Chapter 4

Variational Bayesian Mixtures of
Factor Analysers

4.1 Introduction

This chapter is concerned with learning good representations of high dimensional data, with
the goal being to perform well in density estimation and pattern classification tasks. The work
described here builds on work Bhahramani and Be&000, which first introduced the vari-
ational method for Bayesian learning of a mixtures of factor analysers model, resulting in a
tractable means of integrating over all the parameters in order to avoid overfitting.

In the following subsections we introduce factor analysis (FA), and the mixtures of factor anal-
ysers (MFA) model which can be thought of as a mixture of reduced-parameter Gaussians. In
section4.2 we explain why an exact Bayesian treatment of MFAs is intractable, and present a
variational Bayesian algorithm for learning. We show how to learn distributions over the pa-
rameters of the MFA model, how to optimise its hyperparameters, and how to automatically
determine the dimensionality of each analyser using automatic relevance determination (ARD)
methods. In sectiod.3we propose heuristics for efficiently exploring the (one-dimensional)
space of the number of components in the mixture, and in settiome present synthetic exper-
iments showing that the model can simultaneously learn the number of analysers and their intrin-
sic dimensionalities. In sectioh6 we apply the VBMFA to the real-world task of classifying
digits, and show improved performance over a BIC-penalised maximum likelihood approach.
In section4.7 we examine the tightness of the VB lower bound using importance sampling es-
timates of the exact marginal likelihood, using as importance distributions the posteriors from
the VB optimisation. We also investigate the effectiveness of using heavy-tailed and mixture
distributions in this procedure. We then conclude in secli@with a brief outlook on recent
research progress in this area.
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VB Mixtures of Factor Analysers 4.1. Introduction

4.1.1 Dimensionality reduction using factor analysis

Factor analysis is a method for modelling correlations in multidimensional data, by expressing
the correlations in a lower-dimensional, oriented subspace. Letthe datayset b1, ...,y }.

The model assumes that eaeldimensional data vectgr; was generated by first linearly trans-
forming ak < p dimensional vector of unobserved independent zero-mean unit-variance Gaus-
sian sources (factorsx;, = [x;1,...,X;, translating by a fixed amount in the data space,
followed by adding>-dimensional zero-mean Gaussian noisgwith diagonal covariance ma-

trix ¥ (whose entries are sometimes referred to asitiiguenessg@sExpressed mathematically,

we have

yi=Ax; +p+mn; (4.1)
X; ~ N(O, I), n; ~ N(O, \I’) y (42)

whereA (p x k) is the linear transformation known as tfeetor loadingmatrix, andy is the
mean of the analyser. Integrating oytandn;, it is simple to show that the marginal density of
y; is Gaussian about the displacemgnt

p(yi| A, e, ) = / dx; p(xi)ply: | xi A U) = N(yi | i, AAT 4 0), (4.3)

and the probability of an i.i.d. data set= {y;}?_, is given by

n

p(Y‘Avﬁl’a \IJ) = Hp(yi |Aap’7\ll) . (44)
=1

Given a data set having covariance matriX* and mearnu*, factor analysis finds thé&, i and

¥ that optimally fitY¥* in the maximum likelihood sense. Singe< p, a factor analyser can

be seen as a reduced parameterisation of a full-covariance Gaussian. The (diagonal) entries of
the ¥ matrix concentrate on fitting the axis-aligned (sensor) noise in the data, leaving the factor
loadings inA to model the remaining (assumed-interesting) covariance structure.

The effect of the mean term can be assimilated into the factor loading matrix by augmenting

the vector of factors with a constant bias dimensiom,@&hd adding a corresponding column

to the matrixA. With these modifications, learning thematrix incorporates learning the mean;

in the equations of this chapter we keep the parameters separate, although the implementations
consider the combined quantity.
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VB Mixtures of Factor Analysers 4.1. Introduction

Dimensionality of the latent spacefk

A central problem in factor analysis is deciding on the dimensionality of the latent space. If too
low a value ofk is chosen, then the model has to discard some of the covariance in the data as
noise, and i is given too high a value this causes the model to fit spurious correlations in the
data. Later we describe a Bayesian technique to determine this value automatically, but here
we first give an understanding for an upper bound on the required value fyr comparing
the number of degrees of freedom in the covariance specification of the data set and the degrees
of freedom that the FA parameterisation has in its parameters. We need to distinguish between
the number of parameters and the degrees of freedom, which is really a measure of how many
independent directions in parameter space there are that affect the generative probability of the
data. The number of degrees of freedom in a factor analyser with latent space dimensionality
cannot exceed the number of degrees of freedom of a full covariance né@i(rper 1), nor can
it exceed the degrees of freedom offered by the parameterisation of the analyser, which is given
by d(k),

d(k) = kp +p — %k(k _. (4.5)

The first two terms on the right hand side are the degrees of freedom it dinel & matrices
respectively, and the last term is the degrees of freedon{in>ak) orthonormal matrix. This

last term needs to be subtracted because it represents a redundancy in the factor analysis param-
eterisation, namely that an arbitrary rotation or reflection of the latent vector space leaves the
covariance model of the data unchanged:

underA — AU,  AAT +¥ - AUAU)" + T (4.6)
=AUUTAT + U (4.7)
=AAT + U (4.8)

That is to say we must subtract the degrees of freedom from degeneragdiesgociated with
arbitrary arrangements of the (a priori identical) hidden fac{&@}f:l. Since g-dimensional
covariance matrix containgp + 1)/2 pieces of information, in order to be able to perfectly
capture the covariance structure of the data the number of degrees of freedom in the analyser
(4.5 would have to exceed this. This inequality is a simple quadratic problen, fop

p(p+1) (4.9)

N | —

1
kp+p— Sk(k—1) >
whose solution is given by
1
Fmax = [p+ 51— \/1+8pﬂ . (4.10)

We might be tempted to conclude that we only nkggk factors to model an arbitrary covariance
in p dimensions. However this neglects the constraint that all the diagonal elemehntsavke

108



VB Mixtures of Factor Analysers 4.1. Introduction

to be positive. We conjecture that because of this constraint the number of factors needed to
model a full covariance matrix jg— 1. This implies that for high dimensional data, if we want

to be able to model a full covariance structure, we cannot expect to be able to reduce the number
of parameters by that much at all using factor analysis. Fortunately, for many real data sets we
have good reason to believe that, at least locally, the data lies on a low dimensional manifold
which we can capture with only a few factors. The fact that this is a good approximation only
locally, when the manifold may be globally non-linear, is the motivation for mixture models,
discussed next.

4.1.2 Mixture models for manifold learning

It is often the case that apparently high dimensional data in fact lies, to a good approximation,
on a low dimensional manifold. For example, consider the data set consisting of many different
images of the same digit, given in terms of the pixel intensities. This data has as many dimen-
sions as there are pixels in each image. To explain this data we could first specify a mean digit
image, which is a point in this high dimensional space representing a set of pixel intensities, and
then specify a small number of transformations away from that digit that would cover small vari-
ations in style or perhaps intensity. In factor analysis, each factor dictates the amount of each
linear transformation on the pixel intensities. However, with factor analysis we are restricted
to linear transformations, and so any one analyser can only explain well a small region of the
manifold in which it is locally linear, even though the manifold is globally non-linear.

One way to overcome this is to use mixture models to tile the data manifold. A mixture of
factor analysers models the density for a data pgjrdas a weighted average of factor analyser

densities
S

p(yi |7, A, W) = > p(si | 7)p(yi | si A, o, ©) (4.12)

si=1
Here, S is the number of mixture components in the modelis the vector of mixing propor-
tions, s; is a discrete indicator variable for the mixture component chosen to model data point
i, A= {As}fz1 is a set of factor loadings with® being the factor loading matrix for analyser

s, andp = {p*}5_, is the set of analyser means. The last term in the above probability is just
the single analyser density, given in equatidr8(. The directed acyclic graph for this model is
depicted in figuret.1, which uses thglate notation to denote repetitions over a data set of size
n. Note that there are different indicator variabigand latent space variablegfor each plate.

By exploiting the factor analysis parameterisation of covariance matrices, a mixture of factor
analysers can be used to fit a mixture of Gaussians to correlated high dimensional data without
requiring O(p?) parameters, or undesirable compromises such as axis-aligned covariance ma-
trices. In an MFA each Gaussian cluster has intrinsic dimensionaglity k if the dimensions

are allowed to vary across mixture components. Consequently, the mixture of factor analysers
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VB Mixtures of Factor Analysers 4.2. Bayesian Mixture of Factor Analysers

Figure 4.1: Generative model for Maximum Likelihood MFA. Circles denote random variables,
solid rectangles parameters, and the dashed rectangle the plate (repetitions) over the data.

simultaneously addresses the problems of clustering and local dimensionality reduction. When
¥ is a multiple of the identity the model becomes a mixture of probabilistic PCAs (pPCA).
Tractable maximum likelihood (ML) procedures for fitting MFA and pPCA models can be de-
rived from the Expectation Maximisation algorithm, see for exan@gh@hramani and Hinton
(1996h); Tipping and Bishog1999. Factor analysis and its relationship to PCA and mixture
models is reviewed iRoweis and Ghahrama(i999.

4.2 Bayesian Mixture of Factor Analysers

The maximum likelihood approach to fitting an MFA has several drawbacks. The EM algorithm
can easily get caught in local maxima, and often many restarts are required before a good max-
imum is reached. Technically speaking the log likelihoods in equati®B8s4nd @.11) are not
bounded from above, unless constraints are placed on the variances of the components of the
mixture. In practice this means that the covariance matfix®" + ¥ can become singular if

a particular factor analyser models fewer points than the degrees of freedom in its covariance
matrix. Most importantly, the maximum likelihood approach for fitting MFA models has the
severe drawback that it fails to take into account model complexity. For example the likelihood
can be increased by adding more analyser components to the mixture, up to the extreme where
each component models a single data point, and it can be further increased by supplying more
factors in each of the analysers.
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VB Mixtures of Factor Analysers 4.2. Bayesian Mixture of Factor Analysers

A Bayesian approach overcomes these problems by treating the parameters of the model as
unknown quantities and averaging over the ensemble of models they produce. Défiaing
(A, p, 7, ), we write the probability of the data averaged over a prior for parameters:

o) = [ a6 p(O(y 6) (4.12)
— [ as p(@)ilﬁ[lp(yz-w) (4.13)

— [ amp(m) [ arp(a) [ an ol
f[l [i plsi|m) [ i pGplys [sixi A W) L (@14)

Equation 4.14) is the marginal likelihood of a dataset (called the marginal probability of the
data set by some researchers to avoid confusion with the likelihood pbitaeneters By in-
tegrating out all those parameters whose number increase as the model complexity grows, we
effectively penalise models with more degrees of freedom, since they can a priori model a larger
range of data sets. By model complexity, we mean the number of components and the dimen-
sionality of each component. Integrating out the parameters naturally embodies the principle of
Occam'’s razorNlacKay, 1992 Jefferys and Bergefi992. As a result no parameters are ever

fit to the data, but rather their posteraistributionsare inferred and used to make predictions
about new data. For this chapter, we have chosen not to integraté&opadthough this could

also be done (see, for example, cha@lerSince the number of degrees of freedontioes

not grow with the number of analysers or their dimensions, we treat it as a hyperparameter and
optimise it, even though this might result in some small degree of overfitting.

4.2.1 Parameter priors for MFA

While arbitrary choices can be made for the priors4rif), choosing priors that are conjugate
to the likelihood terms greatly simplifies inference and interpretability. Therefore we choose a
symmetric Dirichlet prior for the mixing proportion, with strengtho*,

p(m|a*m*) = Dir(7 | a*m™) , such that m* = [;, cee ;] . (4.15)
In this way the prior has a single hyperparameter, its stremjthegardless of the dimensional-
ity of 7r. This hyperparameter is a measure of how we expect the mixing proportions to deviate
from being equal. One could imagine schemes in which we have non-symmetric prior mixing
proportion; an example could be making the hyperparameter in the Dirichlet prior an exponen-
tially decaying vector with a single decay rate hyperparameter, which induces a natural ordering
in the mixture components and so removes some identifiability problems. Nevertheless for our
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purposes a symmetric prior suffices, and expresses the notion that each component has equal a
priori chance of being used to generate each data point.

For the entries of the factor loading matricés; 55:1, we choose a hierarchical prior in order to
perform automatic relevance determination (ARD). Each column of each factor loading matrix
has a Gaussian prior with mean zero and a different precision parameter (drawn from a gamma
distribution with fixed hyperparameters, see equatibhg below):

S S ks S ks

p(A|w) =[] pa®1v®) = [T T p(A5 109) = [T TI NS 10,1/v5) (4.16)
s=1 s=1j=1 s=1j=1
whereA?; denotes the vector of entries in thith column of thesth analyser in the mixture,
andv; is the same scalar precision for each entry in the corresponding column. The role of
these precision hyperparameters is explained in sedt@2 Note that because the spherical
Gaussian prior is separable into each opidimensions, the prior can equivalently be thought
of as a Gaussian with axis-aligned elliptical covariance on each row of each analyser:

S p S p
p(Awv) = [T T e 1v°) = [T TT NS, 0. diag (%)) (4.17)
s=1g=1 s=1q=1
where here\; is used to denote thgth row of thesth analyser. It will turn out to be simpler
to have the prior in this form conceptually for learning, since the likelihood term4 factor
across its rows.

Since the number of hyperparametergis- {{z/j};?;l}f:l increases with the number of anal-
ysers and also with the dimensionality of each analyser, we place a hyperprior on every element
of eachv® precision vector, as follows:

s S ks S ks

p(v|a*b") = Hp(l/s |a*,b%) = H Hp(l/; |a*, b*) = H H Ga(vj |a®,b%), (4.18)

s=1 s=1j=1 s=1j=1

wherea* andb* are shape and inverse-scale hyperhyperparameters for a gamma distribution
(see appendiA for a definition and properties of the gamma distribution). Note that the same
hyperprior is used for every elementin As a point of interest, combining the priors fhrand
v, and integrating ou’, we find that the marginal prior over eadli is Student-t distributed.
We will not need to make use of this result right here, but will return to it in seetiérl

Lastly, the means of each analyser in the mixture need to be integrated out. A Gaussian prior
with meanu* and axis-aligned precisiatiag (v*) is placed on each meas’. Note that these
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hyperparameters hop degrees of freedom, which is not a function of the size of the model.
The prior is the same for every analyser:

S S
plp|pv*) =[] o | w*,v*) = [ N(p* | p*, diag (v*) ) (4.19)
s=1 s=1
Note that this prior has a different precision for each dimension of the output, whereas the prior
over the entries in the factor loading matrix uses the same precision on each row, and is different
only for each column of each analyser.

If we are to use the implementational convenience of augmenting the latent space with a constant
bias dimension, and adding a further column to each factor loading matrix to represent its mean,
then the prior over all the entries in the augmented factor loading matrix no longer factorises
over rows 4.17) or columns 4.18, but has to be expressed as a product of terms over every
entry of the matrix. This point will be made clearer when we derive the posterior distribution
over the augmented factor loading matrix.

We useO to denote the set of hyperparameters of the model:

O = (a*m*,a*, b*, u*,v*, ) . (4.20)

The directed acyclic graph for the generative model for this Bayesian MFA is shown graph-
ically in figure 4.2 Contrasting with the ML graphical model in figu#el, we can see that

all the model parameters (with the exception of the sensor nbjdeave been replaced with
uncertain variables, denoted with circles, and now have hyperparameters governing their prior
distributions. The generative model for the data remains the same, with the plate over the data
denoting i.i.d. instances of the hidden factats each of which gives rise to an outpgt We

keep the graphical model concise by also using a plate ovet #malysers, which clearly shows

the role of the hyperpriors.

As an aside, we do not place a prior on the number of compongnte instead place a sym-
metric Dirichlet prior over the mixing proportions. Technically, we should include a (square
boxed) nodes, as the parent of both the plate over analysers and the hyperparametat/e

have also not placed priors over the number of factors of each anaf¥sef, ,; this is inten-

tional as there exists an explicit penalty for using more dimensions — the extra entries in factor
loading matrixA® need to be explained under a hyperprior distributiéri@ which is gov-

erned by a new hyperparameiet, which itself has to be explained under the hyperhyperprior
p(v* | a,b) of equation ¢.18).
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Figure 4.2: A Bayesian formulation for MFA. Here the plate notation is used to denote repeti-
tions over data and over theS analysers in the generative model. Note that all the parameters

in the ML formulation, excep¥, have now become uncertain random variables in the Bayesian
model (circled nodes in the graph), and are governed by hyperparameters (square boxes). The
number of hyperparameters in the model is constant and is not a function of the number of
analysers or their dimensionalities.

4.2.2 Inferring dimensionality using ARD

Each factor analyserin the MFA models its local data as a linear projectiokgtdimensional
spherical Gaussian noise into thelimensional space. If a maximum dimensionakityax iS

set, then there exigtnax X -+ X kmax = (kmax)s possible subspace configurations amongst
the S analysers. Thus determining the optimal configuration is exponentially intractable if a
discrete search is employed over analyser dimensionalities. Automatic relevance determination
(ARD) solves this discrete search problem with the use of continuous variables that albdiv a
blendof dimensionalities. Each factor analyser’s dimensionality is skt,t@ and we use priors

that discourage large factor loadings. The width of each prior is controlled by a hyperparameter
(explained below), and the result of learning with this method is that only those hidden factor
dimensions that are required remain active after learning — the remaining dimensions are effec-
tively ‘switched off’. This general method was proposed by MacKay and NealNisex<ay,

1996 for example), and was usediishop(1999 for Bayesian PCA, and is closely related to

the method given ilNeal (19983 for determining the relevance of inputs to a neural network.

Considering for the moment a single factor analyser. The ARD scheme uses a Gaussian prior
with a zero mean for the entries of the factor loading matrix, as show#.I§)( given again
here:

Kkmax kmax
p(A°|v®) = [T w(a5 1)) = [ N@A510,1/05) (4.21)
j=1 j=1
wherev® = {v{,...,v;__ } are the precisions on the columns/of, which themselves are de-
noted by{A.1,..., A, }- This zero-mean prior couples within-column entries\in favour-

ing lower magnitude values.
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If we apply this prior to each analyser in the mixture, each column of each factor loading matrix
is then governed by a separatg parameter. If one of these precision$ — oo then the
outgoing weights (columnh entries inA®) for the ith factor in thesth analyser will have to be

very close to zero in order to maintain a high likelihood under this prior, and this in turn leads the
analyser to ignore this factor, and thus allows the model to reduce the intrinsic dimensionality of
x in thelocale of that analyseif the data does not warrant this added dimension. We have not
yet explained how some of these precisions come to tend to infinity; this will be made clearer in
the derivations of the learning rules in sect.5

The fully Bayesian application requires that we integrate out all parameters that scale with the
number of analyser components and their dimensions; for this reason we use the conjugate prior
for a precision variable, a gamma distribution with shapend inverse scal&*, to integrate

over the ARD hyperparameters. Since we are integrating over the hyperparameters, it now
makes sense to consider removing a redundant factor loading wheodterior distribution

over the hyperparametes; has most of its mass near infinity. In practice we take the mean

of this posterior to be indicative of its position, and perform removal when it becomes very
large. This reduces the coding cost of the parameters, and as a redundant factor is not used
to model the data, this must increase the marginal likelihogd. We can be harsher still,

and prematurely remove those factors which hayescaping to infinity, provided the resulting
marginal likelihood is better (we do not implement this scheme in our experiments).

4.2.3 Variational Bayesian derivation

Now that we have priors over the parameters of our model, we can set about computing the
marginal likelihood of data. But unfortunately, computing the marginal likelihood in equation
(4.14 is intractable because integrating over the parameters of the model induces correlations
in the posterior distributions between the hidden variables in alhthlates. As mentioned in
sectionl.3 there are several methods that are used to approximate such integrals, for example
MCMC sampling techniques, the Laplace approximation, and the asymptotic BIC criterion.

For MFA and similar models, MCMC methods for Bayesian approaches have only recently
been applied byokowe and Titteringtor{2003, with searches over model complexity in terms

of both the number of components and their dimensionalities carried out by reversible jump
techniques@Green 1995. In related models, Laplace and asymptotic approximations have been
used to approximate Bayesian integration in mixtures of Gausdrotsefts et a).1998. Here

our focus is on analytically tractable approximations based on lower bounding the marginal
likelihood.

We begin with the log marginal likelihood of the data and first construct a lower bound using
a variational distribution over the parametdts, v, A, 1}, and then perform a similar lower
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bounding using a variational distribution for the hidden varialflesx;} ;. As a point of
nomenclature, just as we have been using the same nojatipfor every prior distribution,

even though they may be Gaussian, gamma, Dirichlet etc., in what follows we also use the same
q(+) to denote different variational distributions for different parameters. The forgd- pwill

be clear from its arguments.

Combining @.14) with the priors discussed above including the hierarchical prioApme
obtain the log marginal likelihood of the data, denot&d

L=Inp(y)=In dm p(m|a*m*) /dupu|a b*) /dApA|1/ /dupu\u v

> . (4.22)

The marginal likelihoodC is in fact a function of the hyperparametérs'm*, o*, b*, u*, v*),

and the sensor noisk; this dependence is left implicit in this derivation. We introduce an arbi-
trary distributiong (7, v, A, i) to lower bound 4.22), followed by a second set of distributions
{q(si,x;)}7, to further lower bound the bound,

s
[Z p(si|m) /dxi p(xi)p(yi | 56, %5, A, 1, V)

p(r [ a"m*)p(v | a®, 0 )p(A | v)p(p |~ v7)
q<7r7 v, A7 l'l’)

+ Z In ) (4.23)

Z/ddedAduq(mV’A’“) 1 Pl m)p(v | a*, b )p(A [ v)p(p | w*,v7)
q(m,v, A, p)

(4.24)

L> /dﬂ' dv dAdp q(m,v, A, p) (ln

S ol ) [ i oo i )

s;=1

/dxlq SiyX;) <ln p(si [ m)p(xi )—|—lnp(y1]sl,xl,A,u,\If)>

q(si, %)

= s;i=1

In the first inequality, the term on the second line is simply the log likelihoog; dbr a fixed

setting of parameters, which is then further lower bounded in the second inequality using a set
of distributions over the hidden variablég(s;, x;) } ;. These distributions aiadependenof

the settings of the parametexsv, A, and i, and they correspond to the standard variational
approximation of the factorisation between the parameters and the hidden variables:

p(ﬂ.a V7A)IJ’7 {S’iuxi}’?=1 ’y) ~ q(ﬂ7 v, Av ”) HQ(Si7Xi) . (425)
i=1

The distribution of hidden variables factorises across the plates because both the generative
model is i.i.d.and we have made the approximation that the parameters and hidden variables
are independent (see proof of theor2rhin section2.3.1). Here we use a further variational ap-

116



VB Mixtures of Factor Analysers 4.2. Bayesian Mixture of Factor Analysers

proximation amongst the parameters, which can be explained by equating the functional deriva-
tives of equation4.24) with respect toy(w, v, A, u) to zero. One finds that

q(m,v, A, p) o p(m | o m™)p(v | a*, 0" )p(A |v)p(p | ", V") -

n S
exp Z Z (Inp(s; | m)p(yi | sis%i, As 14, V) g(55,%2) (4.26)
i=1 s;=1
= q(?T)q(I/, Av l'l’) (427)
~ q(m)g(v)g(A, p) . (4.28)

In the second line, the approximate posterior factorises exactly into a contribution from the mix-
ing proportions and the remaining parameters. Unfortunately it is not easy to take expectations
with respect to the joint distribution over and its parent parametet and therefore we make

the second variational approximation in the last line, equatid?f]. The very lasttermy(A, p)

turns out to be jointly Gaussian, and so is of tractable form.

We should note that except for the initial factorisation between the hidden variables and the
parameters, the factorisatigtw, A, u) ~ q(v)q(A, ) is the only other approximating factori-
sation we make; all other factorisations fall out naturally from the conditional independencies in
the model. Note that the complete-data likelihood for mixtures of factor analysers is in the expo-
nential family, even after the inclusion of the precision parametel/e could therefore apply

the results of sectioB.4, but this would entail finding expectations over gamma-Gaussian distri-
butions jointly ovenr andA. Although it is possible to take these expectations, for convenience
we choose a separable variational posteriov@ndA.

From this point on we assimilate each analyser's mean pogitionto its factor loading matrix,

in order to keep the presentation concise. The derivationa trsélenote the concatenated result
[A u]. Therefore the prior over the entire factor loadingss now a function of the precision
parameter§v*}5_, (which themselves have hyperparameiers) and the hyperparameters

p*, v*. Also, the variational posteriar( A, 1) becomesg;(A).
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Substituting the factorised approximatiods25) and @.28 into the lower bound4.24) results
in the following lower bound for the marginal likelihood,

p(m|a*, m*)
q(m)

S ~
s s p(y5|a*7b*) AS AS np(AS|VSa/L*’V*)
+ sEﬂ/dl/ q(v®) [ln O +/dA q(A%)1 () ]

n S
, ™ q(m np(si‘ﬂ-) X; q(Xi | S HM
+Z:Zq(81) [/d q(m)1 ) +/d Palxi|si)1 q(x; | s¢)

q(si)

ﬁz/dw a(m) In

=1 s;=1
+ /d[\ Q(A)/dxi (I(Xi\si)lnp()’iSi,Xi,/N\,‘I’)} (4.29)
= Flq(m), {aw®), a(A*), {q(si), q(xi | 5:) Yoy Yooy, o m*, a*, 0%, p* v, U, y) (4.30)
= F(q(0),q(s,x),0) . (4.31)

Thus the lower bound is a functional of the variational posterior distributions over the param-
eters, collectively denotegl(8), a functional of the variational posterior distribution over the
hidden variables of every data point, collectively denatedx), and also a function of the set

of hyperparameters in the mode| as given in 4.20. In the last line above, we have dropped

y as an argument for the lower bound since it is fixed. The full variational posterior is

n S

S
p(m,v, A s, x| y) = q(m) [ [ a@w*)a(8%) - T T alsi)a(xi | si) (4.32)
s=1

i=1s;=1

Note that if we had not made the factorisatigiv, A, ) ~ q(v)q(A, i), then the last term
in F would have required averages not oyél), but also over the combineg, A), which
would have become fairly cumbersome, although not intractable.

Decomposition of F

The goal of learning is then to maximisg, thus increasing the lower bound dh the exact
marginal likelihood. Note that there is an interesting trade-off at play here. The last term in
equation 4.29 is the log likelihood of the data set averaged over the uncertainty we have in the
hidden variables and parameters. We can increase this term by alleangd the variational
posterior distributiong(#) andq(s,x) so as to maximise this contribution. However the first
three lines of 4.29 contain terms that are negative Kullback-Leibler (KL) divergences between
the approximate posteriors over the parameters and the priors we hold on them. So to increase
the lower bound on the marginal likelihood (which does not necessarily imply that the marginal
likelihood itself increases, since the bound is not tight), we should also consider moving our
approximate posteriors towards the priors, thus decreasing the respective KL divergences. In
this mannerF elegantly incorporates the trade-off between modelling the data and remaining
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consistent with our prior beliefs. Indeed if there were no contributions from the data (i.e. the
last term in equation4(29 were zero) then the optimal approximate posteriors would default to
the prior distributions.

At this stage it is worth noting that, with the exception of the first term in equatic@9), 7 can

be broken down into contributions from each component of the mixture (indexajl byhis

fact that will be useful later when we wish to compare how well each component of the mixture
is modelling its respective data.

4.2.4 Optimising the lower bound

To optimise the lower bound we simply take functional derivatives with respect to each of the
q(+) distributions and equate these to zero to find the distributions that extréfnfsee chapter

2). Synchronous updating of the variational posteriors is not guaranteed to incFebse
consecutive updating of dependent distributions is. The result is that each update is guaranteed
to monotonically and maximally increage

The update for the variational posterior over mixing proportiens

aa{:) Inp(m|a*m”) —1—22 si)Inp(s; | ™) —Ing(mw) + (4.33)
=1 5171
S
=1In [H o mi—l H H wq(SD] Ing(m) + (4.34)
=1 1=1s;=1
S
=1In [H ? i) - 1] —Ing(w)+¢ (4.35)
s=1
= ¢(mw) = Dir(« |am) , (4.36)

where each element of the variational paramaieris given by:
n
am, =a'm}+ Y q(si), (4.37)
=1

which givesa. = o* 4+ n. Thus the strength of our posterior belief in the meaimcreases with
the amount of data in a very simple fashion. For this update we have takea 1/S from
(4.19, and used>_, m, = 1.
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The variational posterior in the precision parameter foritheolumn of thes*” factor loading
matrix A°,

OF
dq(vy)

—Inp(g 0", 0) + [ A8 a(A) lnp(A7 [19) ~ Wnq(v7) + ¢ (4.38)

P
=(a*—1)Iny] — 0"y Z {lnl/l P (AY > o(A%) } —Ing(¥])+c, (4.39)

[\DM—A

which implies that the precision is Gamma distributed:
S S * p > S S
() = Ga(y | "+ 5, b"+ Z (AS") ) = Galw | b) (4.40)

Note that these updates constitute the key steps for the ARD mechanisms in place over the
columns of the factor loading matrices.

The variational posterior over the centres and factor loadings of each analyser is obtained by
taking functional derivatives with respect(jz(i&):

oOF / .
— = [ dv® q(v°) Inp(A® |v°, pu*, V%)
9q(A®)
+ Z /dxz q(xi|5:) Inp(y;| si,xi, A%, @) — Ing(A®) + ¢ (4.41)
1 S
2/dusq ZZ [Inyy — A ]
g=1[=1
< 2
—|—22|:lnl/ — vy, — 1) } —Ing(A*, p®) + ¢
q=1
1o !
X; X;
5 > q(site | U (| yi - [AS us] Yi— [AS us]
i=1 1 L a(xi | si)

(4.42)

where were have moved from thenotation to using bott\ and i separately to express the
different prior form separately. Ir(42), there are two summations over the rows of the factor
loading matrix, and a trace term, which can also be written as a sum over rows. Therefore the
posterior factorises over the rows Af,

a(A*) = [T a(As) = [[ N(AL | &, T5) (4.43)
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where[&g, denotes the column vector corresponding to gtrerow of A*, which hask, + 1

=S ~
dimensions. To clarify the notation, this vector then has m@nand covariance matrin].
These variational posterior parameters are given by:

_ 58 -1 Zq’s_l -
Ie= |80 o) of size(ks + 1) x (ks + 1) (4.44)
DI DIy
uA K
=S KZ i
Ap =11 of size(ks + 1) x 1 (4.45)
Hq
with
s—1 . s _
S = diag () e + U > alsi) <X1XzT>q(x.|S.) (4.46)
i=1 L
D S 7 2 ) (4.47)
=1
S5 LS o) (x _ yas1l 4.48
Ap T Taq ZQ(Sl) <Xl>q(xi\si) T A (4.48)
i=1
AS _ |1s -1
—s __ |1s -1 * %
He = [Fq} m (qjqq 2 q(si)yiq + Vq”q) : (4.50)

This somewhat complicated posterior is the result of maintaining a tractable joint over the cen-
tres and factor loadings of each analyser. Note that the optimal distribution for\éanhtrix

as a whole now has block diagonal covariance structure: even though gaca(p x (ks+1))

matrix, its covariance only ha3(p(ks + 1)?) parameters — a direct consequence of the likeli-
hood factorising over the output dimensions.

The variational posterior for the hidden factors conditioned on the indicator variabig, is
given by taking functional derivatives with respecii; | s;):

oOF X N X
——— = q(s;) Inp(x;) + /dASZ A% s;)1n i Si,Xi,Asi,\I’
a0 [57) q(si) Inp(x;) q(A*)q(si) Inp(y; | )
—q(si) Inq(xi]si) +c (4.51)
1 1 '
= Q(Sz) ——x; Ix;— —tr gl <<yl — ASi Xi )(}’z — ASi Xi > >
2 2 1 1 ‘
q(A*7)
—Ing(x; | sz)] +c (4.52)
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which, regardless of the value @fs;), produces the Gaussian posteriokijrfor each setting of

S
q(xi|s) = N(x; [X7,%°) (4.53)
ith [ '=T1+ (AST O 1A" 4.54
with  [29] + < >q(/1s) (4.54)
x5 = 8 AST\II—l P 4.
X; < (yi —p )>q(m (4.55)

Note that the covariancE® of the hidden state is the same for every data point, and is not a
function of the posterior responsibility s; ), as in ordinary factor analysis — only tineeanof

the posterior ovex; is a function of the datg;. Note also that th&; depend indirectly on the
q(s;) through @.49), which is the update for the factor loadings and centre position of analyser

S.

The variational posterior for the set of indicator varialses {s;}7 , is given by

oF
5@1(&')

= /dﬂ' q(m)Inp(s;|m) — /dxi q(x;|si) Ing(x;]s;)
+ /d[&si q(A®) /dxi q(x; | si) Inp(y; | si, %5, A%, W) —Ing(s;) + ¢ (4.56)

which, utilising a result of Dirichlet distributions given in appendixyields

T
1 q(A%i)q(x; | s:)

(4.57)

Z;
1 -~ [x ~
— e [ [y, — A% T ;. — A

where Z; is a normalisation constant for each data point, such@%;l q(s;) = 1, andy(-)
is the digamma function.

q(si) = i exp [w(amsi) —Y(a) + %ln 2%

By examining the dependencies of each variational posterior’s update rules on the other distribu-
tions, it becomes clear that certain update orderings are more efficient than others in increasing

F. For example, the(x; | s;), ¢(A) andg(s;) distributions are highly coupled and it therefore
might make sense to perform these updates several times before updatjray ¢(v).

4.2.5 Optimising the hyperparameters

The hyperparameters for a Bayesian MFA @re- (a*m*, a*,b*, u*, v*, ¥).
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Beginning with¥, we simply take derivatives of with respect tol—!, leading to:

S

{1 = _% > D alsi) /dj\si Q(Z\Si)/dxi q(xi | s)-

i=1 s;=1
P T

~ X _ <o

ou—T1 {(yz‘l\sl ) vt (yi—A’

vl

where here we uséiag as the operator which sets off-diagonal terms to zero.

)

’; )—i—ln‘l’] (4.58)
>T> ]
a(A®)q(si)a(xi | si)

(4.59)

)

Xi Xi

— U! = diag )

By writing F as a function ofz* andb* only, we can differentiate with respect to these hyper-
parameters to yield the fixed point equations:

S
F(a*,b") = Z/dus q(®*)Inp(v®|a*,b*) + ¢ (4.60)
s=1

S k
= Z Z/duf q(vi)[a*Inbd* —InT'(a") + (a* — 1) Inv] — b*)] + ¢, (4.61)

s=11=1

OF 1 S

0 =0 = @) =Wl)+ o ; lz; (Iny}), (4.62)
S k

6f *—1 1 S

=0 = V= DD - (4.63)

Solving for the fixed point amounts to setting the prior distribution’s first moment and first log-
arithmic moment to the respective averages of those quantities over the factor loading matrices.
The expectations for the gamma random variables are given in app&ndix

Similarly, by writing F as a function ob* andm™* only, we obtain

F(a*,m") = /d7r g(m) Inp(m| a*m™) (4.64)
S

= /dﬂ' q(m) [lnf(a*) - Z Inl(a*m;) — (a*m; —1)Inm]| . (4.65)
s=1
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Bearing in mind thay(7r) is Dirichlet with parametervm, and that we have a scaled prior
m} =1/5 as given in 4.15, we can express the lower bound as a functioa’obnly:

F(a*) = InT(a*) — StnT @) + <O; _ 1) iw(ams) — p(a)] (4.66)

Taking derivatives of this quantity with respectd® and setting to zero, we obtain:

v (%) = 1

U

S
> (@) = plam,)] . (4.67)
s=1

The second derivative with respectdd of (4.66) is negative fora™ > 0, which implies the
solution of @.67) is a maximum. This maximum can be found using gradient following tech-
niques such as Newton-Raphson. The updatefdiis not required, since we assume that the
prior over the mixing proportions is symmetric.

The update for the prior over the centr«{e;zsiss}gz1 of each of the factor analysers is given by
considering terms itF that are functions oft* andv*:

F(p,vr) Z/du q(p) Inp(p|p*,v*) (4.68)

S
- ;Z/dy’s Q(H’S) |:hl |d1ag (V*)| — (lj,s — H*)Tdiag (V*) (us _ u*)
s=1
(4.69)

Taking derivatives with respect j@* first, and then *, equating each to zero yields the updates

S
* 1 s
B= §Z {w >q(us) (4.70)
s=1
1 S
vt = W) with v = S (= iy~ )y - (ATD)
s=1

where the update far* uses the already updated.

4.3 Model exploration: birth and death

We already have an ARD mechanism in place to discover the local dimensionality for each
analyser in the mixture, as part of the inference procedure over the preaisidt@vever we
have not yet addressed the problem of inferring the number of analysers.

The advantage of the Bayesian framework is that different model structures can be compared
without having to rely on heuristic penalty or cost functions to compare their complexities;
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ideally different model structures andm’ should be compared using the difference of log
marginal likelihoodsC(m) and£(m’). In this work we useF(m) and F(m’) as guides to the
intractable log marginal likelihoods.

This has advantages over unpenalised maximum likelihood methods where, for example, in the
split and merge algorithm described Wreda et al. (2000 changes to model complexity are
limited to simultaneous split and merge operations such that the number of components in the
mixture remain the same. Whilst this approach is unable to explore differing sizes of models,
it is successful in avoiding some local maxima in the optimisation process. For example, a
Gaussian component straddled between two distinct clusters of data is an ideal candidate for
a split operation — unfortunately their method requires that this split be accompanied with a
merging of two other components elsewhere to keep the number of components fixed.

In our Bayesian model, though, we are allowed to propose any changes to the number of com-
ponents in the mixture. We look at the simple cases of incremental and decremental changes to
the total numbersS, since we do not expect wild changes to the model structure to be an effi-
cient method for exploring the space. This is achieved thrduigh anddeath‘moves’, where

a component is removed from or introduced into the mixture model. This modified model is
then trained further as described in sectioB.4until a measure of convergence is reached (see
below), at which point the proposal is accepted or rejected based on the chafgdimother
proposal is then made and the procedure repeated, up to a point when no further proposals are
accepted. In this model (although not in a general application) component death occurs natu-
rally as a by-product of the optimisation; the following sections explain the death mechanism,
and address some interesting aspects of the birth process, which we have more control over.

Our method is similar to that of Reversible Jump Markov chain Monte Carlo (RIMCMC)
(Green 1995 applied to mixture models, where birth and death moves can also be used to
navigate amongst different sized moddohardson and Greeh997). By sampling in the full

space of model parameters for all structures, RIMCMC methods converge to the exact poste-
rior distribution over structures. However, in order to ensure reversibility of the Markov chain,
complicated Metropolis-Hastings acceptance functions need to be derived and evaluated for
each proposal from one parameter subspace to another. Moreover, the method suffers from the
usual problems of MCMC methods, namely difficulty in assessing convergence and long simu-
lation run time. The variational Bayesian method attempts to estimate the posterior distribution
directly, not by obtaining samples of parameters and structures, but by attempting to directly
integrate over the parameters using a lower bound arrived at deterministically. Moreover, we
can obtain a surrogate for the posterior distribution over model structufes,y), which is

not represented as some large set of samples, but is obtained using a quantity proportional to
p(m) exp{F(m)}, whereF(m) is the optimal (highest) lower bound achieved for a model

of particular structure.
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4.3.1 Heuristics for component death

There are two routes for a component death occurring in this model, the first is by natural causes
and the second through intervention. Each is explained in turn below.

When optimisingF, occasionally one finds that for some mixture componént ;" ¢(s;) =

0 (to machine precision), even though the component still has non-zero prior probability of
being used in the mixturey(s;) = [ dmp(w)p(s;| ). This is equivalent to saying that it has

no responsibility for any of the data, and as a result its parameter posterior distributions have
defaulted exactly to the priors. For example, the mean location of the centre of the analyser
component is at the centre of the prior distribution (this can be deduced from exanmirs0g (

for the case ofj(s;) = 0V ¢), and the factor loadings have mean zero and high precisions
v*', referring to ¢.40). If the mean of the prior over analyser centres is not located near data
(see next removal method below), then this component is effectively redundant (it cannot even
model data with the uniquenesses matbixsay), and can be removed from the model. How
does the removal of this component affect the lower bound on the marginal likeliAGo8ince

the posterior responsibility of the component is zero it does not contribute to the last term of
(4.29, which sums over the data, Also, since its variational posteriors over the parameters
are all in accord with the priors, then the KL divergence termglifg) are all zerogxcepftfor

the very first term which is the negative KL divergence between the variational posterior and
prior distribution over the mixing proportions. Whilst the removal of the component leaves

all other terms inF unchanged, not having this ‘barren’ dimensigro integrate over should
increase this term.

It seems counter-intuitive that the mean of the prior over factor analyser centres might be far
from data, as suggested in the previous paragraph, given that the hyperparameters of the prior
are updated to reflect the position of the analysers. However, there are cases in which the dis-
tribution of data is ‘hollow’ (see, for example, the spiral data set of sedibrB, and in this

case redundant components are very easily identified with zero responsibilities, and removed.
If the redundant components default to a position which is close to data, their posterior respon-
sibilities may not fall to exactly zero, being able to still use the covariance givéntinmodel

the data. In this case a more aggressive pruning procedure is required, where we examine the
change inF that occurs after removing a component we suspect is becoming, or has become,
redundant. We gain by not having to code its parameters, but we may lose if the data in its locale
are being uniquely modelled by it, in which cagemay drop. IfF should drop, there is the
option of continuing the optimisation to seeffeventually improves (see next section on birth
processes), and rejecting the removal operation if it does not. We do not implement this ‘testing’
method in our experiments, and rely solely on the first method and remove components once
their total posterior responsibilities fall below a reasonable level (in practice less than one data
point’s worth).
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This mechanism for (automatic) removal of components is useful as it allows the data to dictate
how many mixture components are required. However we should note that if the data is not
distributed as a mixture of Gaussian components, the size of the data set will affect the returned
number of components. Thus the number of components should not be taken to mean the
number of ‘clusters’.

4.3.2 Heuristics for component birth

Component birth does not happen spontaneously during learning, so we have to introduce a
heuristic. Even though changes in model structure may be proposed at any point during learning,
it makes sense only to do so when learning has plateaued, so as to exploit (in tefinthef
current structure to the full. We define apochas that period of learning beginning with a
proposal of a model alteration, up to the point of convergence of the variational learning rules.

One possible heuristic for deciding at which point to end an epoch can be constructed by looking
at the rate of change of the lower bound with iterations of variational EMAf= F(*) — F(t—1)
falls below a critical value then we can assume that we have plateaued. However it is not easy to
define such simple thresholds in a manner that scales appropriately with both model complexity
and amount of data. An alternative (implemented in the experiments) is to examine the rate of
change of the posterior class-conditional responsibilities, as given y{thematrix (n x S).
A suitable function of this sort can be such that it does not depend directly on the data size,
dimensionality, or current model complexity. In this work we consider the end of an epoch to be
when therate of change of responsibilifpr each analyser, averaged over all data, falls below a
tolerance — this has the intuitive interpretation that the components are no longer ‘in flux’ and
are modelling their data as best they can in that configuration. We shall call this quantity the
agitation
Dt |Q(3i)(t) —q(s;)*V |
> q(si)® ’
where(t) denotes the iteration number of VBEM. We can see that the agitation of each analyser
does not directly scale with number of analysers, data points, or dimensionality of the data. Thus
a fixed tolerance for this quantity can be chosen that is applicable throughout the optimisation
process. We should note that this measure is one of many possible, such as using squared norms
etc.

agitation(s)(t) = (4.72)

A sensible way to introduce a component into the model is to create that component in the
image of an existing component, which we shall callplagent Simply reproducing the exact
parameters of the parent does not suffice as the symmetry of the resulting pair needs to be broken
for them to model the data differently.
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One possible approach would be to remove the parent compafieandreplaceit with two
components, the ‘children’, with their means displaced symmetrically about the parent’s mean,
by a vector sampled from the parent’s distribution, its covariance ellipsoid givAfi m?'TJr\If.

We call this aspatial split. This appeals to the notion that one might expect areas of data that
are currently being modelled by one elongated Gaussian to be modelled better by two, displaced
most probably along the major axis of variance of that data. However this approach is hard to
fine tune so that it scales well with the data dimensionality;or example, if the displacement

is slightly too large then it becomes very likely in high dimensions that both children model the
data poorly and die naturally as a result. If it is too small then the components will diverge very
slowly.

Again appealing to the class-conditional responsibilities for the data, we can define a procedure
for splitting components that is not directly a function of the dimensionality, or any length scale
of the local data. The approach taken in this work uses a partition of the parent’'s posterior
responsibilities for each of the datds; = ), along a directionl®” sampled from the parent’s
covariance ellipsoid. Those data having a positive dot product with the sampled direction donate
their responsibilities to one chileg, and vice-versa for the other chitd. Mathematically, we
sample a directiod and define an allocation indicator variable for each data point,

’ Al
d ~ N(d {1 s (MDY gy + D) (4.73)

w')
1 if i — sHYTd >0

ry— (v “,) = fori—1,....n. (4.74)
0 if (ys—p)Td<0

We then set the posterior probabilitiesgits;) to reflect these assignments, introducintggad-
nessparametery;,, ranging from.5 to 1:

(s7) [enri 4 (1 = an) (1 — 73)] (4.75)
(i) [(1 — ap)ri + an(1 —1;)] (4.76)

Q2R

Whenay, = 1, all the responsibility is transferred to the assigned child, and whes .5 the
responsibility is shared equally. In the experiments in this chapter weusel.

The advantage of this approach is that the birth is madesponsibilityspace rather than
data-space, and is therefore dimension-insensitive. The optimisation then continues, wfith the
analyser removed and th ands® analysers in its place. The first variational updates should
be for g(A*") andq(ASb) since these immediately reflect the change (note that the update for
q(x;) is not a function of the responsibilities — see equati®59).

The mechanism that chooses which component is to be the parent of a pair-birth operation must
allow the space of models to be explored fully. A simple method would be to pick the component
at random amongst those present. This has an advantage over a deterministic method, in that
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the latter could preclude some components from ever being considered. Interestingly though,
there is information inF that can be used to guide the choice of component to split: with
the exception of the first term in equatioh 29, the remaining terms can be decomposed into
component-specific contributiong,. An ordering for parent choice can be defined usig

with the result that is it possible to concentrate attempted births on those components that are
not currently modelling their data well. This mirrors the approach takeveida et al(2000),

where the criterion was the (KL) discrepancy between each analyser’s local density model and
the empirical density of the data.

If, at the end of an epoch, we reject the proposed birth so returning to the original configuration,
we may either attempt to split the same component again, but with a new randomly sampled di-
rection, or move on to the next ‘best’ component in the ordering. We use the following function
to defineF, from which the ordering is recalculated after every successful epoch:

fs = f({Q}’a*m*va*vb*a“*aV*)\Il | Y)
:/dus q(us) llnw_i_/d]xs q<As)p(A |V U,V )]

q(v*) q(A*)
+ _ Zn:q(s) {/ dm g(m)In p(si| ™) + /dx q(x; | si)In 7p(xi)
> i1 a(si) P ' q(si) T (x| i)
+ /dAS Q(AS)/dxz‘ Q(Xi|5i)lnp(}’i|3i7Xi7ASz\I/):| (4.77)

This has the intuitive interpretation as being the likelihood of the data (weighted by its data
responsibilities) under analyser normalised by its overall responsibility, with the relevant
(KL) penalty terms as irF. Those components with lowef; are preferentially split. The
optimisation completes when all existing mixture components have been considered as parents,
with no accepted epochs.

Toward the end of an optimisation, the remaining required changes to model structure are mainly
local in nature and it becomes computationally wasteful to update the parameters of all the com-
ponents of the mixture model at each iteration of the variational optimisation. For this reason
only those components whose responsibilities are in flux (to some threshold) are updated. This
partial optimisation approach still guarantees an increasg, ias we simply perform updates

that guarantee to increase parts of fiterm in4.29

It should be noted that no matter which heuristics are used for birth and death, ultimately the
results are always compared in termsJf the lower bound on the log marginal likelihood

L. Therefore different choices of heuristic can only affect dfiéiciencyof the search over
model structures and not the theoretical validity of the variational approximation. For example,
although it is perfectly possible to start the model with many components and let them die, it
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is computationally more efficient and equally valid to start with one component and allow it to
spawn more when necessary.

4.3.3 Heuristics for the optimisation endgame

In the previous subsection we proposed a heuristic for terminating the optimisation, namely
that every component should be unsuccessfully split a number of times. However, working in
the space of components seems very inefficient. Moreover, there are several pathological birth-
death scenarios which raise problems when counting the number of times each component has
been split; for example, the identities of nearby components can be switched during an epoch
(parent splits into two children, first child usurps an existing other component and models its
data, whilst that component switches to model the old parent’s data, and the second child dies).

One possible solution (personal communication, Y. Teh) is based on a responsibility accumula-
tion method. Whenever a componenis chosen for a split, we store its responsibility vector

(of lengthn) for all the data pointg(s) = [¢(s1) q(s2) ... q(s,)], and proceed with the op-
timisation involving its two children. At the end of the epoch, if we have not incre&sed

we addg(s) to a running total of ‘split data’ responsibilities, = (¢1,t2,...,t,). That is

Vi : t; < min(t; + q(s;), tmax), Wheretmax is some saturation point. If by the end of the epoch

we have managed to increagethen the accumulataris reset to zero for every data point.

From this construction we can derive a stochastic procedure for choosing which component to
split, using the softmax of the quantitys) = 5>, | (tmax— ti)q(s;). If ¢(s) is large for some
component, then the data it is responsible for has not ‘experienced’ many birth attempts, and
so it should be a strong candidate for a split. H&re: 0 is a temperature parameter to be set

as we wish. Ag3 tends to infinity the choice of component to split becomes deterministic, and
is based on which has least responsibility overlap with already-split data.islfvery small

(but non-zero) the splits become more random. Whatever settiily aftempted splits will

be automatically focused on those components with more data and unexplored regions of data
space. Furthermore, a termination criterion is automatic: continue splitting components until
every entry of thet vector has reached saturation — this corresponds to splitting e\stay
pointa certain number of times (in terms of its responsibility under the split parent), before we
terminate the entire optimisation. This idea was conceived of only after the experiments were
completed, and so has not been thoroughly investigated.

4.4 Handling the predictive density

In this section we set about trying to get a handle on the predictive density of VBMFA models
using bounds on approximations (in sectib.1we will show how to estimate the density
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using sampling methods). In order to perform density estimation or classification of a new test
example, we need to have access to the predictive density

/

/ _ p(y’,y) o /
p(y'ly) = o) /d9 p(0|y)p(y'|6) (4.78)

wherey’ is a set of test exampleg = {y/,...,y,,}, andy is the training data. This quantity

is simply the probability of observing the test examples for a particular setting of the model
parameters, averaged over the posterior distribution of the parameters given a training set. Un-
fortunately, the very intractability of the marginal likelihood in equatidril) means that the
predictive density is also intractable to compute exactly.

A poor man’s approximation uses the variational posterior distribution in place of the posterior
distribution:

Py’ |y) ~ / 16 (8)p(y’' |6) . (4.79)

However we might expect this to overestimate the density’ ah typical regions of space (in
terms of where the training data lie), as the variational posterior tends to over-neglect areas of
low posterior probability in parameter space. This is a result of the asymmetric KL divergence
measure penalty in the optimisation process.

Substituting the form for MFAs given ird(14) into (4.79

p(si | ﬂ)p(y; ‘ Sy ]\’ \Ij) ) (480)

n S
=1

p(y'|y) %/dﬂ/df\ q(m, A) !

i=1s;
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which is still intractable for the same reason that the marginal likelihoods of training set were
so. We can lower bound the log of the predictive density using variational distributions over the
hidden variables corresponding to each test case:

n S
Inp(y'|y) ~ ln/dﬂ'/d]X q(m, ) H Z (si| m)p(y}]s:, A, ) (4.81)
>Z/d7r/qu7rA anpsllﬂ' (yi|si, A, ) (4.82)
s;=1
p(si| m)p(yi| si, A, )
= dm q(m /dA q(A) |In L (4.83)
;/ () 521 q(s:)

n’ S . R
>3 [amatm) [afah) 3 gtsw 2L BT g g2y
=1

s;=1 Q(SZ‘)

n S g X
>3 > alsi) [/dﬂ' q(m) lnp(;(lsyi)) +/dxi q(xi|s;)In qg)x(ilii)

i=1 s;=1

+ /d]&si q([&si) /dxi q(x; | s;) Inp(y}| si,xi,/isi,lll)} . (4.85)

The first inequality is a simple Jensen bound, the second is another which introduces a set
of variational distributions;(s;), and the third a further set of distributions over the hidden
variablesq(x; | s;). Note that these distributions correspond totéstdata, indexed from =
1,...,n/. This estimate of the predictive density is then very similar to the lower bound of
the marginal likelihood of the training datd.R9, except that the training dagg has been
replaced with the test dagg, and the KL penalty terms on the parameters have been removed.
This carries the interpretation that the distribution over parameters of the model is decided upon
and fixed (i.e. the variational posterior), and we simply need to explain the test data under this
ensemble of models.

This lower bound on the approximation to the predictive density can be optimised invjust
updatedfor each test point. First, infer the distributiq(; | s;) for each test data point, using
the analogous form of updaté.63. Then update the distributioy(s;) based on the resulting
distributions over(x; | s;) using the analogous form of updateg7). Since they(x; | s;) up-
date was not a function affs;), we do not need to iterate the optimisation further to improve
the bound.

4.5 Synthetic experiments

In this section we present three toy experiments on synthetic data which demonstrate certain
features of a Bayesian mixture of factor analysers. The first experiment shows the ability of the
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algorithm’s birth and death processes to find the number of clusters in a dataset. The second
experiment shows more ambitiously how we can simultaneously recover the number of clusters
and their dimensionalities, and how the complexity of the model depends on the amount of data
support. The last synthetic experiment shows the ability of the model to fit a low dimensional
manifold embedded in three-dimensional space.

4.5.1 Determining the number of components

In this toy example we tested the model on synthetic data generated from a mixture of 18 Gaus-
sians with 50 points per cluster, as shown in figli&a) The algorithm was initialised with a

single analyser component positioned at the mean of the data. Birth proposals were made using
spatial splits (as described above). Also shown is the progress of the algorithm after 7, 14, 16
and 22 accepted epochs (figure8(b}4.3(e). The variational algorithm has little difficulty
finding the correct number of components and the birth heuristics are successful at avoiding
local maxima.

After finding the 18 Gaussians repeated splits are attempted and mostly rejected. Those epochs
that are accepted always involve the birth of a component followed at some point by the death
of another component, such that the number of components remain 18; the incré&asedn

these epochs is extremely small, usually due to the refinement of other components.

45.2 Embedded Gaussian clusters

In this experiment we examine the ability of the Bayesian mixture of factor analysers to auto-
matically determine the local dimensionality of high dimensional data. We generated a synthetic
data set consisting of 300 data points drawn from each of 6 Gaussian clusters with intrinsic di-
mensionalities (7 4 3 2 2 1), embedded at random orientations in a 10-dimensional space. The
means of the Gaussians were drawn uniformly urdgs] in each of the data dimensions, all
Gaussian variances set to 1, and sensor noise of covari@inadded in each dimension.

A Bayesian MFA was initialised with one mixture component centred about the data mean, and
trained for a total of 200 iterations of variational EM with spatial split heuristics for the birth
proposals. All the analysers were created with a maximum dimensionality of 7. The variational
Bayesian approach correctly inferred both the number of Gaussians and their intrinsic dimen-
sionalities, as shown in figuré.4. The dimensionalities were determined by examining the
posterior distributions over the precisions of each factor analyser's columns, and thresholding
on the mean of each distribution.

We then varied the number of data points in each cluster and trained models on successively
smaller data sets. Tablel shows how the Bayesian MFA patrtitioned the data set. With large
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(a) The data, consisting of 18 Gaussian clus-
ters.

(b) After 7 accepted epochs.

(d) After 16 accepted epochs. (e) After 22 accepted epochs.

Figure 4.3: The original data, and the configuration of the mixture model at points during the
optimisation process. Plotted are the 2 s.d. covariance ellipsoids for each analyser in the mix-
ture. To be more precise, the centre of the ellipsoid is positioned at the mean of the variational
posterior over the analyser’'s centre, and each covariance ellipsoid is the expected covariance
under the variational posterior.
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Figure 4.4: Learning the local intrinsic dimensionality. The maximum dimensionality of each
analyser was set to 7. Shown are Hinton diagrams for the means of the factor loading matrices
{Ks}le for each of the 6 components, after training on the data set with 300 data points per
cluster. Note that empty columns correspond to unused factors where the m@sg)as at

very high values, so the learnt dimensionalities are (7,2,2,4,3,1).

number of points intrinsic dimensionalities

per cluster 1 7 4 3 2 2
8 [ 2 [ 1 |
8 [ 1 | | 2 |

16 1 I 4 | 2

32 1 6 3 3 2 2

64 1 7 4 3 2 2

128 1 7 4 3 2 2

Table 4.1: The recovered number of analysers and their intrinsic dimensionalities. The numbers
in the table are the dimensionalities of the analysers and the boxes represent analysers modelling
data from more than one cluster. For a large number of data points per clustet)( the
Bayesian MFA recovers the generative model. As we decrease the amount of data, the model
reduces the dimensionality of the analysers and begins to model data from different clusters
with the same analyser. The two entries for 8 data points are two observed configurations that
the model converged on.

amounts of data the model agrees with the true model, both in the number of analysers and their
dimensionalities. As the number of points per cluster is reduced there is insufficient evidence to
support the full intrinsic dimensionality, and with even less data the number of analysers drop
and they begin to model data from more than one cluster.

4.5.3 Spiral dataset

Here we present a simple synthetic example of how Bayesian MFA can learn locally linear
models to tile a manifold for globally non-linear data. We used the dataset of 800 data points
from a noisy shrinking spiral, as usedleda et al(2000, given by

yvi = [(13 — 0.5¢;) cost;, —(13 —0.5¢;)sint;, t;)] +w; (4.86)
where t; € [0,4n], w; ~ N(0, diag ([.5 .5 .5])) (4.87)
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(a) An elevated view of the spiral data set (see (b) The same data set viewed perpendicular to
text for reference). the third axis.

Figure 4.5: The spiral data set as usedJieda et al(2000. Note that the data lie on a 1-
dimensional manifold embedded non-linearly in the 3-dimensional data space.

where the parametérdetermines the point along the spiral in one dimension. The spiral is
shown in figured.5, viewed from two angles. Note the spiral data set is really a 1-dimensional
manifold embedded non-linearly in the 3-dimensional data space and corrupted by noise.

As before we initialised a variational Bayesian MFA model with a single analyser at the mean
of the data, and imposed a maximum dimensionality ef 2 for each analyser. For this exper-
iment, as for the previous synthetic experiments, the spatial splitting heuristic was used. Again
local maxima did not pose a problem and the algorithm always found between 12-14 Gaussians.
This result was repeatable even when the algorithm was initialised with 200 randomly posi-
tioned analysers. The run starting from a single analyser took about 3-4 minutes on a 500MHz
Alpha EV6 processor. Figure 6 shows the state of the algorithm after 6, 9, 12 and 17 accepted
epochs.

Figure4.7 shows the evolution of the lower bound used to approximate the marginal likelihood

of the data. Thick and thin lines in the plot correspond to accepted and rejected epochs, respec-
tively. There are several interesting aspects one should note. First, at the beginning of most of
the epochs there is a drop fa corresponding to a component birth. This is because the model
now has to code the parameters of the new analyser component, and initially the model is not
fit well to the data. Second, most of the compute time is spent on accepted epochs, suggesting
that our heuristics for choosing which components to split, and how to split them, are good.
Referring back to figurd.6, it turns out that it is often components that are straddling arms of
the spiral that have low, as given by4.77), and these are being correctly chosen for splitting
ahead of other components modelling their local data better (for example, those aligned on the
spiral). Third, after about 1300 iterations, most of the proposed changes to model structure are
rejected, and those that are accepted give only a small incredSe in
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(c) After 12 accepted epochs. (d) After 17 accepted epochs.

Figure 4.6: The evolution of the variational Bayesian MFA algorithm over several epochs.
Shown are the 1 s.d. covariance ellipses for each analyser: these asgp#utedovariances,

since the analysers have distributions over their factor loadings. After 17 accepted epochs the
algorithm has converged to a solution with 14 components in the mixture. Local optima, where
components are straddled across two arms of the spira(lgydéer example), are successfully
avoided by the algorithm.
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Figure 4.7: Evolution of the lower bournf, as a function of iterations of variational Bayesian

EM, for the spiral problem on a typical run. Drops/iconstitute component births. The thick

and thin lines represent whole epochs in which a change to model structure was proposed and
then eventually accepted or rejected, respectively.
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Figure 4.8: Some examples of the digits 0-9 in the training and test data sets. Each&dig# is
pixels with gray scale 0 to 255. This data set was normalised before passing to VBMFA for
training.

4.6 Digit experiments

In this section we present results of using variational Bayesian MFA to learn both supervised

and unsupervised models of images8ok 8 digits taken from the CEDAR databasdull,

1994). This data set was collected from hand-written digits from postal codes, and are labelled

with the classes 0 through to 9. Examples of these digits are given in iglir€he entire data

set was normalised before being passed to the VBMFA algorithm, by first subtracting the mean

image from every example, and then rescaling each individual pixel to have variance 1 across
all the examples. The data set was then partitioned into 700 training and 200 test examples for
each digit. Based on density models learnt from the digits, we can build classifiers for a test

data set. Histograms of the pixel intensities after this normalisation are quite non-Gaussian, and
so factor analysis is perhaps not a good model for this data. Before normalising, we could have
considered taking the logarithm or some other non-linear transformation of the intensities to

improve the non-Gaussianity, but this was not done.

4.6.1 Fully-unsupervised learning

A singleVBMFA model was trained on 700 examples of every digit 0-9, using birth proposals
and death processes as explained in sedti@nrhe maximum dimensionality for each analyser
kmax Was set to 6, and the number of components initialised to be 1. Responsibility-based splits
were used for the birth proposals (sectibB.2 as we would expect these to perform better than
spatial-splits given the high dimensionality of the data (using the fraction of accepted splits as
a criterion, this was indeed confirmed in preliminary experiments with high dimensional data
sets). The choice of when to finish an epoch of learning was based on the rate of change of the
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Figure 4.9: A typical model learnt by fully-unsupervised VBMFA using the birth and death
processes. Each digit shown represents an analyser in the mixture, and the pixel intensities
are the means of the posterior distribution over the centre of the analysey,,-). These

means can be thought of esmplates These intensities have been inversely-processed to show
pixel intensities with the same scalings as the training data. The number to the right of each
image is that analyser’s dimensionality. In this experiment the maximum dimensionality of the
latent space was set fghax = 6. As can be seen from these numbers, the highest required
dimensionality was 5. The within-row ordering indicates the creation order of the analysers
during learning, and we have arranged the templates across different rows according to the 10
different digits in4.8. This was done by performing a sort of higher-level clustering which

the unsupervised algorithm cannot in fact do. Even though the algorithm itself was not given
the labels of the data, we as experimenters can examine the posterior responsibilities of each
analyser for every item in the training set (whose labels we have access to), and find the majority
class for that analyser, and then assign that analyser to the row corresponding to the class label.
This is purely a visual aid — in practice if the data is not labelled we have no choice but to call
each mixture component in the model a separate class, and have the mean of each analyser as
the class template.

component posterior responsibilities (sectibf.?. The optimisation was terminated when no
further changes to model structure managed to incréaflaased on three unsuccessful splits
for every component in the model).

Figure4.9 shows the final model returned from the optimisation. In this figure, each row cor-
responds to a different digit, and each digit image in the row corresponds to the mean of the
posterior over the centre position of each factor analyser component of the mixture. We refer to
these as ‘templates’ because they represent the mean of clusters of similar examples of the same
digit. The number to the right of each template is the dimensionality of the analyser, determined
from examining the posterior over the precisions governing that factor loading matrix’s columns

qw?®) = [q(v7),. ... q(vg I

For some digits the VBMFA needs to use more templates than others. These templates represent
distinctively different styles for the same digit. For example, some 1's are written slanting to the
left and others to the right, or the digit 2 may or may not contain a loop. These different styles
are in very different areas of the high dimensional data space; so each template explains all the
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Classified Classified
01 23 456 7 89 0123 456 7 89

O 687 7 . 2 . 1 3 . . . 0 19 1 . . . 1 2 . . .

1 . 699 . . . 1 . 1 200 )

2 1 7 671 1 2 7 4 7 2 1 186 1 1 1 2 1 6 1

3 3 7 629 . 27 1 2 30 1 3 2 1 181 10 . 5 1

4 3 4 . 609 . 3 14 1 66 4 1 175 . .1 23
S5 3 7 5 4 6185 . 16 S5 1 2 13 180 12 4
F 6 3 32 1 664 . F e . 1 5 1 193 .

7 . 2 3 1 3 . . 589 2 100 7 . 2 1 176 . 21

8 1 14 1 27 2 43 1 4 603 4 8 . 1 5 9 1 179 5

9 4 1 . 13 . . 65 3 614 9 . 4 3 17 . 176

Training data Test data

Figure 4.10: Confusion tables for digit classification on the training (700) and test (200) sets.
The mixture of factor analysers with 92 components obtains 8.8% and 7.9% training and test
classification errors respectively.

examples of that style that can be modelled with a linear transformation of the pixel intensities.
The number of dimensions of each analyser component for each digit template corresponds very
roughly to the number of degrees of freedom there are for that template, and the degree with
which each template’s factor analyser’s linear transformation can extrapolate to the data between
the different templates. By using a few linear operations on the pixel intensities of the template
image, the analyser can mimic small amounts of shear, rotation, scaling, and translation, and so
can capture the main trends in its local data.

When presented with a test example digit from 0-9, we can classify it by asking the model which
analyser has the highest posterior responsibility for the test example (i.e. a hard assignment), and
then finding which digit class that analyser is clustered into (see discussion above). The result
of classifying the training and test data sets are shown in figi@ in confusion matrix form.

Each row corresponds to the true class labelling of the digit, and each column corresponds to the
digit cluster that the example was assigned to, via the most-responsible analyser in the trained
VBMFA model. We see that, for example, abayt of the training data 8's are misclassified as

a variety of classes, and abaut7 of the training data 7’s are misclassified as 9's (although the
converse result is not as poor). These trends are also seen in the classifications of the test data.

The overall classification performance of the model was 91.2% and 92.1% for the training and
test sets respectively. This can be compared to sifiplaeans (using an isotropic distance
measure on the identically pre-processed data), with the number of clusters set to the same as
inferred in the VBMFA optimisation. The result is thaf-means achieves only 87.8% and
86.7% accuracy respectively, despite being initialised with part of the VB solution.

140



VB Mixtures of Factor Analysers 4.6. Digit experiments

Computation time

The full optimisation for the VBMFA model trained on all 7000 64-dimensional digit examples
took approximately 4 CPU days on a Pentium 11l 500 MHz laptop computer. We would expect
the optimisation to take considerably less time if any of the following heuristics were employed.
First, one could use partial VBEM updates f&rto update the parameter distributions of only
those components that are currently in flux; this corresponds to assuming that changing the
modelling configuration of a few analysers in one part of the data space often does not affect the
parameter distributions of the overwhelming majority of remaining analysers. In fact, partial
updates can be derived that are guaranteed to incfEasienply by placing constraints on the
posterior responsibilities of the fixed analysers. Second, the time for each iteration of VBEM can
be reduced significantly by removing factors that have been made extinct by the ARD priors; this
can even be done prematurely if it increagedn the implementation used for these experiments

all analysers always held factor loading matrix size§ok kmax), despite many of them having

far fewer active factors.

4.6.2 Classification performance of BIC and VB models

In these experiments VBMFA was compared to a BIC-penalised maximum likelihood MFA
model, in a digit classification task. Each algorithm learnt separate models for each of the
digits 0-9, and attempted to classify a data set of test examples based on the predictive densities
under each of the learnt digit models. For the VB model, computing the predictive density is
intractable (see sectioh4) and so an approximation is required. The experiment was carried
out for 7 different training data set sizes ranging frof0, 200, . . . 700), and repeated 10 times

with different parameter initialisations and random subsets of the full 700 images for each digit.

The maximum dimensionality of any analyser component for BIC or VB was Sgid0= 5.

This corresponds to the maximum dimensionality required by the fully-unsupervised VB model
in the previous section’s experiments. For the BIC MFA implementation there is no mechanism
to prune the factors from the analysers, so all 5 dimensions in each BIC analyser are used all the
time.

The same heuristics were used for model search in both types of model, as described in section
4.3. In order to compute a component split ordering, the ML method used the empirical KL
divergence to measure the quality of each analyser’s fit to its local dat&Jézkeet al.2000Q

for details). The criterion for ending any particular epoch was again based on the rate of change
of component posterior responsibilities. The termination criterion for both algorithms was, as
before, three unsuccessful splits of every mixture component in a row. For the ML model,

a constraint had to be placed on tilematrix, allowing a minimum variance dfo—> in any
direction in the normalised space in which the data has identity covariance. This constraint was
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% correct test classifications

n | BIC MLMFA VBMFA
100| 88.8+.3 89.3+ 5
200 90.6+ .4 91.9+ .3
300 91.1+ .3 92.74+ .2
400 91.6+ .3 92.8+ .2
500 92.24 .3 92.94 .2
600 93.0+ .2 93.3+ .1
700 93.24 .2 93.44 .2

Table 4.2: Test classification performance of BIC ML and VB mixture models with increasing
data. The standard errors are derived from 10 repetitions of learning with randomly selected
training subsets.

introduced to prevent the data likelihood from diverging as a result of the covariance collapsing
to zero about any data points.

For the BIC-penalised likelihood, the approximation to the marginal likelihood is given by

D
np(y) = Wnp(y [6m) — 5 Inn (4.88)

wheren is the number of training data (which varied from 100 to 700), &nid the number of
degrees of freedom in an MFA model wishanalysers with dimensionalitigé }>_, (seed(k)
of equation 4.5)), which we approximate by

s
1
D=S-1 ks — —ks(ks — 1) . 4.89
S—1+p+ ; [p ks — S ) (4.89)
This quantity is derived from:S — 1 degrees of freedom in the prior mixture proportians
the number of parameters in the output noise covariance (constrained to be digg@ral)the
degrees of freedom in the mean and factor loadings of each analyser component. Nbtesthat
only an approximation to the number of degrees of freedom, as discussed in gdettion

The results of classification experiments for BIC ML and VB are given in tdlleVB consis-

tently and significantly outperforms BIC, and in fact surpasses the 92.1% test error performance
of the fully-unsupervised VB model on 700 training points. The latter comment is not surpris-
ing given that this algorithm receives labelled data. We should note that neither method comes
close to state-of-the-art discriminative methods such as support vector machines and convolu-
tional networks, for exampleeNet(LeCun and Bengiol995. This may indicate limitations

of the mixture of factor analysers as a generative model for digits.

Figure 4.11 displays the constituents of the mixture models for both BIC and VB for train-
ing set size§100,200,...,70p. On average, BIC ML tends to use models with slightly more
components than does VB, which does not coincide with the common observation that the BIC
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100 200 300 400 500 600 700 100 200 300 400 500 600 700

(@) BIC. (b) VB.

Figure 4.11: The average number of components used for each digit clasqayBhe and(b)

VB models, as the size of the training set increases from 100 to 700 examples. As a visual aid,
alternate digits are shaded black and white. The white bottom-most block in each column corre-
sponds to the ‘0’ digit and the black top-most block to the ‘9’ digit. Note that BIC consistently
returns a greater total number of components than VB (see text).

penalty over-penalises model complexity. Moreover, BIC produces models with a dispropor-
tionate number of components for the ‘1’ digit. VB also does this, but not nearly to the same
extent. There may be several reasons for these results, listed briefly below.

First, it may be that the criterion used for terminating the epoch is not operating in the same
manner in the VB optimisation as in the ML case — if the ML criterion is ending epochs too
early this could easily result in the ML model carrying over some of that epoch’s un-plateaued
optimisation into the next epoch, to artificially improve the penalised likelihood of the next
more complicated model. An extreme case of this problem is the epoch-ending criterion that
says “end this epoch just as soon as the penalised likelihood reaches what it was before we
added the last component”. In this case we are performing a purely exploratory search, as
opposed to an exploitative search which plateaus before moving on. Second, the ML model
may be concentrating analysers on single data points, despite our precision limit on the noise
model. Third, there is no mechanism for component death in the ML MFA model, since in these
experiments we did not intervene at any stage to test whether the removal of low responsibility
components improved the penalised likelihood (see sedtidri). It would be interesting to
include such tests, for both ML MFA and VB methods.
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4.7 Combining VB approximations with Monte Carlo

In this and other chapters, we have assumed that the variational lower bound is a reliable guide to
the log marginal likelihood, using it to infer hidden states, to learn distributions over parameters
and especially in this chapter to guide a search amongst models of differing complexity. We
have not yet addressed the question of how reliable the bounds are. For example, in section
2.3.2we mentioned that by using for model selection we are implicitly assuming that the

KL divergences between the variational and exact posterior distributions over parameters and
hidden variables are constant between models. It turns out that we can use the technique of
importance sampling to obtain consistent estimators of several interesting quantities, including
this KL divergence. In this technique the variational posterior can be used as an importance
distribution from which to sample points, as it has been optimised to be representative of the
exact posterior distribution.

This section builds on basic claims first presente@Ghmahramani and Be@R000Q. There it

was noted that importance sampling can easily fail for poor choices of importance distributions
(personal communication with D. MacKay, see a\8iskin, 200Q chapter 4). We also present
some extensions to simple importance sampling, including using mixture distributions from
several runs of VBEM, and also using heavy-tailed distributions derived from the variational
posteriors.

4.7.1 Importance sampling with the variational approximation

Section4.4 furnishes us with an estimate of the predictive density. Unfortunately this does not
even constitute a bound on the predictive density, but a bound ep@moximationto it. How-

ever it is possible to approximate the integrals for such quantitisaimpling In this subsection

we show how by importance sampling from the variational approximation we can obtain estima-
tors of three important quantities: the exact predictive density, the exact log marginal likelihood
L, and the KL divergence between the variational posterior and the exact posterior.

The expectatiom of a functionf (@) under the posterior distributign@ | y) can be written as

- [0 pi6ly) 1(6) (4.90)

Given that such integrals are usually analytically intractable, they can be approximated by the
Monte Carlo average:

M
M)~ ST FO), 0™ ~ (). (4.91)

m=1
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where 8™ are random draws from the posteripf® |y). In the limit of large number of
samplesM,  converges ta:
lim éM)=c¢. (4.92)

M—o0
In many models it is not possible to sample directly from the posterior, and so a Markov Chain
Monte Carlo approach is usually taken to help explore regions of high posterior probability.
In most applications this involves designing tailored Metropolis-Hastings acceptance rules for
moving about in the space whilst still maintaining detailed balance.

An alternative to finding samples using MCMC methods is toiogmrtance samplingln this
method we express the integral as an expectation ovienportance distributiory(6):

- [ a8 pi61y) 1(6) (4.93)
- p(0]y)
— [0 906 ol (4.99)
M (m)
M) =5 > wa(m)) L0~ g(0), (4.95)
m=1

so that now the Monte Carlo estimated5 is taken using samples drawn frgit9). Weighting
factors are required to account for each sample fo#) over- or under-representing the actual
density we wish to take the expectation under. These are calléshffoetance weights

1
Lm — L pOly)

= 4.96
M g(0) (4.99)
This discretisation of the integral then defines a weighted sum of densities:
M
aM) = wmfem). (4.97)

m=1

Again, if (@) is non-zero whereves(0 | y) is non-zero, it can be shown thatonverges te
in the limit of large M.

Having used the VBEM algorithm to find a lower bound on the marginal likelihood, we have at
our disposal the resulting variational approximate posterior distriby{i@in Whilst this distri-

bution is not equal to the posterior, it should be a good candidate for an importance distribution
because it contains valuable information about the shape and location of the exact posterior, as
it was chosen to minimise the KL divergence between it and the exact posterior (setting aside
local optima concerns). In addition it usually has a very simple form and so can be sampled
from easily. We now describe several quantities that can be estimated with importance sampling
using the variational posterior.
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Exact predictive density

An asymptotically exact predictive distributigrly’ | y) is that given by a weighted average of
the likelihood under a set of parameters drawn from the variational posi¢éor

p(y'|y) = /d0 p@ly)p(y'|0) (4.98)
= [a0a@) "5 v 10) [ [awa@) Y (4.99
Lm0y ey /LN (09]y)

—MmZ:l (@) p(y’|0™) / M; @) (4.100)
M

=Y wmpy'|6tm), (4.101)
m=1

whereg (™) ~ q(0) are samples from the variational posterior, andutheare given by

m 9“” !y p( 0(”
W™ — / Z 0) (4.102)
(m
p(0™,y) p(0©).y)
_ LASANSR 0 (4.103)
q(6™) / ; q(6”)
(m)
_ 1 p@ (m’i)Y) , (4.104)
Zw q(0")
andZ, is defined as
M (m)
Z,=Y L(mf') . (4.105)
= q0"™)

In the case of MFAs, each such sam@|&” is an instance of a mixture of factor analysers with
predictive density(y’ | #™) as given by 4.11). Since the.(™ are normalised to sum to 1, the
predictive density for MFAs given ird(10J) represents mixtureof mixture of factor analysers.

Note that the step fron#(102 to (4.103 is important because we cannot evaluate the exact pos-
terior densityy(6™ | y), but we can evaluate theint densityp(6™), y) = p(8™)p(y | 87™).
Furthermore, note thdt,, is a function of the weights, and so the estimator in equatah0()

is really aratio of Monte Carlo estimates. This means that the estimatg(§dr| y) is no longer
guaranteed to be unbiased. It is howeveoasistenestimator (provided the variances of the
numerator and denominator are converging) meaning that as the number of samples tends to
infinity its expectation will tend to the exact predictive density.
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Exact marginal likelihood

The exact marginal likelihood can be written as

I p(0,y)
Inp(y) =1 </ do q(0) ) ) (4.106)
= In{w)q9) + In Z, (4.107)

where(-) denotes averaging with respect to the distributjofl). This gives us an unbiased
estimate of the marginal likelihood, but a biased estimate of the log marginal likelihood. Both
estimators are consistent however.

KL divergence

This measure of the quality of the variational approximation can be derived by wfitinghe
two ways

F= / 0 q(6)In” fﬁg}y) (4.108)
(Inw)ye) +1nZ,, or (4.109)

F= / d0 ¢(0)n 2© g) + Inp(y) (4.110)
= —KL(g(0)p(8]¥)) + In(w)g(o + In Zu. (4.111)

By equating these two expressions we obtain a measure of the divergence between the approxi-
mating and exact parameter posteriors,

KL(q(0)[p(8]y)) = In(w)q(e) — (Inw)q(e) (4.112)

Note that this quantity is not a function &f,, since it was absorbed into the difference of two
logarithms. This means that we need not use normalised weights for this measure, and base the
importance weights op(@,y) rather tharp(@ | y), and the estimator is unbiased.

Three significant observations should be noted. First, the same importance weights can be used
to estimate all three quantities. Second, while importance sampling can work very poorly in
high dimensions foad hocproposal distributions, here the variational optimisation is used in

a principled manner to provide@0) that is a good approximation (@ | y), and therefore
hopefully a good proposal distribution. Third, this procedure can be applied to any variational
approximation.
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4.7.2 Example: Tightness of the lower bound for MFAs

In this subsection we use importance sampling to estimate the tightness of the lower bound in
a digits learning problem. In the context of a mixture of factor analysers, (w, A, pu) =
{ms,A*}5_,, and we sampl®™ ~ ¢(8) = q(w)q(A). Each such sample is an instance of

a mixture of factor analysers with predictive density given by equatiohl). Note that¥ is
treated as a hyperparameter so need not be sampled (although we could envisage doing so if
we were integrating ove¥). We weight these predictive densities by the importance weights
w™ = p(8™),y)/q(8™), which are easy to evaluate. When sampling the paraméters
one needs only to sampte vectors and\ matrices, as these are the only parameters that are
required to replicate the generative model of mixture of factor analysers (in addition to the hy-
perparametew which has no distribution in our model). Thus the numerator in the importance
weights are obtained by calculating

p(8,y) = p(m, A)p(y |, A) (4.113)

n

= p(m|a®, m") /du p(A|v, ", v)p(v|a*, b") Hp(yi |7, A) (4.114)
i=1

= p(m[a*,m")p(A | a*, 6%, v*) [ [ plyi | 7. A) - (4.115)
i=1
On the second line we express the prior over the factor loading matrices as a hierarchical prior
involving the precisiongr*}?_, . It is not difficult to show that marginalising out the precision
for a Gaussian variable yields a multivariate Student-t prior distribution for each row of each
A#, from which we can sample directly. Substituting in the density for an MFA gived. i)
results in:

n S
p(8,y) = p(m|a*,m*)p(A |a*, b, ', v*) [ | Y plsi| m)p(yil si, A, 0) | . (4.116)

i=1 Ls;=1

The importance weights are then obtained after evaluating the density under the variational dis-
tribution ¢(7)g(A), which is simple to calculate. Even though we require all the training data to
generate the importance weights, once these are made, the importance \{\Leq@h}éle and

their locationg{7w(™), A(™)}M__ then capture all the information about the posterior distribution

that we will need to make predictions, and so we can discard the training data.

A training data set consisting of 700 examples of each of the digits 0, 1, and 2 was used to train
a VBMFA model in a fully-unsupervised fashion. After every successful epoch, the variational
posterior distributions over the paramet&rands were recorded. These were then used off-line

to produceM = 100 importance samples from which a set of importance Weigdaﬁﬁl)}%zl

were calculated. Using results of the previous section, these weights were used to estimate the
following quantities: the log marginal likelihood, the KL divergence between the variational
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posteriorg(m)g(A) and the exact posterigir, A | y), and the KL divergence between the full
variational posterior over all hidden variables and parameters and the exact full posterior. The
latter quantity is simply the difference between the estimate of the log marginal likelihood and
the lower boundF used in the optimisation (see equatidn29).

Figure4.12(a)shows these results plotted alongside the training and test classification errors.
We can see that for the most part the lower bound, calculated during the optimisation and de-
notedF (m, v, A, x, s) to indicate that it is computed from variational distributions over param-
eters and hidden variables, is close to the estimate of the log marginal likelihpg), and

more importantly remains roughly in tandem with it throughout the optimisation. The training
and test errors are roughly equal and move together, suggesting that the variational Bayesian
model is not overfitting the data. Furthermore, upward changes to the log marginal likelihood
are for the most part accompanied by downward changes to the test error rate, suggesting that the
marginal likelihood is a good measure for classification performance in this scenario. Lastly, the
estimate of the lower bound (7, A), which is computed by inserting the importance weights

into (4.109, is very close to the estimate of the log marginal likelihood (the difference is made
more clear in the accompanying figutd 2(b). This means that the KL divergence between the
variational and exact posteriors over, A) is fairly small, suggesting that the majority of the

gap betweemn p(y) and F(m, v, A, x, s) is due to the KL divergence between the variational
posterior and exact posteriors over the hidden variables, s).

Aside: efficiency of the structure search

During the optimisation, there were 52 accepted epochs, and a total of 692 proposed component
splits (an acceptance rate of only about 7%), resulting in 36 components. However it is clear
from the graph (see also figudel 3(c) that the model structure does not change appreciably af-

ter about 5000 iterations, at which point 41 epochs have been accepted from 286 proposals. This
corresponds to an acceptance rate of 14% which suggests that our heuristics for choosing which
component to split and how to split it are performing well, given the number of components to
chose from and the dimensionality of the data space.

Analysis of the lower bound gap

Given that 100 samples may be too few to obtain reliable estimates, the experiment was repeated
with 6 runs of importance sampling, each with 100 samples as before. Figuré&)and
4.13(b)show the KL divergence measuring the distance between the log marginal likelihood
estimate and the lower boundg, v, A, x, s) and F (r, f\), respectively, as the optimisation
proceeds. Figurd.13(c)plots the number of components, in the mixture with iterations of

EM, and it is quite clear that the KL divergences in the previous two graphs correlate closely
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Figure 4.12:(a) Log marginal likelihood estimates from importance sampling with iterations
of VBEM. Each point corresponds to the model at the end of a successful epoch of learning.
The fraction of training and test classification errors are shown on the right vertical axis, and the
lower boundF (=, v, A, x, s) that guides the optimisation on the left vertical axis. Also plotted

is F (=, A), but this is indistinguishable from the other lower bound. The second(ip)ds
exactly the same gg) except the log marginal likelihood axis has been rescaled to make clear
the difference between the log marginal likelihood and the bafifd, A).
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with the number of components. This observation is borne out explicitly in figudeXd)and
4.13(d)where it is clear that the KL divergence between the lower batifw, v, A, x, s) and

the marginal likelihood is roughly proportional to the number of components in the mixture.
This is true to an extent also for the lower bound estinsafer, A) although this quantity is

more noisy. These two observations are unlikely to be artifacts of the sampling process, as the
variances are much smaller than the trend. In se@i8r2we noted that if the KL discrepancy
increases witht then the model exploration may be biased to simpler models. Here we have
found some evidence of this, which suggests that variational Bayesian methods may suffer from
a tendency to underfit the model structure.

4.7.3 Extending simple importance sampling
Why importance sampling is dangerous

Unfortunately, the importance sampling procedure that we have used is notoriously bad in high
dimensions. Moreover, it is easy to show that importance sampling can fail even for just one
dimension: consider computing expectations under a one dimensional Gau@siarth pre-
cisionv, using an importance distributiay{¢) which is also a Gaussian with precisiopand
the same mean. Although importance sampling can give us unbiased estimates, it is simple to
show that ifv, > 21, then the variance of the importance weights will be infinite! We briefly
derive this result here. The importance weight for the sample drawnd(6éiris given by

p(0

_p(®)
w(f) = 0 (4.117)

and the variance of the importance weights can be written

var(w) = <w2>q(9) - <w>2(9) (4.118)
_ P(@)>2 _ < 1’(9)>2
- /d9 4(0) <q(9) /de ) g (4.119)
— V’?/’Q/de exp [— (up — ;uq> 6% + ko + k’} -1, (4.120)
q
_ I/pl/(;l/Q (2vp — Vq)71/2 -1 for 2v, > v, . (4.121)
00 for 2v, <,

wherek andk’ are constants independentofFor 2y, < v, the integral diverges and the vari-
ance of the weights is infinite. Indeed this problem is exacerbated in higher dimensions, where if
this condition is not met in any dimension of parameter space, then the importance weights will
have infinite variance. The intuition behind this is that we need the tails of the sampling distribu-
tion ¢(@) to fall off slower than the true distributign é), otherwise there exists some probability
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Figure 4.13: At the end of every accepted epoch 6 estimates of the log marginal likelihood were
calculated (see textja) Differences between the log marginal likelihood estimate and the lower
boundF (7, v, A, x,s), as a function of iterations of VBEMb) Differences between the log
marginal likelihood estimate and the lower bouR(r, 11). (c) Number of componentS in the
mixture model with iterations of VBEMd) The same data as in (a), plotted against the number
of componentss, as given in (c)(e) As for (d) but using the data from (b) instead of (a).
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that we obtain a very high importance weight. This result is clearly a setback for importance
sampling using the variational posterior distribution, since the variational posterior tends to be
tighter than the exact posterior, having neglected correlations between some parameters in or-
der to make inference tractable. To complete the argument, we should mention that importance
sampling becomes very difficult in high dimensions even if this condition is met, since: firstly,
samples from the typical set of tlggd) are unlikely to have high probability undgfd), un-

less the distributions are very similar; secondly, even if the distributions are well matched, the
weights have a wide range that scales orgei(r'/2), wherer is the dimensionalityNlacKay,

1999.

The above resul4(12]) is extended iMiskin (200Q chapter 4), where the finite variance con-
dition is derived for general() andq(0) in the exponential family. Also in that work, a bound

is derived for the variance of the importance weights when using a finite mixture distribution as
the importance distribution (equation 4.31 of that manuscript). This mixture is made from the
variational posterior distribution mixed with a set of broader distributions fronsdmeeexpo-
nential family. The rationale for this approach is precisely to create heavier-tailed importance
distributions. Unfortunately the bound is not very tight, and the simulations therein report no
increase in convergence to the correct expectation.

In addition to these problems, the exact posterior over the parameters can be very multi-modal.
The most benign form of such multi-modality is due to aliases arising from having likelihood
functions which are invariant to exchanges of labelling of hidden variables, for example indica-
tor variables for components in a mixture. In such cases the variational posterior tends to lock
on to one mode and so, when used in an importance sampler, the estimate represents only a
fraction of the marginal likelihood. If the modes are well-separated then simple degeneracies of
this sort can be accounted for by multiplying the result by the number of aliases. If the modes
are overlapping, then a correction should not be needed as we expect the importance distribu-
tion to be broad enough. However if the modes are only partially separated then the correction
factor is difficult to compute. In general, these corrections cannot be made precise and should
be avoided.

Using heavy-tailed and mixture distributions

Here we investigate the effect of two modifications to the naive use of the variational posterior as
importance distribution. The first modification considers replacing the variational posterior en-
tirely by a related heavy-tailed Student-t distribution. The second modification uses a stochastic
mixturedistribution for the importance distribution, with each component being the variational
posterior obtained from a different VBEM optimisation.
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The Student-t can be derived by considering the marginal probability of Gaussian distributed
variables under a conjugate gamma distribution for the precisiowhich is for the univariate
case:

gs(0) = / dy p(y | a,b)p(6 | ) (4.122)
— [ 4y Galy @ bN@ ) @.123)
b2 2

—— | dry e 0F =) /2)ya=1/2 4.124
T(a)v2r / Te v (4.124)

1 (9 B M)Q —(a+1/2)
= 1 4.125
ZSt(a,b)< BT (4.125)

wherea andb are the shape and inverse-scale respectively of the precision distributiofigand
is given by

I(a+ %)
I'(a)v/27b ’
It is straightforward to show that the variancefis given byb/(a — 1) and the kurtosis by
3(a—1)/(a — 2) (see appendiR). The degrees of freedomand dispersion parametef can
be arrived at with the following equivalence:

Zsi(a,b) = for a>0,b6>0. (4.126)

v=2a, o? = b . (4.127)
a

The attraction of using this distribution for sampling is that it has heavier tails, with a polynomial
rather than exponential decay. In the limitiof— oo the Student-t is a Gaussian distribution,
while for v = 1 it is a Cauchy distribution.

Three 2-dimensional data sets were generated by drawing 150 samples from 4 Gaussian clus-
ters, with varying separations of their centres, as shown in figuré For each data set, 10
randomly initialised VBEM algorithms were run to learn a model of the data. If any of the
learnt models contained fewer or more than 4 components, that optimisation was discarded and
replaced with another. We would expect that for the well-separated data set the exact posterior
distribution over the parameters would consist of tight, well-separated modes. Conversely, for
the overlapping data set we would expect the posterior to be very broad consisting of several
weakly-defined peaks. In the intermediately-spaced data set we would expect the posterior to
be mostly separated modes with some overlap.

The following importance samplers were constructed, separately for each data set, and are sum-
marised in tablel.3 (1) a single model out of the 10 that were trained was randomly chosen
(once) and its variational posterigfm)g(A) used as the importance distribution; (2) the covari-
ance parameters of the variational posteqigt) of that same model were used as the covariance
parameters in t-distributions with 3 degrees of freedom to fgt{A), and this used in con-

junction with the same(7) to form the importance distributiog(7)q®) (A); (3) the same as
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sampler type of each component’s
key importance dist] form dof | relative variance kurtosis

1 single 1 Gaussian oo 1 3

2 single 1 Student-t| 3 3 3.75
3 single 1 Student-t| 2 00 4.5

4 mixture of 10 | Gaussian oo

5 mixture of 10 | Student-t| 3 ditto ditto

6 mixture of 10 | Student-t| 2

Table 4.3: The specifications of six importance sampling distributions.

(2) but using 2 degrees of freedom; samplers (4,5,6) are the same as (1,2,3) except the opera-
tions are carried out on every one of the 10 models returned, to generate a mixture model with
10 equally weighted mixture components.

Recall that the covariance matrix for the entries of Afematrix for each analyser is of block
diagonal form, and so each row can be sampled from independently to produce the importance
samples. Furthermore, generating the multivariate Student-t samples from these covariances is
a straightforward procedure using standard methods.

Figure 4.14 shows the results of attempting to estimate the marginal likelihood of the three
different data sets, using the 6 differently constructed importance samplers given id.@&ble
which are denoted by the labels 1-6. The axis mafkand F’ correspond to lower bounds on

the log marginal likelihoodZ" is the lower bound reported by the single model used for the sin-

gle set of importance samplers (i.e. 1,2,3); dfids the highest reported lower bound of all 10

of the models trained on that data set. The error bars correspond to the unbiased estimate of the
standard deviation in the estimates from five separate runs of importance sampling. We can see
several interesting features. First, all the estimates (1-6) using different importance distributions
yield estimates greater than the highest lower bound (F’). Second, the use of heavier-tailed and
broader Student-t distributions for the most part increases the estimate, whether based on single
or mixture importance distributions. Also, the move from 3 to 2 degrees of freedom (i.e. (2) to
(3), or (5) to (6) in the plot) for the most part increases the estimate further. These observations
suggest that there exists mass outside of the variational posterior that is neglected with the Gaus-
sian implementations (1,4). Third, using mixture distributions increases the estimates. However,
this increase from (1,2,3) to (4,5,6) is roughly the same as the increase in lower bounds from

to F’. This implies that the single estimates are affected if using a sub-optimal solution, whereas
the mixture distribution can perform approximately as well as its best constituent solution. It
should be noted that only the highest lower boufij,was plotted for each data set, as plotting

the remaining 9 lower bounds would have extended the graphs’ y-axes too much to be able to
visually resolve the differences in the methods (in all three data sets there were at least two poor
optimisations).
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Figure 4.14: (right) Importance sampling estimates of the marginal likelihoods of VBMFA
models trained ofleft) three data sets of differently spaced Gaussian clusters. In the plots in the
right column, the vertical axis is the log of the marginal likelihood estimate, and the horizontal
axis denotes which importance sampling method is used for the estimate, as given fh3able

The estimates are taken from five separate runs of importance sampling, with each run consisting
of 4000 samples; the error bars are the standard errors in the estimate, assuming the logarithm
of the estimates from the five runs are Gaussian distributed. The axisHrakesponds to the

lower bound from the model used for the single samplers (1,2,3), and thefthatkresponds

to the highest lower bound from the 10 models used in the mixture samplers (4,5,6).
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4.8 Summary

In this chapter we have shown that how the marginal likelihood of a mixture of factor analysers is
intractable, and derived a tractable deterministic variational lower bound which can be optimised
using a variational EM algorithm. We can use the lower bound to guide a search among model
structures using birth and death moves. We can also use the lower bound to obtain a distribution
over structures if desiregi(m | y) o p(m)p(y | m) ~ p(m)-eZort(™) with the caveat that there

is no guarantee that the best achieved lower boigl(m), is similarly tight across different
modelsm. Indeed we have found that the KL divergence between the variational and exact
posterior over parameters increases approximately linearly with the number of components in
the mixture, which suggests a systematic tendency to underfit (refer tddppge

We have derived a generally applicable importance sampler based on the variational solution,
which gives us consistent estimates of the exact marginal likelihood, the exact predictive den-
sity, and the KL divergence between the variational posterior and the exact posterior. We have
also investigated the use of heavy-tailed and mixture distributions for improving the importance
sampler estimates, but there are theoretical reasons for why methods more sophisticated than
importance sampling are required for reliable estimates.

It is also possible to integrate the variational optimisation into the proposal distribution for an
MCMC sampling method (NIPS workshogidvanced Mean Field MethodBenver CO, De-
cember 1999; personal communication with N. de Freitas, July 2000). The combined procedures
combine the relative advantages of the two methods, namely the asymptotic correctness of sam-
pling, and the rapid and deterministic convergence of variational methods. Since the variational
optimisation can quickly provide us with an approximation to the shape of the local posterior
landscape, the MCMC transition kernel can be adapted to utilise this information to more ac-
curately explore and update that approximation. One would hope that this refined knowledge
could then be used to update the variational posterior, and the process iterated. Unfortunately,
in its simplest form, this MCM@daptioncan not be done infinitely often, as it disrupts the sta-
tionary distribution of the chain (although s€édks et al, 1998 for aregeneratiortechnique).

In de Freitas et al2001), a variational MCMC method that includes mixture transition kernels

is described and applied to the task of finding the moments of posterior distributions in a sig-
moid belief network. There remain plenty of directions of research for such combinations of
variational and MCMC methods.

The VB mixtures formalism has been applied to more complicated variants of MFA models re-
cently, with a view to determining the number of components and the local manifold dimension-
alities. For example, mixtures of independent components analySbmidrey and Roberts
2002, and mixtures of independent components analysers with non-symmetric sdbinees (

et al, 2002.
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There have been other Bayesian approaches to modelling densities using mixture distributions.
One notable example is the infinite Gaussian mixture modBasimusse(2000, which uses
sampling to entertain a countably infinite number of mixture components, rather than any par-
ticular finite number. In that work, when training on the Spiral data set (examined in section
4.5.30f this thesis), it was found that on average about 18—-20 of the infinitely many Gaussian
components had data associated with them. Our VB method usually found between 12—-14 anal-
yser components. Examining the differences between the models returned, and perhaps more
importantly the predictions made, by these two algorithms is an interesting direction of research.

Search over model structures for MFAs is computationally intractable if each factor analyser
is allowed to have different intrinsic dimensionalities. In this chapter we have shown how the
variational Bayesian approach can be used to efficiently infer the structure of the model whilst
avoiding overfitting and other deficiencies of ML approaches. We have also shown how we can
simultaneously infer both the number of analysers and their dimensionalities using birth-death
steps and ARD methods, all based on a variational lower bound on the marginal likelihood.
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