

components than does VB, which does not coincide with the common observation that the BIC
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Figure 4.11: The average number of components used for each digit class by the(a) BIC and(b)
VB models, as the size of the training set increases from 100 to 700 examples. As a visual aid,
alternate digits are shaded black and white. The white bottom-most block in each column corre-
sponds to the ‘0’ digit and the black top-most block to the ‘9’ digit. Note that BIC consistently
returns a greater total number of components than VB (see text).

penalty over-penalises model complexity. Moreover, BIC produces models with a dispropor-

tionate number of components for the ‘1’ digit. VB also does this, but not nearly to the same

extent. There may be several reasons for these results, listed briefly below.

First, it may be that the criterion used for terminating the epoch is not operating in the same

manner in the VB optimisation as in the ML case — if the ML criterion is ending epochs too

early this could easily result in the ML model carrying over some of that epoch’s un-plateaued

optimisation into the next epoch, to artificially improve the penalised likelihood of the next

more complicated model. An extreme case of this problem is the epoch-ending criterion that

says “end this epoch just as soon as the penalised likelihood reaches what it was before we

added the last component”. In this case we are performing a purely exploratory search, as

opposed to an exploitative search which plateaus before moving on. Second, the ML model

may be concentrating analysers on single data points, despite our precision limit on the noise

model. Third, there is no mechanism for component death in the ML MFA model, since in these

experiments we did not intervene at any stage to test whether the removal of low responsibility

components improved the penalised likelihood (see section4.3.1). It would be interesting to

include such tests, for both ML MFA and VB methods.
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4.7 Combining VB approximations with Monte Carlo

In this and other chapters, we have assumed that the variational lower bound is a reliable guide to

the log marginal likelihood, using it to infer hidden states, to learn distributions over parameters

and especially in this chapter to guide a search amongst models of differing complexity. We

have not yet addressed the question of how reliable the bounds are. For example, in section

2.3.2we mentioned that by usingF for model selection we are implicitly assuming that the

KL divergences between the variational and exact posterior distributions over parameters and

hidden variables are constant between models. It turns out that we can use the technique of

importance sampling to obtain consistent estimators of several interesting quantities, including

this KL divergence. In this technique the variational posterior can be used as an importance

distribution from which to sample points, as it has been optimised to be representative of the

exact posterior distribution.

This section builds on basic claims first presented inGhahramani and Beal(2000). There it

was noted that importance sampling can easily fail for poor choices of importance distributions

(personal communication with D. MacKay, see alsoMiskin, 2000, chapter 4). We also present

some extensions to simple importance sampling, including using mixture distributions from

several runs of VBEM, and also using heavy-tailed distributions derived from the variational

posteriors.

4.7.1 Importance sampling with the variational approximation

Section4.4 furnishes us with an estimate of the predictive density. Unfortunately this does not

even constitute a bound on the predictive density, but a bound on anapproximationto it. How-

ever it is possible to approximate the integrals for such quantities bysampling. In this subsection

we show how by importance sampling from the variational approximation we can obtain estima-

tors of three important quantities: the exact predictive density, the exact log marginal likelihood

L, and the KL divergence between the variational posterior and the exact posterior.

The expectationε of a functionf(θ) under the posterior distributionp(θ |y) can be written as

ε =
∫
dθ p(θ |y) f(θ) . (4.90)

Given that such integrals are usually analytically intractable, they can be approximated by the

Monte Carlo average:

ε̂(M) ' 1
M

M∑
m=1

f(θ(m)) , θ(m) ∼ p(θ |y) . (4.91)
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whereθ(m) are random draws from the posteriorp(θ |y). In the limit of large number of

samplesM , ε̂ converges toε:

lim
M→∞

ε̂(M) = ε . (4.92)

In many models it is not possible to sample directly from the posterior, and so a Markov Chain

Monte Carlo approach is usually taken to help explore regions of high posterior probability.

In most applications this involves designing tailored Metropolis-Hastings acceptance rules for

moving about in the space whilst still maintaining detailed balance.

An alternative to finding samples using MCMC methods is to useimportance sampling. In this

method we express the integral as an expectation over animportance distributiong(θ):

ε =
∫
dθ p(θ |y) f(θ) (4.93)

=
∫
dθ g(θ)

p(θ |y)
g(θ)

f(θ) (4.94)

ε̂(M) ' 1
M

M∑
m=1

p(θ(m) |y)
g(θ(m))

f(θ(m)) , θ(m) ∼ g(θ) , (4.95)

so that now the Monte Carlo estimate (4.95) is taken using samples drawn fromg(θ). Weighting

factors are required to account for each sample fromg(θ) over- or under-representing the actual

density we wish to take the expectation under. These are called theimportance weights

ω(m) =
1
M

p(θ |y)
g(θ)

. (4.96)

This discretisation of the integral then defines a weighted sum of densities:

ε̂(M) =
M∑
m=1

ω(m)f(θ(m)) . (4.97)

Again, if g(θ) is non-zero whereverp(θ |y) is non-zero, it can be shown thatε̂ converges toε

in the limit of largeM .

Having used the VBEM algorithm to find a lower bound on the marginal likelihood, we have at

our disposal the resulting variational approximate posterior distributionq(θ). Whilst this distri-

bution is not equal to the posterior, it should be a good candidate for an importance distribution

because it contains valuable information about the shape and location of the exact posterior, as

it was chosen to minimise the KL divergence between it and the exact posterior (setting aside

local optima concerns). In addition it usually has a very simple form and so can be sampled

from easily. We now describe several quantities that can be estimated with importance sampling

using the variational posterior.
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Exact predictive density

An asymptotically exact predictive distributionp(y′ |y) is that given by a weighted average of

the likelihood under a set of parameters drawn from the variational posteriorq(θ),

p(y′ |y) =
∫
dθ p(θ |y) p(y′ |θ) (4.98)

=
∫
dθ q(θ)

p(θ |y)
q(θ)

p(y′ |θ)
/ ∫

dθ q(θ)
p(θ |y)
q(θ)

(4.99)

' 1
M

M∑
m=1

p(θ(m) |y)
q(θ(m))

p(y′ |θ(m))
/ 1

M

M∑
o=1

p(θ(o) |y)
q(θ(o))

(4.100)

=
M∑
m=1

ω(m) p(y′ |θ(m)) , (4.101)

whereθ(m) ∼ q(θ) are samples from the variational posterior, and theωm are given by

ω(m) =
p(θ(m) |y)
q(θ(m))

/ M∑
o=1

p(θ(o) |y)
q(θ(o))

(4.102)

=
p(θ(m),y)
q(θ(m))

/ M∑
o=1

p(θ(o),y)
q(θ(o))

(4.103)

=
1
Zω

p(θ(m),y)
q(θ(m))

, (4.104)

andZω is defined as

Zω =
M∑
m=1

p(θ(m),y)
q(θ(m))

. (4.105)

In the case of MFAs, each such sampleθ(m) is an instance of a mixture of factor analysers with

predictive densityp(y′ |θ(m)) as given by (4.11). Since theω(m) are normalised to sum to 1, the

predictive density for MFAs given in (4.101) represents amixtureof mixture of factor analysers.

Note that the step from (4.102) to (4.103) is important because we cannot evaluate the exact pos-

terior densityp(θ(m) |y), but we can evaluate thejoint densityp(θ(m),y) = p(θ(m))p(y |θ(m)).
Furthermore, note thatZω is a function of the weights, and so the estimator in equation (4.101)

is really aratio of Monte Carlo estimates. This means that the estimate forp(y′ |y) is no longer

guaranteed to be unbiased. It is however aconsistentestimator (provided the variances of the

numerator and denominator are converging) meaning that as the number of samples tends to

infinity its expectation will tend to the exact predictive density.
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Exact marginal likelihood

The exact marginal likelihood can be written as

ln p(y) = ln
(∫

dθ q(θ)
p(θ,y)
q(θ)

)
(4.106)

= ln〈ω〉q(θ) + lnZω (4.107)

where〈·〉 denotes averaging with respect to the distributionq(θ). This gives us an unbiased

estimate of the marginal likelihood, but a biased estimate of the log marginal likelihood. Both

estimators are consistent however.

KL divergence

This measure of the quality of the variational approximation can be derived by writingF in the

two ways

F =
∫
dθ q(θ) ln

p(θ,y)
q(θ)

(4.108)

= 〈lnω〉q(θ) + lnZω, or (4.109)

F =
∫
dθ q(θ) ln

p(θ |y)
q(θ)

+ ln p(y) (4.110)

= −KL(q(θ)‖p(θ |y)) + ln〈ω〉q(θ) + lnZω. (4.111)

By equating these two expressions we obtain a measure of the divergence between the approxi-

mating and exact parameter posteriors,

KL(q(θ)‖p(θ |y)) = ln〈ω〉q(θ) − 〈lnω〉q(θ) (4.112)

Note that this quantity is not a function ofZω, since it was absorbed into the difference of two

logarithms. This means that we need not use normalised weights for this measure, and base the

importance weights onp(θ,y) rather thanp(θ |y), and the estimator is unbiased.

Three significant observations should be noted. First, the same importance weights can be used

to estimate all three quantities. Second, while importance sampling can work very poorly in

high dimensions forad hocproposal distributions, here the variational optimisation is used in

a principled manner to provide aq(θ) that is a good approximation top(θ |y), and therefore

hopefully a good proposal distribution. Third, this procedure can be applied to any variational

approximation.
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4.7.2 Example: Tightness of the lower bound for MFAs

In this subsection we use importance sampling to estimate the tightness of the lower bound in

a digits learning problem. In the context of a mixture of factor analysers,θ = (π,Λ,µ) =
{πs, Λ̃s}Ss=1, and we sampleθ(m) ∼ q(θ) = q(π)q(Λ̃). Each such sample is an instance of

a mixture of factor analysers with predictive density given by equation (4.11). Note thatΨ is

treated as a hyperparameter so need not be sampled (although we could envisage doing so if

we were integrating overΨ). We weight these predictive densities by the importance weights

w(m) = p(θ(m),y)/q(θ(m)), which are easy to evaluate. When sampling the parametersθ,

one needs only to sampleπ vectors and̃Λ matrices, as these are the only parameters that are

required to replicate the generative model of mixture of factor analysers (in addition to the hy-

perparameterΨ which has no distribution in our model). Thus the numerator in the importance

weights are obtained by calculating

p(θ,y) = p(π, Λ̃)p(y |π, Λ̃) (4.113)

= p(π |α∗,m∗)
∫
dν p(Λ̃ |ν,µ∗,ν∗)p(ν | a∗, b∗)

n∏
i=1

p(yi |π, Λ̃) (4.114)

= p(π |α∗,m∗)p(Λ̃ | a∗, b∗,µ∗,ν∗)
n∏
i=1

p(yi |π, Λ̃) . (4.115)

On the second line we express the prior over the factor loading matrices as a hierarchical prior

involving the precisions{νs}Ss=1. It is not difficult to show that marginalising out the precision

for a Gaussian variable yields a multivariate Student-t prior distribution for each row of each

Λ̃s, from which we can sample directly. Substituting in the density for an MFA given in (4.11)

results in:

p(θ,y) = p(π |α∗,m∗)p(Λ̃ | a∗, b∗,µ∗,ν∗)
n∏
i=1

[
S∑

si=1

p(si |π)p(yi | si, Λ̃,Ψ)

]
. (4.116)

The importance weights are then obtained after evaluating the density under the variational dis-

tributionq(π)q(Λ̃), which is simple to calculate. Even though we require all the training data to

generate the importance weights, once these are made, the importance weights{ω(m)}Mm=1 and

their locations{π(m), Λ̃(m)}Mm=1 then capture all the information about the posterior distribution

that we will need to make predictions, and so we can discard the training data.

A training data set consisting of 700 examples of each of the digits 0, 1, and 2 was used to train

a VBMFA model in a fully-unsupervised fashion. After every successful epoch, the variational

posterior distributions over the parametersΛ̃ andπ were recorded. These were then used off-line

to produceM = 100 importance samples from which a set of importance weights{ω(m)}Mm=1

were calculated. Using results of the previous section, these weights were used to estimate the

following quantities: the log marginal likelihood, the KL divergence between the variational
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posteriorq(π)q(Λ̃) and the exact posteriorp(π, Λ̃ |y), and the KL divergence between the full

variational posterior over all hidden variables and parameters and the exact full posterior. The

latter quantity is simply the difference between the estimate of the log marginal likelihood and

the lower boundF used in the optimisation (see equation (4.29)).

Figure4.12(a)shows these results plotted alongside the training and test classification errors.

We can see that for the most part the lower bound, calculated during the optimisation and de-

notedF(π,ν, Λ̃,x, s) to indicate that it is computed from variational distributions over param-

eters and hidden variables, is close to the estimate of the log marginal likelihoodln p(y), and

more importantly remains roughly in tandem with it throughout the optimisation. The training

and test errors are roughly equal and move together, suggesting that the variational Bayesian

model is not overfitting the data. Furthermore, upward changes to the log marginal likelihood

are for the most part accompanied by downward changes to the test error rate, suggesting that the

marginal likelihood is a good measure for classification performance in this scenario. Lastly, the

estimate of the lower boundF(π, Λ̃), which is computed by inserting the importance weights

into (4.109), is very close to the estimate of the log marginal likelihood (the difference is made

more clear in the accompanying figure4.12(b)). This means that the KL divergence between the

variational and exact posteriors over(π, Λ̃) is fairly small, suggesting that the majority of the

gap betweenln p(y) andF(π,ν, Λ̃,x, s) is due to the KL divergence between the variational

posterior and exact posteriors over the hidden variables(ν,x, s).

Aside: efficiency of the structure search

During the optimisation, there were 52 accepted epochs, and a total of 692 proposed component

splits (an acceptance rate of only about 7%), resulting in 36 components. However it is clear

from the graph (see also figure4.13(c)) that the model structure does not change appreciably af-

ter about 5000 iterations, at which point 41 epochs have been accepted from 286 proposals. This

corresponds to an acceptance rate of 14% which suggests that our heuristics for choosing which

component to split and how to split it are performing well, given the number of components to

chose from and the dimensionality of the data space.

Analysis of the lower bound gap

Given that 100 samples may be too few to obtain reliable estimates, the experiment was repeated

with 6 runs of importance sampling, each with 100 samples as before. Figures4.13(a)and

4.13(b)show the KL divergence measuring the distance between the log marginal likelihood

estimate and the lower boundsF(π,ν, Λ̃,x, s) andF(π, Λ̃), respectively, as the optimisation

proceeds. Figure4.13(c)plots the number of components,S, in the mixture with iterations of

EM, and it is quite clear that the KL divergences in the previous two graphs correlate closely
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Figure 4.12:(a) Log marginal likelihood estimates from importance sampling with iterations
of VBEM. Each point corresponds to the model at the end of a successful epoch of learning.
The fraction of training and test classification errors are shown on the right vertical axis, and the
lower boundF(π,ν, Λ̃,x, s) that guides the optimisation on the left vertical axis. Also plotted
is F(π, Λ̃), but this is indistinguishable from the other lower bound. The second plot(b) is
exactly the same as(a) except the log marginal likelihood axis has been rescaled to make clear
the difference between the log marginal likelihood and the boundF(π, Λ̃).
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with the number of components. This observation is borne out explicitly in figures4.13(d)and

4.13(d)where it is clear that the KL divergence between the lower boundF(π,ν, Λ̃,x, s) and

the marginal likelihood is roughly proportional to the number of components in the mixture.

This is true to an extent also for the lower bound estimateF(π, Λ̃) although this quantity is

more noisy. These two observations are unlikely to be artifacts of the sampling process, as the

variances are much smaller than the trend. In section2.3.2we noted that if the KL discrepancy

increases withS then the model exploration may be biased to simpler models. Here we have

found some evidence of this, which suggests that variational Bayesian methods may suffer from

a tendency to underfit the model structure.

4.7.3 Extending simple importance sampling

Why importance sampling is dangerous

Unfortunately, the importance sampling procedure that we have used is notoriously bad in high

dimensions. Moreover, it is easy to show that importance sampling can fail even for just one

dimension: consider computing expectations under a one dimensional Gaussianp(θ) with pre-

cisionνp using an importance distributionq(θ) which is also a Gaussian with precisionνq and

the same mean. Although importance sampling can give us unbiased estimates, it is simple to

show that ifνq > 2νp then the variance of the importance weights will be infinite! We briefly

derive this result here. The importance weight for the sample drawn fromq(θ) is given by

ω(θ) =
p(θ)
q(θ)

, (4.117)

and the variance of the importance weights can be written

var(ω) = 〈ω2〉q(θ) − 〈ω〉2q(θ) (4.118)

=
∫
dθ q(θ)

(
p(θ)
q(θ)

)2

−
(∫

dθ q(θ)
p(θ)
q(θ)

)2

(4.119)

=
νp

ν
1/2
q

∫
dθ exp

[
−
(
νp −

1
2
νq

)
θ2 + kθ + k′

]
− 1 , (4.120)

=

νpν
−1/2
q (2νp − νq)−1/2 − 1 for 2νp > νq

∞ for 2νp ≤ νq
. (4.121)

wherek andk′ are constants independent ofx. For2νp ≤ νq, the integral diverges and the vari-

ance of the weights is infinite. Indeed this problem is exacerbated in higher dimensions, where if

this condition is not met in any dimension of parameter space, then the importance weights will

have infinite variance. The intuition behind this is that we need the tails of the sampling distribu-

tion q(θ) to fall off slower than the true distributionp(θ), otherwise there exists some probability
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Figure 4.13: At the end of every accepted epoch 6 estimates of the log marginal likelihood were
calculated (see text).(a) Differences between the log marginal likelihood estimate and the lower
boundF(π,ν, Λ̃,x, s), as a function of iterations of VBEM.(b) Differences between the log
marginal likelihood estimate and the lower boundF(π, Λ̃). (c) Number of componentsS in the
mixture model with iterations of VBEM.(d) The same data as in (a), plotted against the number
of componentsS, as given in (c).(e)As for (d) but using the data from (b) instead of (a).
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that we obtain a very high importance weight. This result is clearly a setback for importance

sampling using the variational posterior distribution, since the variational posterior tends to be

tighter than the exact posterior, having neglected correlations between some parameters in or-

der to make inference tractable. To complete the argument, we should mention that importance

sampling becomes very difficult in high dimensions even if this condition is met, since: firstly,

samples from the typical set of theq(θ) are unlikely to have high probability underp(θ), un-

less the distributions are very similar; secondly, even if the distributions are well matched, the

weights have a wide range that scales orderexp(r1/2), wherer is the dimensionality (MacKay,

1999).

The above result (4.121) is extended inMiskin (2000, chapter 4), where the finite variance con-

dition is derived for generalp(θ) andq(θ) in the exponential family. Also in that work, a bound

is derived for the variance of the importance weights when using a finite mixture distribution as

the importance distribution (equation 4.31 of that manuscript). This mixture is made from the

variational posterior distribution mixed with a set of broader distributions from thesameexpo-

nential family. The rationale for this approach is precisely to create heavier-tailed importance

distributions. Unfortunately the bound is not very tight, and the simulations therein report no

increase in convergence to the correct expectation.

In addition to these problems, the exact posterior over the parameters can be very multi-modal.

The most benign form of such multi-modality is due to aliases arising from having likelihood

functions which are invariant to exchanges of labelling of hidden variables, for example indica-

tor variables for components in a mixture. In such cases the variational posterior tends to lock

on to one mode and so, when used in an importance sampler, the estimate represents only a

fraction of the marginal likelihood. If the modes are well-separated then simple degeneracies of

this sort can be accounted for by multiplying the result by the number of aliases. If the modes

are overlapping, then a correction should not be needed as we expect the importance distribu-

tion to be broad enough. However if the modes are only partially separated then the correction

factor is difficult to compute. In general, these corrections cannot be made precise and should

be avoided.

Using heavy-tailed and mixture distributions

Here we investigate the effect of two modifications to the naive use of the variational posterior as

importance distribution. The first modification considers replacing the variational posterior en-

tirely by a related heavy-tailed Student-t distribution. The second modification uses a stochastic

mixturedistribution for the importance distribution, with each component being the variational

posterior obtained from a different VBEM optimisation.
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The Student-t can be derived by considering the marginal probability of Gaussian distributed

variables under a conjugate gamma distribution for the precision,γ, which is for the univariate

case:

qSt(θ) =
∫
dγ p(γ | a, b)p(θ |µ, γ−1) (4.122)

=
∫
dγ Ga(γ | a, b)N(θ |µ, γ−1) (4.123)

=
ba

Γ(a)
√

2π

∫
dγ e−(b+(θ−µ)2/2)γγa−1/2 (4.124)

=
1

ZSt(a, b)

(
1 +

(θ − µ)2

2b

)−(a+1/2)

(4.125)

wherea andb are the shape and inverse-scale respectively of the precision distribution, andZSt

is given by

ZSt(a, b) =
Γ(a+ 1

2)

Γ(a)
√

2πb
, for a > 0, b > 0 . (4.126)

It is straightforward to show that the variance ofθ is given byb/(a − 1) and the kurtosis by

3(a− 1)/(a− 2) (see appendixA). The degrees of freedomν and dispersion parameterσ2 can

be arrived at with the following equivalence:

ν = 2a , σ2 =
b

a
. (4.127)

The attraction of using this distribution for sampling is that it has heavier tails, with a polynomial

rather than exponential decay. In the limit ofν → ∞ the Student-t is a Gaussian distribution,

while for ν = 1 it is a Cauchy distribution.

Three 2-dimensional data sets were generated by drawing 150 samples from 4 Gaussian clus-

ters, with varying separations of their centres, as shown in figure4.14. For each data set, 10

randomly initialised VBEM algorithms were run to learn a model of the data. If any of the

learnt models contained fewer or more than 4 components, that optimisation was discarded and

replaced with another. We would expect that for the well-separated data set the exact posterior

distribution over the parameters would consist of tight, well-separated modes. Conversely, for

the overlapping data set we would expect the posterior to be very broad consisting of several

weakly-defined peaks. In the intermediately-spaced data set we would expect the posterior to

be mostly separated modes with some overlap.

The following importance samplers were constructed, separately for each data set, and are sum-

marised in table4.3: (1) a single model out of the 10 that were trained was randomly chosen

(once) and its variational posteriorq(π)q(Λ̃) used as the importance distribution; (2) the covari-

ance parameters of the variational posteriorq(Λ̃) of that same model were used as the covariance

parameters in t-distributions with 3 degrees of freedom to formq(3)(Λ̃), and this used in con-

junction with the sameq(π) to form the importance distributionq(π)q(3)(Λ̃); (3) the same as
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sampler type of each component’s
key importance dist. form dof relative variance kurtosis
1 single 1 Gaussian ∞ 1 3
2 single 1 Student-t 3 3 3.75
3 single 1 Student-t 2 ∞ 4.5
4 mixture of 10 Gaussian ∞
5 mixture of 10 Student-t 3 ditto ditto
6 mixture of 10 Student-t 2

Table 4.3: The specifications of six importance sampling distributions.

(2) but using 2 degrees of freedom; samplers (4,5,6) are the same as (1,2,3) except the opera-

tions are carried out on every one of the 10 models returned, to generate a mixture model with

10 equally weighted mixture components.

Recall that the covariance matrix for the entries of theΛ̃s matrix for each analyser is of block

diagonal form, and so each row can be sampled from independently to produce the importance

samples. Furthermore, generating the multivariate Student-t samples from these covariances is

a straightforward procedure using standard methods.

Figure 4.14 shows the results of attempting to estimate the marginal likelihood of the three

different data sets, using the 6 differently constructed importance samplers given in table4.3,

which are denoted by the labels 1–6. The axis marksF andF ′ correspond to lower bounds on

the log marginal likelihood:F is the lower bound reported by the single model used for the sin-

gle set of importance samplers (i.e. 1,2,3); andF ′ is the highest reported lower bound of all 10

of the models trained on that data set. The error bars correspond to the unbiased estimate of the

standard deviation in the estimates from five separate runs of importance sampling. We can see

several interesting features. First, all the estimates (1-6) using different importance distributions

yield estimates greater than the highest lower bound (F’). Second, the use of heavier-tailed and

broader Student-t distributions for the most part increases the estimate, whether based on single

or mixture importance distributions. Also, the move from 3 to 2 degrees of freedom (i.e. (2) to

(3), or (5) to (6) in the plot) for the most part increases the estimate further. These observations

suggest that there exists mass outside of the variational posterior that is neglected with the Gaus-

sian implementations (1,4). Third, using mixture distributions increases the estimates. However,

this increase from (1,2,3) to (4,5,6) is roughly the same as the increase in lower bounds fromF

toF ′. This implies that the single estimates are affected if using a sub-optimal solution, whereas

the mixture distribution can perform approximately as well as its best constituent solution. It

should be noted that only the highest lower bound,F ′, was plotted for each data set, as plotting

the remaining 9 lower bounds would have extended the graphs’ y-axes too much to be able to

visually resolve the differences in the methods (in all three data sets there were at least two poor

optimisations).
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Figure 4.14: (right) Importance sampling estimates of the marginal likelihoods of VBMFA
models trained on(left) three data sets of differently spaced Gaussian clusters. In the plots in the
right column, the vertical axis is the log of the marginal likelihood estimate, and the horizontal
axis denotes which importance sampling method is used for the estimate, as given in table4.3.
The estimates are taken from five separate runs of importance sampling, with each run consisting
of 4000 samples; the error bars are the standard errors in the estimate, assuming the logarithm
of the estimates from the five runs are Gaussian distributed. The axis markF corresponds to the
lower bound from the model used for the single samplers (1,2,3), and the markF ′ corresponds
to the highest lower bound from the 10 models used in the mixture samplers (4,5,6).
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4.8 Summary

In this chapter we have shown that how the marginal likelihood of a mixture of factor analysers is

intractable, and derived a tractable deterministic variational lower bound which can be optimised

using a variational EM algorithm. We can use the lower bound to guide a search among model

structures using birth and death moves. We can also use the lower bound to obtain a distribution

over structures if desired:p(m |y) ∝ p(m)p(y |m) ≈ p(m)·eFopt(m), with the caveat that there

is no guarantee that the best achieved lower bound,Fopt(m), is similarly tight across different

modelsm. Indeed we have found that the KL divergence between the variational and exact

posterior over parameters increases approximately linearly with the number of components in

the mixture, which suggests a systematic tendency to underfit (refer to page60).

We have derived a generally applicable importance sampler based on the variational solution,

which gives us consistent estimates of the exact marginal likelihood, the exact predictive den-

sity, and the KL divergence between the variational posterior and the exact posterior. We have

also investigated the use of heavy-tailed and mixture distributions for improving the importance

sampler estimates, but there are theoretical reasons for why methods more sophisticated than

importance sampling are required for reliable estimates.

It is also possible to integrate the variational optimisation into the proposal distribution for an

MCMC sampling method (NIPS workshop:Advanced Mean Field Methods, Denver CO, De-

cember 1999; personal communication with N. de Freitas, July 2000). The combined procedures

combine the relative advantages of the two methods, namely the asymptotic correctness of sam-

pling, and the rapid and deterministic convergence of variational methods. Since the variational

optimisation can quickly provide us with an approximation to the shape of the local posterior

landscape, the MCMC transition kernel can be adapted to utilise this information to more ac-

curately explore and update that approximation. One would hope that this refined knowledge

could then be used to update the variational posterior, and the process iterated. Unfortunately,

in its simplest form, this MCMCadaptioncan not be done infinitely often, as it disrupts the sta-

tionary distribution of the chain (although seeGilks et al., 1998, for a regenerationtechnique).

In de Freitas et al.(2001), a variational MCMC method that includes mixture transition kernels

is described and applied to the task of finding the moments of posterior distributions in a sig-

moid belief network. There remain plenty of directions of research for such combinations of

variational and MCMC methods.

The VB mixtures formalism has been applied to more complicated variants of MFA models re-

cently, with a view to determining the number of components and the local manifold dimension-

alities. For example, mixtures of independent components analysers (Choudrey and Roberts,

2002), and mixtures of independent components analysers with non-symmetric sources (Chan

et al., 2002).
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There have been other Bayesian approaches to modelling densities using mixture distributions.

One notable example is the infinite Gaussian mixture model ofRasmussen(2000), which uses

sampling to entertain a countably infinite number of mixture components, rather than any par-

ticular finite number. In that work, when training on the Spiral data set (examined in section

4.5.3of this thesis), it was found that on average about 18–20 of the infinitely many Gaussian

components had data associated with them. Our VB method usually found between 12–14 anal-

yser components. Examining the differences between the models returned, and perhaps more

importantly the predictions made, by these two algorithms is an interesting direction of research.

Search over model structures for MFAs is computationally intractable if each factor analyser

is allowed to have different intrinsic dimensionalities. In this chapter we have shown how the

variational Bayesian approach can be used to efficiently infer the structure of the model whilst

avoiding overfitting and other deficiencies of ML approaches. We have also shown how we can

simultaneously infer both the number of analysers and their dimensionalities using birth-death

steps and ARD methods, all based on a variational lower bound on the marginal likelihood.
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