
Chapter 5

Variational Bayesian Linear

Dynamical Systems

5.1 Introduction

This chapter is concerned with the variational Bayesian treatment of Linear Dynamical Systems

(LDSs), also known as linear-Gaussian state-space models (SSMs). These models are widely

used in the fields of signal filtering, prediction and control, because: (1) many systems of inter-

est can be approximated using linear systems, (2) linear systems are much easier to analyse than

nonlinear systems, and (3) linear systems can be estimated from data efficiently. State-space

models assume that the observed time series data was generated from an underlying sequence

of unobserved (hidden) variables that evolve with Markovian dynamics across successive time

steps. The filtering task attempts to infer the likely values of the hidden variables that generated

the current observation, given a sequence of observations up to and including the current obser-

vation; the prediction task tries to simulate the unobserved dynamics one or many steps into the

future to predict a future observation.

The task of deciding upon a suitable dimension for the hidden state space remains a difficult

problem. Traditional methods, such as early stopping, attempt to reduce generalisation error

by terminating the learning algorithm when the error as measured on a hold-out set begins to

increase. However the hold-out set error is a noisy quantity and for a reliable measure a large

set of data is needed. We would prefer to learn from all the available data, in order to make

predictions. We also want to be able to obtain posterior distributions over all the parameters in

the model in order to quantify our uncertainty.

We have already shown in chapter4 that we can infer the dimensionality of the hidden variable

space (i.e. the number of factors) in a mixture of factor analysers model, by placing priors on
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the factor loadings which then implement automatic relevance determination. Linear-Gaussian

state-space models can be thought of as factor analysis through time with the hidden factors

evolving with noisy linear dynamics. A variational Bayesian treatment of these models provides

a novel way to learn their structure, i.e. to identify the optimal dimensionality of their state

space.

With suitable priors the LDS model is in the conjugate-exponential family. This chapter presents

an example of variational Bayes applied to a conjugate-exponential model, which therefore re-

sults in a VBEM algorithm which has an approximate inference procedure with the same com-

plexity as the MAP/ML counterpart, as explained in chapter2. Unfortunately, the implemen-

tation is not as straightforward as in other models, for example the Hidden Markov Model of

chapter3, as some subparts of the parameter-to-natural parameter mapping are non-invertible.

The rest of this chapter is written as follows. In section5.2we review the LDS model for both

the standard and input-dependent cases, and specify conjugate priors over all the parameters.

In 5.3 we use the VB lower bounding procedure to approximate the Bayesian integral for the

marginal likelihood of a sequence of data under a particular model, and derive the VBEM al-

gorithm. The VBM step is straightforward, but the VBE step is much more interesting and

we fully derive the forward and backward passes analogous to the Kalman filter and Rauch-

Tung-Striebel smoothing algorithms, which we call thevariational Kalman filterandsmoother

respectively. In this section we also discuss hyperparameter learning (including optimisation of

automatic relevance determination hyperparameters), and also show how the VB lower bound

can be computed. In section5.4 we demonstrate the model’s ability to discover meaningful

structure from synthetically generated data sets (in terms of the dimension of the hidden state

space etc.). In section5.5 we present a very preliminary application of the VB LDS model

to real DNA microarray data, and attempt to discover underlying mechanisms in the immune

response of human T-lymphocytes, starting from T-cell receptor activation through to gene tran-

scription events in the nucleus. In section5.6we suggest extensions to the model and possible

future work, and in section5.7we provide some conclusions.

5.2 The Linear Dynamical System model

5.2.1 Variables and topology

In state-space models (SSMs), a sequence(y1, . . . ,yT ) of p-dimensional real-valued observa-

tion vectors, denotedy1:T , is modelled by assuming that at each time stept, yt was generated

from ak-dimensional real-valued hidden state variablext, and that the sequence ofx’s follow
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Figure 5.1: Graphical model representation of a state-space model. The hidden variablesxt
evolve with Markov dynamics according to parameters inA, and at each time step generate an
observationyt according to parameters inC.

a first-order Markov process. The joint probability of a sequence of states and observations is

therefore given by:

p(x1:T ,y1:T ) = p(x1)p(y1 |x1)
T∏
t=2

p(xt |xt−1)p(yt |xt) . (5.1)

This factorisation of the joint probability can be represented by the graphical model shown in

figure5.1. For the moment we consider just a single sequence, not a batch of i.i.d. sequences.

For ML and MAP learning there is a straightforward extension for learning multiple sequences;

for VB learning the extensions are outlined in section5.3.8.

The form of the distributionp(x1) over the first hidden state is Gaussian, and is described

and explained in more detail in section5.2.2. We focus on models where both the dynamics,

p(xt |xt−1), and output functions,p(yt |xt), are linear and time-invariant and the distributions

of the state evolution and observation noise variables are Gaussian, i.e. linear-Gaussian state-

space models:

xt = Axt−1 + wt , wt ∼ N(0, Q) (5.2)

yt = Cxt + vt , vt ∼ N(0, R) (5.3)

whereA (k×k) is the state dynamics matrix,C (p×k) is the observation matrix, andQ (k×k)
andR (p × p) are the covariance matrices for the state and output noise variableswt andvt.

The parametersA andC are analogous to the transition and emission matrices respectively in

a Hidden Markov Model (see chapter3). Linear-Gaussian state-space models can be thought

of as factor analysis where the low-dimensional (latent) factor vector at one time step diffuses

linearly with Gaussian noise to the next time step.

We will use the terms ‘linear dynamical system’ (LDS) and ‘state-space model’ (SSM) inter-

changeably throughout this chapter, although they emphasise different properties of the model.

LDS emphasises that the dynamics are linear – such models can be represented either in state-

space form or in input-output form. SSM emphasises that the model is represented as a latent-

variable model (i.e. the observables are generated via some hidden states). SSMs can be non-
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Figure 5.2: The graphical model for linear dynamical systems with inputs.

linear in general; here it should be assumed that we refer to linear models with Gaussian noise

except if stated otherwise.

A straightforward extension to this model is to allow both the dynamics and observation model

to include a dependence on a series ofd-dimensional driving inputsu1:T :

xt = Axt−1 +But + wt (5.4)

yt = Cxt +Dut + vt . (5.5)

HereB (k × d) andD (p × d) are the input-to-state and input-to-observation matrices respec-

tively. If we now augment the driving inputs with a constant bias, then this input driven model is

able to incorporate an arbitrary origin displacement for the hidden state dynamics, and also can

induce a displacement in the observation space. These displacements can be learnt as parameters

of the input-to-state and input-to-observation matrices.

Figure5.2shows the graphical model for an input-dependent linear dynamical system. An input-

dependent model can be used to model control systems. Another possible way in which the

inputs can be utilised is to feedback the outputs (data) from previous time steps in the sequence

into the inputs for the current time step. This means that the hidden state can concentrate on

modelling hidden factors, whilst the Markovian dependencies between successiveoutputsare

modelled using the output-input feedback construction. We will see a good example of this

type of application in section5.5, where we use it to model gene expression data in a DNA

microarray experiment.

On a point of notational convenience, the probability statements in the later derivations leave im-

plicit the dependence of the dynamics and output processes on the driving inputs, since for each

sequence they are fixed and merely modulate the processes at each time step. Their omission

keeps the equations from becoming unnecessarily complicated.

Without loss of generality we can set the hidden state evolution noise covariance,Q, to the iden-

tity matrix. This is possible since an arbitrary noise covariance can be incorporated into the state

dynamics matrixA, and the hidden state rescaled and rotated to be made commensurate with
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this change (seeRoweis and Ghahramani, 1999, page 2 footnote); these changes are possible

since the hidden state is unobserved, by definition. This is the case in the maximum likelihood

scenario, but in the MAP or Bayesian scenarios this degeneracy is lost since various scalings in

the parameters will be differently penalised under the parameter priors (see section5.2.2below).

The remaining parameter of a linear-Gaussian state-space model is the covariance matrix,R, of

the Gaussian output noise,vt. In analogy with factor analysis we assume this to be diagonal.

Unlike the hidden state noise,Q, there is no degeneracy inR since the data is observed, and

therefore its scaling is fixed and needs to be learnt.

For notational convenience we collect the above parameters into a single parameter vector for

the model:θ = (A,B,C,D,R).

We now turn to considering the LDS model for a Bayesian analysis. From (5.1), the complete-

data likelihood for linear-Gaussian state-space models is Gaussian, which is in the class of ex-

ponential family distributions, thus satisfying condition 1 (2.80). In order to derive a variational

Bayesian algorithm by applying the results in chapter2 we now build on the model by defining

conjugate priors over the parameters according to condition 2 (2.88).

5.2.2 Specification of parameter and hidden state priors

The description of the priors in this section may be made more clear by referring to figure

5.3. The forms of the following prior distributions are motivated by conjugacy (condition 2,

(2.88)). By writing every term in the complete-data likelihood (5.1) explicitly, we notice that

the likelihood for state-space models factors into a product of terms for everyrow of each of the

dynamics-related and output-related matrices, and the priors can therefore be factorised over the

hidden variable and observed data dimensions.

The prior over the output noise covariance matrixR, which is assumed diagonal, is defined

through the precision vectorρ such thatR−1 = diag (ρ). For conjugacy, each dimension ofρ

is assumed to be gamma distributed with hyperparametersa andb:

p(ρ | a, b) =
p∏
s=1

ba

Γ(a)
ρa−1
s exp{−bρs}. (5.6)

More generally, we could letR be a full covariance matrix and still be conjugate: its inverse

V = R−1 would be given a Wishart distribution with parameterS and degrees of freedomν:

p(V | ν, S) ∝ |V |(ν−p−1)/2 exp
[
−1

2
tr V S−1

]
, (5.7)
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Figure 5.3: Graphical model representation of a Bayesian state-space model. Each sequence
{y1, . . . ,yTi} is now represented succinctly as the (inner) plate overTi pairs of hidden variables,
each presenting the cross-time dynamics and output process. The second (outer) plate is over
the data set of sizen sequences. For the most part of the derivations in this chapter we restrict
ourselves ton = 1, andTn = T . Note that the plate notation used here is non-standard since
bothxt−1 andxt have to be included in the plate to denote the dynamics.

where tr is the matrix trace operator. This more general form is not adopted in this chapter as

we wish to maintain a parallel between the output model for state-space models and the factor

analysis model (as described in chapter4).

Priors on A,B, C andD

The row vectora>(j) is used to denote thejth row of the dynamics matrix,A, and is given a

zero mean Gaussian prior with precision equal todiag (α), which corresponds to axis-aligned

covariance and can possibly be non-spherical. Each row ofC, denotedc>(s), is given a zero-mean

Gaussian prior with precision matrix equal todiag (ρsγ). The dependence of the precision of

c(s) on the noise output precisionρs is motivated by conjugacy (as can be seen from the explicit

complete-data likelihood), and intuitively this prior links the scale of the signal to the noise. We

place similar priors on the rows of the input-related matricesB andD, introducing two more

hyperparameter vectorsβ andδ. A useful notation to summarise these forms is

p(a(j) |α) = N(a(j) |0,diag (α)−1) (5.8)

p(b(j) |β) = N(b(j) |0,diag (β)−1) for j = 1, . . . , k (5.9)

p(c(s) | ρs,γ) = N(c(s) |0, ρ−1
s diag (γ)−1) (5.10)

p(d(s) | ρs, δ) = N(d(s) |0, ρ−1
s diag (δ)−1) (5.11)

p(ρs | a, b) = Ga(ρs | a, b) for s = 1, . . . , p (5.12)

such thata(j) etc. are column vectors.
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The Gaussian priors on the transition (A) and output (C) matrices can be used to perform ‘au-

tomatic relevance determination’ (ARD) on the hidden dimensions. As an example consider

the matrixC which contains the linear embedding factor loadings for each factor in each of its

columns: these factor loadings induce a high dimensional oriented covariance structure in the

data (CC>), based on an embedding of low-dimensional axis-aligned (unit) covariance. Let us

first fix the hyperparametersγ = {γ1, . . . , γk}. As the parameters of theC matrix are learnt, the

prior will favour entries close to zero since its mean is zero, and the degree with which the prior

enforces this zero-preference varies across the columns depending on the size of the precisions

in γ. As learning continues, the burden of modelling the covariance in thep output dimensions

will be gradually shifted onto those hidden dimensions for which the entries inγ are smallest,

thus resulting in the least penalty under the prior for non-zero factor loadings. When the hy-

perparameters are updated to reflect this change, the unequal sharing of the output covariance

is further exacerbated. The limiting effect as learning progresses is that some columns ofC

become zero, coinciding with the respective hyperparameters tending to infinity. This implies

that those hidden state dimensions do not contribute to the covariance structure of data, and so

can be removed entirely from the output process.

Analogous ARD processes can be carried out for the dynamics matrixA. In this case, if thejth

column ofA should become zero, this implies that thejth hidden dimension at timet− 1 is not

involved in generating the hidden state at timet (the rank of the transformationA is reduced

by 1). However thejth hidden dimension may still be of use in producing covariance structure

in the data via the modulatory input at each time step, and should not necessarily be removed

unless the entries of theC matrix also suggest this.

For the input-related parameters inB andD, the ARD processes correspond to selecting those

particular inputs that are relevant to driving the dynamics of the hidden state (throughβ), and

selecting those inputs that are needed to directly modulate the observed data (throughδ). For

example the (constant) input bias that we use here to model an offset in the data mean will

almost certainly always remain non-zero, with a correspondingly small value inδ, unless the

mean of the data is insignificantly far from zero.

Traditionally, the prior over the hidden state sequence is expressed as a Gaussian distribution

directly over the first hidden statex1 (see, for exampleGhahramani and Hinton, 1996a, equation

(6)). For reasons that will become clear when later analysing the equations for learning the

parameters of the model, we choose here to express the prior over the first hidden state indirectly

through a prior over an auxiliary hidden state at timet = 0, denotedx0, which is Gaussian

distributed with meanµ0 and covarianceΣ0:

p(x0 |µ0,Σ0) = N(x0 |µ0,Σ0) . (5.13)
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This induces a prior overx1 via the the state dynamics process:

p(x1 |µ0,Σ0,θ) =
∫
dx0 p(x0 |µ0,Σ0)p(x1 |x0,θ) (5.14)

= N(x1 |Aµ0 +Bu1, A
>Σ0A+Q) . (5.15)

Although not constrained to be so, in this chapter we work with a prior covarianceΣ0 that is a

multiple of the identity.

The marginal likelihood can then be written

p(y1:T ) =
∫
dAdB dC dD dρ dx0:T p(A,B,C,D,ρ,x0:T ,y1:T ) . (5.16)

All hyperparameters can be optimised during learning (see section5.3.6). In section5.4 we

present results of some experiments in which we show the variational Bayesian approach suc-

cessfully determines the structure of state-space models learnt from synthetic data, and in section

5.5we present some very preliminary experiments in which we attempt to use hyperparameter

optimisation mechanisms to elucidate underlying interactions amongst genes in DNA microar-

ray time-series data.

A fully hierarchical Bayesian structure

Depending on the task at hand we should consider how full a Bayesian analysis we require. As

the model specification stands, there is the problem that the number of free parameters to be ‘fit’

increases with the complexity of the model. For example, if the number of hidden dimensions

were increased then, even though the parameters of the dynamics (A), output (C), input-to-state

(B), and input-to-observation (D) matrices are integrated out, the size of theα, γ, β andδ

hyperparameters have increased, providing more parameters to fit. Clearly, the more parameters

that are fit the more one departs from the Bayesian inference framework and the more one risks

overfitting. But, as pointed out inMacKay (1995), these extra hyperparameters themselves

cannot overfit the noise in the data, since it is only the parameters that can do so.

If the task at hand is structure discovery, then the presence of extra hyperparameters should not

affect the returned structure. However if the task is model comparison, that is comparing the

marginal likelihoods for models with different numbers of hidden state dimensions for example,

or comparing differently structured Bayesian models, then optimising over more hyperparame-

ters will introduce a bias favouring more complex models, unless they themselves are integrated

out.

The proper marginal likelihood to use in this latter case is that which further integrates over the

hyperparameters with respect to some hyperprior which expresses our subjective beliefs over
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the distribution of these hyperparameters. This is necessary for the ARD hyperparameters, and

also for the hyperparameters governing the prior over the hidden state sequence,µ0 andΣ0,

whose number of free parameters are functions of the dimensionality of the hidden state,k.

For example, the ARD hyperparameter for each matrixA,B,C,D would be given a separate

spherical gamma hyperprior, which is conjugate:

α ∼
k∏
j=1

Ga(αj | aα, bα) (5.17)

β ∼
d∏
c=1

Ga(βc | aβ , bβ) (5.18)

γ ∼
k∏
j=1

Ga(γj | aγ , bγ) (5.19)

δ ∼
d∏
c=1

Ga(δc | aδ, bδ) . (5.20)

The hidden state hyperparameters would be given spherical Gaussian and spherical inverse-

gamma hyperpriors:

µ0 ∼ N(µ0 |0, bµ0
I) (5.21)

Σ0 ∼
k∏
j=1

Ga(Σ0
−1
jj | aΣ0 , bΣ0) . (5.22)

Inverse-Wishart hyperpriors forΣ0 are also possible. For the most part of this chapter we omit

this fuller hierarchy to keep the exposition clearer, and only perform experiments aimed at struc-

ture discovery using ARD as opposed to model comparison between this and other Bayesian

models. Towards the end of the chapter there is a brief note on how the fuller Bayesian hierar-

chy affects the algorithms for learning.

Origin of the intractability with Bayesian learning

SinceA, B, C, D, ρ andx0:T are all unknown, given a sequence of observationsy1:T , an

exact Bayesian treatment of SSMs would require computing marginals of the posterior over pa-

rameters and hidden variables,p(A,B,C,D,ρ,x0:T |y1:T ). This posterior contains interaction

terms up tofifth order; we can see this by considering the terms in (5.1) for the case of LDS

models which, for example, contain terms in the exponent of the form−1
2x

>
t C

>diag (ρ)Cxt.

Integrating over these coupled hidden variables and parameters is not analytically possible.

However, since the model is conjugate-exponential we can apply theorem2.2 to derive a vari-
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ational Bayesian EM algorithm for state-space models analogous to the maximum-likelihood

EM algorithm ofShumway and Stoffer(1982).

5.3 The variational treatment

This section covers the derivation of the results for the variational Bayesian treatment of linear-

Gaussian state-space models. We first derive the lower bound on the marginal likelihood, using

only the usual approximation of the factorisation of the hidden state sequence from the param-

eters. Due to some resulting conditional independencies between the parameters of the model,

we see how the approximate posterior over parameters can be separated into posteriors for the

dynamics and output processes. In section5.3.1the VBM step is derived, yielding approximate

distributions over all the parameters of the model, each of which is analytically manageable and

can be used in the VBE step.

In section5.3.2we justify the use of existing propagation algorithms for the VBE step, and

the following subsections derive in some detail the forward and backward recursions for the

variational Bayesian linear dynamical system. This section is concluded with results for hyper-

parameter optimisation and a note on the tractability of the calculation of the lower bound for

this model.

The variational approximation and lower bound

The full joint probability for parameters, hidden variables and observed data, given the inputs is

p(A,B,C,D,ρ,x0:T ,y1:T |u1:T ) , (5.23)

which written fully is

p(A |α)p(B |β)p(ρ | a, b)p(C |ρ,γ)p(D |ρ, δ)·

p(x0 |µ0,Σ0)
T∏
t=1

p(xt |xt−1, A,B,ut)p(yt |xt, C,D,ρ,ut) . (5.24)
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From this point on we drop the dependence on the input sequenceu1:T , and leave it implicit.

By applying Jensen’s inequality we introduce any distributionq(θ,x) over the parameters and

hidden variables, and lower bound the log marginal likelihood

ln p(y1:T ) = ln
∫
dAdB dC dD dρ dx0:T p(A,B,C,D,ρ,x0:T ,y1:T ) (5.25)

≥
∫
dAdB dC dD dρ dx0:T ·

q(A,B,C,D,ρ,x0:T ) ln
p(A,B,C,D,ρ,x0:T ,y1:T )
q(A,B,C,D,ρ,x0:T )

(5.26)

= F .

The next step in the variational approximation is to assume some approximate form for the

distributionq(·) which leads to a tractable bound. First, we factorise the parameters from the

hidden variables givingq(A,B,C,D, ρ,x0:T ) = qθ(A,B,C,D, ρ)qx(x0:T ). Writing out the

expression for the exact log posteriorln p(A,B,C,D,ρ,x1:T ,y0:T ), one sees that it contains

interaction terms betweenρ, C andD but none between{A,B} and any of{ρ, C,D}. This

observation implies a further factorisation of the posterior parameter distributions,

q(A,B,C,D,ρ,x0:T ) = qAB(A,B)qCDρ(C,D,ρ)qx(x0:T ) . (5.27)

It is important to stress that this latter factorisation amongst the parameters falls out of the

initial factorisation of hidden variables from parameters, and from theresulting conditional

independencies given the hidden variables. Therefore the variational approximation does not

concede any accuracy by the latter factorisation, since it is exact given the first factorisation of

the parameters from hidden variables.

We choose to write the factors involved in this joint parameter distribution as

qAB(A,B) = qB(B) qA(A |B) (5.28)

qCDρ(C,D,ρ) = qρ(ρ) qD(D |ρ) qC(C |D,ρ) . (5.29)
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Now the form forq(·) in (5.27) causes the integral (5.26) to separate into the following sum of

terms:

F =
∫
dB qB(B) ln

p(B |β)
qB(B)

+
∫
dB qB(B)

∫
dA qA(A |B) ln

p(A |α)
qA(A |B)

+
∫
dρ qρ(ρ) ln

p(ρ | a, b)
qρ(ρ)

+
∫
dρ qρ(ρ)

∫
dD qD(D |ρ) ln

p(D |ρ, δ)
qD(D |ρ)

+
∫
dρ qρ(ρ)

∫
dD qD(D |ρ)

∫
dC qC(C |ρ, D) ln

p(C |ρ,γ)
qC(C |ρ, D)

−
∫
dx0:T qx(x0:T ) ln qx(x0:T )

+
∫
dB qB(B)

∫
dA qA(A |B)

∫
dρ qρ(ρ)

∫
dD qD(D |ρ)

∫
dC qC(C |ρ, D) ·∫

dx0:T qx(x0:T ) ln p(x0:T ,y1:T |A,B,C,D,ρ) (5.30)

= F(qx(x0:T ), qB(B), qA(A |B), qρ(ρ), qD(D |ρ), qC(C |ρ, D)) . (5.31)

Here we have left implicit the dependence ofF on the hyperparameters. For variational Bayesian

learning,F is the key quantity that we work with. Learning proceeds with iterative updates of

the variational posterior distributionsq·(·), each locally maximisingF .

The optimum forms of these approximate posteriors can be found by taking functional deriva-

tives of F (5.30) with respect to each distribution over parameters and hidden variable se-

quences. In the following subsections we describe the straightforward VBM step, and the

somewhat more complicated VBE step. We do not need to be able to computeF to produce

the learning rules, only calculate its derivatives. Nevertheless its calculation at each iteration

can be helpful to ensure that we are monotonically increasing a lower bound on the marginal

likelihood. We finish this section on the topic of how to calculateF which is hard to compute

because it contains the a term which is the entropy of the posterior distribution over hidden state

sequences,

H(qx(x0:T )) = −
∫
dx0:T qx(x0:T ) ln qx(x0:T ) . (5.32)

5.3.1 VBM step: Parameter distributions

Starting from some arbitrary distribution over the hidden variables, the VBM step obtained by

applying theorem2.2finds the variational posterior distributions over the parameters, and from

these computes the expected natural parameter vector,φ = 〈φ(θ)〉, where the expectation is

taken under the distributionqθ(θ), whereθ = (A,B,C,D,ρ).

We omit the details of the derivations, and present just the forms of the distributions that ex-

tremiseF . As was mentioned in section5.2.2, given the approximating factorisation of the
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posterior distribution over hidden variables and parameters, the approximate posterior over the

parameters can be factorised without further assumption or approximation into

qθ(A,B,C,D,ρ) =
k∏
j=1

q(b(j))q(a(j) |b(j))
p∏
s=1

q(ρs)q(d(s) | ρs)q(c(s) | ρs,d(s)) (5.33)

where, for example, the row vectorb>(j) is used to denote thejth row of the matrixB (similarly

so for the other parameter matrices).

We begin by defining some statistics of the input and observation data:

Ü ≡
T∑
t=1

utu>t , UY ≡
T∑
t=1

uty>t , Ÿ ≡
T∑
t=1

yty>t . (5.34)

In the forms of the variational posteriors given below, the matrix quantitiesWA, GA, M̃ , SA,

andWC , GC , SC are exactly the expected complete data sufficient statistics, obtained in the

VBE step — their forms are given in equations (5.126-5.132).

The natural factorisation of the variational posterior over parameters yields these forms forA

andB:

qB(B) =
k∏
j=1

N
(
b(j) |ΣBb(j), ΣB

)
(5.35)

qA(A |B) =
k∏
j=1

N
(
a(j) |ΣA

[
sA,(j) −GAb(j)

]
, ΣA

)
(5.36)

with

ΣA
−1 = diag (α) +WA (5.37)

ΣB
−1 = diag (β) + Ü −G>

AΣAGA (5.38)

B = M̃> − S>AΣAGA , (5.39)

and whereb
>
(j) andsA,(j) are vectors used to denote thejth row ofB and thejth column ofSA

respectively. It is straightforward to show that the marginal forA is given by:

qA(A) =
k∏
j=1

N
(
a(j) |ΣA

[
sA,(j) −GAΣBb(j)

]
, Σ̂A

)
, (5.40)

where Σ̂A = ΣA + ΣAGAΣBG
>
AΣA . (5.41)
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In the case of either theA andB matrices, for both the marginal and conditional distributions,

each row has the same covariance.

The variational posterior overρ, C andD is given by:

qρ(ρ) =
p∏
s=1

Ga
(
ρs | a+

T

2
, b+

1
2
Gss

)
(5.42)

qD(D |ρ) =
p∏
s=1

N
(
d(s) |ΣDd(s), ρ

−1
s ΣD

)
(5.43)

qC(C |D,ρ) =
p∏
s=1

N
(
c(s) |ΣC

[
sC,(s) −GCd(s)

]
, ρ−1

s ΣC

)
(5.44)

with

ΣC
−1 = diag (γ) +WC (5.45)

ΣD
−1 = diag (δ) + Ü −G>

CΣCGC (5.46)

G = Ÿ − S>CΣCSC −DΣDD
>

(5.47)

D = U>
Y − S>CΣCGC , (5.48)

and whered
>
(s) andsC,(s) are vectors corresponding to thesth row ofD and thesth column of

SC respectively. Unlike the case of theA andB matrices, the covariances for each row of the

C andD matrices can be very different due to the appearance of theρs term, as so they should

be. Again it is straightforward to show that the marginal forC givenρ, is given by:

qC(C |ρ) =
p∏
s=1

N
(
c(s) |ΣC

[
sC,(s) −GCΣDd(s)

]
, ρ−1

s Σ̂C

)
, (5.49)

where Σ̂C = ΣC + ΣCGCΣDG
>
CΣC . (5.50)

Lastly, the full marginals forC andD after integrating out the precisionρ are Student-t distri-

butions.

In the VBM step we need to calculate the expected natural parameters,φ, as mentioned in

theorem2.2. These will then be used in the VBE step which infers the distributionqx(x0:T ) over

hidden states in the system. The relevant natural parameterisation is given by the following:

φ(θ) = φ(A,B,C,D,R) =
[
A, A>A, B, A>B, C>R−1C, R−1C, C>R−1D

B>B, R−1, ln
∣∣R−1

∣∣ , D>R−1D, R−1D
]
. (5.51)
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The terms in the expected natural parameter vectorφ = 〈φ(θ)〉qθ(θ), where〈·〉qθ(θ) denotes

expectation with respect to the variational posterior, are then given by:

〈A〉 =
[
SA −GAΣBB

>
]>

ΣA (5.52)

〈A>A〉 = 〈A〉>〈A〉+ k
[
ΣA + ΣAGAΣBG

>
AΣA

]
(5.53)

〈B〉 = BΣB (5.54)

〈A>B〉 = ΣA

[
SA〈B〉 −GA

{
〈B〉>〈B〉+ kΣB

}]
(5.55)

〈B>B〉 = 〈B〉>〈B〉+ kΣB , (5.56)

and

〈ρs〉 = ρs =
aρ + T/2
bρ +Gss/2

(5.57)

〈ln ρs〉 = ln ρs = ψ(aρ + T/2)− ln(bρ +Gss/2) (5.58)

〈R−1〉 = diag (ρ) , (5.59)

(5.60)

and

〈C〉 =
[
SC −GCΣDD

>
]>

ΣC (5.61)

〈D〉 = DΣD (5.62)

〈C>R−1C〉 = 〈C〉>diag (ρ) 〈C〉+ p
[
ΣC + ΣCGCΣDG

>
CΣC

]
(5.63)

〈R−1C〉 = diag (ρ) 〈C〉 (5.64)

〈C>R−1D〉 = ΣC

[
SCdiag (ρ) 〈D〉 −GC〈D〉>diag (ρ) 〈D〉 − pGCΣD

]
(5.65)

〈R−1D〉 = diag (ρ) 〈D〉 (5.66)

〈D>R−1D〉 = 〈D〉>diag (ρ) 〈D〉+ pΣD . (5.67)

Also included in this list are several expectations which are not part of the mean natural param-

eter vector, but are given here because having them at hand during and after an optimisation is

useful.

5.3.2 VBE step: The Variational Kalman Smoother

We now turn to the VBE step: computingqx(x0:T ). Since SSMs are singly connected belief

networks corollary2.2 tells us that we can make use of belief propagation, which in the case of

SSMs is known as the Rauch-Tung-Striebel smoother (Rauch et al., 1963). Unfortunately the
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implementations of the filter and smoother are not as straightforward as one might expect, as is

explained in the following subsections.

In the standard point-parameter linear-Gaussian dynamical system, given the settings of the

parameters, the hidden state posterior is jointly Gaussian over the time steps. Reassuringly,

when we differentiateF with respect toqx(x0:T ), the variational posterior forx0:T is also

Gaussian:

ln qx(x0:T ) = − lnZ + 〈ln p(A,B,C,D,ρ,x0:T ,y1:T )〉 (5.68)

= − lnZ ′ + 〈ln p(x0:T ,y1:T |A,B,C,D,ρ)〉 , (5.69)

where

Z ′ =
∫
dx0:T exp〈ln p(x0:T ,y1:T |A,B,C,D,ρ)〉 , (5.70)

and where〈·〉 denotes expectation with respect to the variational posterior distribution over pa-

rameters,qθ(A,B,C,D,ρ). In this expression the expectations with respect to the approximate

parameter posteriors are performed on the logarithm of the complete-data likelihood and, even

though this leaves the coefficients on thext terms in a somewhat unorthodox state, the new log

posterior still only contains up to quadratic terms in eachxt and thereforeqx(x0:T ) must be

Gaussian, as in the point-parameter case. We should therefore still be able to use an algorithm

very similar to the Kalman filter and smoother for inference of the hidden state sequence’s suf-

ficient statistics (the E-like step). However we can no longer plug in parameters to the filter and

smoother, but have to work with the natural parameters throughout the implementation.

The following paragraphs take us through the required derivations for the forward and backward

recursions. For the sake of clarity of exposition, we do not at this point derive the algorithms for

the input-driven system (though we do present the full input-driven algorithms as pseudocode

in algorithms5.1, 5.2 and5.3). At each stage, we first we concentrate on the point-parameter

propagation algorithms and then formulate the Bayesian analogues.

5.3.3 Filter (forward recursion)

In this subsection, we first derive the well-known forward filtering recursion steps for the case

in which the parameters are fixed point-estimates. The variational Bayesian analogue of the

forward pass is then presented. The dependence of the filter equations on the inputsu1:T has

been omitted in the derivations, but is included in the summarising algorithms.
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Point-parameter derivation

We defineαt(xt) to be the posterior over the hidden state at timet given observed data up to

and including timet:

αt(xt) ≡ p(xt |y1:t) . (5.71)

Note that this is slightly different to the traditional form for HMMs which isαt(xt) ≡ p(xt,y1:t).
We then form the recursion withαt−1(xt−1) as follows:

αt(xt) =
∫
dxt−1 p(xt−1 |y1:t−1) p(xt |xt−1) p(yt |xt) / p(yt |y1:t−1) (5.72)

=
1

ζt(yt)

∫
dxt−1 αt−1(xt−1) p(xt |xt−1) p(yt |xt) (5.73)

=
1

ζt(yt)

∫
dxt−1 N(xt−1 |µt−1,Σt−1) N(xt | Axt−1, I) N(yt | Cxt, R) (5.74)

= N(xt | µt,Σt) (5.75)

where

ζt(yt) ≡ p(yt |y1:t−1) (5.76)

is the filtered output probability; this will be useful for computing the likelihood. Within the

above integrand the quadratic terms inxt−1 form the GaussianN(xt−1 |x∗t−1,Σ
∗
t−1) with

Σ∗
t−1 =

(
Σ−1
t−1 +A>A

)−1
(5.77)

x∗t−1 = Σ∗
t−1

[
Σ−1
t−1µt−1 +A>xt

]
. (5.78)

Marginalising outxt−1 gives the filtered estimates of the mean and covariance of the hidden

state as

αt(xt) = N(xt |µt,Σt) (5.79)

with

Σt =
[
I + C>R−1C −AΣ∗

t−1A
>
]−1

(5.80)

µt = Σt

[
C>R−1yt +AΣ∗

t−1Σ
−1
t−1µt−1

]
. (5.81)

At each step the normalising constantζt, obtained as the denominator in (5.72), contributes to

the calculation of the probability of the data

p(y1:T ) = p(y1)p(y2 |y1) . . . p(yt |y1:t−1) . . . p(yT |y1:T−1) (5.82)

= p(y1)
T∏
t=2

p(yt |y1:t−1) =
T∏
t=1

ζt(yt) . (5.83)
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It is not difficult to show that each of the above terms are Gaussian distributed,

ζt(yt) = N(yt |$t, ςt) (5.84)

with

ςt =
(
R−1 −R−1CΣtC

>R−1
)−1

(5.85)

$t = ςtR
−1CΣtAΣ∗

t−1Σ
−1
t−1µt−1 . (5.86)

With these distributions at hand we can compute the probability of each observationyt given

the previous observations in the sequence, and assign a predictive mean and variance to the data

at each time step as it arrives. However, this predictive distribution will change once the hidden

state sequence has been smoothed on the backward pass.

Certain expressions such as equations (5.80), (5.81), and (5.85) could be simplified using the

matrix inversion lemma (see appendixB.2), but here we refrain from doing so because a similar

operation is not possible in the variational Bayesian derivation (see comment at end of section

5.3.3).

Variational derivation

It is quite straightforward to repeat the above derivation for variational Bayesian learning, by

replacing parameters (and combinations of parameters) with their expectations under the varia-

tional posterior distributions which were calculated in the VBM step (section5.3.1). Equation

(5.74) becomes rewritten as

αt(xt) =
1

ζ ′t(yt)

∫
dxt−1 N(xt−1 | µt−1,Σt−1) ·

exp−1
2

〈
(xt −Axt−1)>I(xt −Axt−1) + (yt − Cxt)>R−1(yt − Cxt)

+ k ln |2π|+ ln |2πR|
〉

(5.87)

=
1

ζ ′t(yt)

∫
dxt−1 N(xt−1 | µt−1,Σt−1) ·

exp−1
2

[
x>t−1〈A>A〉xt−1 − 2x>t−1〈A〉>xt

+ x>t (I + 〈C>R−1C〉)xt − 2x>t 〈C>R−1〉yt + . . .
]

(5.88)

where the angled brackets〈·〉 denote expectation under the variational posterior distribution over

parameters,qθ(A,B,C,D,ρ).
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After the parameter averaging, the integrand is still log-quadratic in bothxt−1 andxt, and so

the derivation continues as before but with parameter expectations taking place of the point

estimates. Equations (5.77) and (5.78) now become

Σ∗
t−1 =

(
Σ−1
t−1 + 〈A>A〉

)−1
(5.89)

x∗t−1 = Σ∗
t−1

[
Σ−1
t−1µt−1 + 〈A〉>xt

]
, (5.90)

and marginalising outxt−1 yields a Gaussian distribution overxt,

αt(xt) = N(xt | µt,Σt) (5.91)

with mean and covariance given by

Σt =
[
I + 〈C>R−1C〉 − 〈A〉Σ∗

t−1〈A〉>
]−1

(5.92)

µt = Σt

[
〈C>R−1〉yt + 〈A〉Σ∗

t−1Σ
−1
t−1µt−1

]
. (5.93)

This variationalα-message evidently resembles the point-parameter result in (5.80) and (5.81).

Algorithm 5.1 shows the full implementation for the variational Bayesian forward recursion,

including extra terms from the inputs and input-related parametersB andD which were not

derived here to keep the presentation concise. In addition it gives the variational Bayesian

analogues of equations (5.85) and (5.86).

We now see why, for example, equation (5.85) was not simplified using the matrix inversion

lemma — this operation would necessarily split theR−1 andC matrices, yet its variational

Bayesian counterpart requires that expectations be taken over the combined productR−1C.

These expectations cannot be passed through the inversion lemma. Included in appendixB.2

is a proof of the matrix inversion lemma which shows clearly how such expectations would

become disjoined.

5.3.4 Backward recursion: sequential and parallel

In the backward pass information about future observations is incorporated to update the pos-

terior distribution on the current time step. This recursion begins at the last time stept = T

(which has no future observations to take into account) and recurses to the beginning of the

sequence to timet = 0.

There are two different forms for the backward pass. Thesequentialform makes use of the

α-messages from the forward pass and does not need to access information about the current

observation in order to calculate the posterior over the hidden state given all the data. The

parallel form is so-called because it executes all its recursions independently of the forward

177



VB Linear Dynamical Systems 5.3. The variational treatment

Algorithm 5.1: Forward recursion for variational Bayesian state-space models with inputsu1:T

(variational Kalman filter).

1. Initialise hyperparametersµ0 andΣ0 as the mean and covariance of the auxiliary hidden
statex0

2. For t = 1 to T

(a) Computeαt(xt) = N(xt |µt,Σt)

Σ∗
t−1 =

(
Σ−1
t−1 + 〈A>A〉

)−1

Σt =
(
I + 〈C>R−1C〉 − 〈A〉Σ∗

t−1〈A〉>
)−1

µt = Σt

[
〈C>R−1〉yt + 〈A〉Σ∗

t−1Σ
−1
t−1µt−1

+
(
〈B〉 − 〈A〉Σ∗

t−1〈A>B〉 − 〈C>R−1D〉
)
ut
]

(b) Compute predictive distribution ofyt

ςt =
(
〈R−1〉 − 〈R−1C〉Σt〈R−1C〉>

)−1

$t = ςt
[
〈R−1C〉Σt〈A〉Σ∗

t−1Σ
−1
t−1µt−1

+
(
〈R−1D〉+ 〈R−1C〉Σt

{
〈B〉 − 〈C>R−1D〉 − 〈A〉Σ∗

t−1〈A>B〉
})

ut
]

(c) Computeζ ′t(yt) (see (5.87) and also section5.3.7for details)

ln ζ ′t(yt) = −1
2

[
〈ln |2πR|〉 − ln

∣∣Σ−1
t−1Σ

∗
t−1Σt

∣∣+ µ>
t−1Σ

−1
t−1µt−1 − µ>

t Σ−1
t µt

+ y>t 〈R−1〉yt − 2y>t 〈R−1D〉ut + u>t 〈D>R−1D〉ut

− (Σ−1
t−1µt−1 − 〈A>B〉ut)>Σ∗

t−1(Σ
−1
t−1µt−1 − 〈A>B〉ut)

]
End For

3. Output all computed quantities, including

lnZ ′ =
∑T

t=1 ln ζ ′t(yt)
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pass, and then later combines its messages with those from the forward pass to compute the

hidden state posterior for each time step.

Sequential implementation: point-parameters

In the sequential implementation we define a set ofγ-messages to be the posterior over the

hidden state given all the data. In the case of point-parameters, the recursion is then

γt(xt) ≡ p(xt |y1:T ) (5.94)

=
∫
dxt+1 p(xt,xt+1 |y1:T ) (5.95)

=
∫
dxt+1 p(xt |xt+1,y1:T )p(xt+1 |y1:T ) (5.96)

=
∫
dxt+1 p(xt |xt+1,y1:t) p(xt+1 |y1:T ) (5.97)

=
∫
dxt+1

[
p(xt |y1:t)p(xt+1 |xt)∫
dx′t p(x′t |y1:t)p(xt+1 |x′t)

]
p(xt+1 |y1:T ) (5.98)

=
∫
dxt+1

[
αt(xt)p(xt+1 |xt)∫
dx′t αt(x′t)p(xt+1 |x′t)

]
γt+1(xt+1) . (5.99)

Here the use of Bayes’ rule in (5.98) has had the effect of replacing the explicit data dependence

with functions of theα-messages computed in the forward pass. Integrating outxt+1 yields

Gaussian distributions for the smoothed estimates of the hidden state at each time step:

γt(xt) = N(xt |ωt,Υtt) (5.100)

whereΣ∗
t is as defined in the forward pass according to (5.77) and

Kt =
(
Υ−1
t+1,t+1 +AΣ∗

tA
>
)−1

(5.101)

Υtt =
[
Σ∗
t
−1 −A>KtA

]−1
(5.102)

ωt = Υtt

[
Σ−1
t µt +A>Kt

(
Υ−1
t+1,t+1ωt+1 −AΣ∗

tΣ
−1
t µt

)]
. (5.103)

Note thatKt given in (5.101) is a different matrix to the Kalman gain matrix as found in the

Kalman filtering and smoothing literature, and should not be confused with it.

The sequential version has an advantage in online scenarios: once the data at timet, yt, has been

filtered it can be discarded and is replaced with its message,αt(xt) (see, for example,Rauch,

1963). In this way potentially high dimensional observations can be stored simply as beliefs in

the low dimensional state space.
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Sequential implementation: variational analysis

Unfortunately the step using Bayes’ rule in (5.98) cannot be transferred over to a variational

treatment, and this can be demonstrated by seeing how the termp(xt |xt+1,y1:t) in (5.97) is

altered by the lower bound operation. Up to a normalisation factor,

p(xt |xt+1,y1:t)
VB→ exp

〈
ln p(xt |xt+1,y1:t)

〉
(5.104)

= exp
〈
ln p(xt+1 |xt) + lnαt(xt)− ln

∫
dx′t αt(x

′
t)p(xt+1 |x′t)

〉
(5.105)

The last term in the above equation results in a precision term in the exponent of the form:

ln
∫
dx′t αt(x

′
t)p(xt+1 |x′t) = −1

2

[
I−A

[
Σ−1
t +A>A

]−1
A>
]

+ c. Even though this term is

easy to express for a knownA matrix, its expectation underqA(A) is difficult to compute. Even

with the use of the matrix inversion lemma (see appendixB.2), which yields
(
I +AΣtA

>)−1
,

the expression is still not amenable to expectation.

Parallel implementation: point-parameters

Some of the above problems are ameliorated using the parallel implementation, which we first

derive using point-parameters. The parallel recursion producesβ-messages, defined as

βt(xt) ≡ p(yt+1:T |xt) . (5.106)

These are obtained through a recursion analogous to the forward pass (5.72)

βt−1(xt−1) =
∫
dxt p(xt |xt−1)p(yt |xt)p(yt+1:T |xt) (5.107)

=
∫
dxt p(xt |xt−1)p(yt |xt)βt(xt) (5.108)

∝ N(xt−1 |ηt−1,Ψt−1) (5.109)

with the end condition thatβT (xT ) = 1. Omitting the details, the terms for the backward

messages are given by:

Ψ∗
t =

(
I + C>R−1C + Ψ−1

t

)−1
(5.110)

Ψt−1 =
[
A>A−A>Ψ∗

tA
]−1

(5.111)

ηt−1 = Ψt−1A
>Ψ∗

t

[
C>R−1yt + Ψ−1

t ηt

]
(5.112)
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wheret = {T, . . . , 1}, andΨ−1
T set to0 to satisfy the end condition (regardless ofηT ). The

last step in this recursion therefore finds the probability of all the data given the setting of the

auxiliaryx0 variable.

Parallel implementation: variational analysis

It is straightforward to produce the variational counterpart of the backward parallel pass just

described. Omitting the derivation, the results are presented in algorithm5.2which also includes

the influence of inputs on the recursions.

Algorithm 5.2: Backward parallel recursion for variational Bayesian state-space models with
inputsu1:T .

1. InitialiseΨ−1
T = 0 to satisfy end conditionβT (xT ) = 1

2. For t = T to 1

Ψ∗
t =

(
I + 〈C>R−1C〉+ Ψ−1

t

)−1

Ψt−1 =
(
〈A>A〉 − 〈A〉>Ψ∗

t 〈A〉
)−1

ηt−1 = Ψt−1

[
−〈A>B〉ut

+ 〈A〉>Ψ∗
t

(
〈B〉ut + 〈C>R−1〉yt − 〈C>R−1D〉ut + Ψ−1

t ηt

)]
End For

3. Output{ηt,Ψt}Tt=0

5.3.5 Computing the single and joint marginals

The culmination of the VBE step is to compute the sufficient statistics of the hidden state, which

are the marginals at each time step and the pairwise marginals across adjacent time steps.

In the point-parameter case, one can use the sequential backward pass, and then the single state

marginals are given exactly by theγ-messages, and it only remains to calculate the pairwise

marginals. It is not difficult to show that the terms involvingxt andxt+1 are best represented

with the quadratic term

ln p(xt,xt+1 |y1:T ) = −1
2

(
x>t x>t+1

)( Σ∗
t
−1 −A>

−A K−1
t

)(
xt

xt+1

)
+ const., (5.113)
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whereΣ∗
t is computed in the forward pass (5.77) andKt is computed in the backward sequential

pass (5.101).

We defineΥt,t+1 to be the cross-covariance between the hidden states at timest andt+1, given

all the observationsy1:T :

Υt,t+1 ≡
〈
(xt − 〈xt〉) (xt+1 − 〈xt+1〉)>

〉
, (5.114)

where〈·〉 denotes expectation with respect to the posterior distribution over the hidden state

sequence given all the data. We now make use of the Schur complements (see appendixB.1) of

the precision matrix given in (5.113) to obtain

Υt,t+1 = Σ∗
tA

>Υt+1,t+1 . (5.115)

The variational Bayesian implementation

In the variational Bayesian scenario the marginals cannot be obtained easily with a backward

sequential pass, and they are instead computed by combining theα- andβ-messages as follows:

p(xt |y1:T ) ∝ p(xt |y1:t)p(yt+1:T |xt) (5.116)

= αt(xt)βt(xt) (5.117)

= N(xt |ωt,Υtt) (5.118)

with

Υt,t =
[
Σ−1
t + Ψ−1

t

]−1
(5.119)

ωt = Υt,t

[
Σ−1
t µt + Ψ−1

t ηt
]
. (5.120)

This is computed fort = {0, . . . , T − 1}. At t = 0, α0(x0) is exactly the prior (5.13) over the

auxiliary hidden state; att = T , there is no need for a calculation sincep(xT |y1:T ) ≡ αT (xT ).

Similarly the pairwise marginals are given by

p(xt,xt+1 |y1:T ) ∝ p(xt |y1:t)p(xt+1 |xt)p(yt+1 |xt+1)p(yt+2:T |xt+1) (5.121)

= αt(xt)p(xt+1 |xt)p(yt+1 |xt+1)βt+1(xt+1) , (5.122)
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which under the variational transform becomes

VB→ αt(xt) exp
〈
ln p(xt+1 |xt) + ln p(yt+1 |xt+1)

〉
βt+1(xt+1) (5.123)

= N

([
xt

xt+1

]
|

[
ωt

ωt+1

]
,

[
Υt,t Υt,t+1

Υ>
t,t+1 Υt+1,t+1

])
. (5.124)

With the use of Schur complements again, it is not difficult to show thatΥt,t+1 is given by

Υt,t+1 = Σ∗
t 〈A〉>

(
I + 〈C>R−1C〉+ Ψ−1

t+1 − 〈A〉Σ
∗
t 〈A〉>

)−1
. (5.125)

This cross-covariance is then computed for all time stepst = {0, . . . , T − 1}, which includes

the cross-covariance between the zeroth and first hidden states.

In summary, the entire VBE step consists of a forward pass followed by a backward pass, during

which the marginals can be computed as well straight after eachβ-message.

The required sufficient statistics of the hidden state

In the VBE step we need to calculate the expected sufficient statistics of the hidden state, as

mentioned in theorem2.2. These will then be used in the VBM step which infers the distribution

qθ(θ) over parameters of the system (section5.3.1). The relevant expectations are:

WA =
T∑
t=1

〈xt−1x>t−1〉 =
T∑
t=1

Υt−1,t−1 + ωt−1ω
>
t−1 (5.126)

GA =
T∑
t=1

〈xt−1〉u>t =
T∑
t=1

ωt−1u>t (5.127)

M̃ =
T∑
t=1

ut〈xt〉> =
T∑
t=1

utω>
t (5.128)

SA =
T∑
t=1

〈xt−1x>t 〉 =
T∑
t=1

Υt−1,t + ωt−1ω
>
t (5.129)

WC =
T∑
t=1

〈xtx>t 〉=
T∑
t=1

Υt,t + ωtω
>
t (5.130)

GC =
T∑
t=1

〈xt〉u>t =
T∑
t=1

ωtu>t (5.131)

SC =
T∑
t=1

〈xt〉y>t =
T∑
t=1

ωty>t . (5.132)
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Note thatM andGC are transposes of one another. Also note that all the summations contain

T terms (instead of those for the dynamics model containingT − 1). This is a consequence of

our adoption of a slightly unorthodox model specification of linear dynamical systems which

includes a fictitious auxiliary hidden variablex0.

5.3.6 Hyperparameter learning

The hyperparametersα, β, γ, δ, a andb, and the prior parametersΣ0 andµ0, can be updated

so as to maximise the lower bound on the marginal likelihood (5.30). By taking derivatives of

F with respect to the hyperparameters, the following updates can be derived, applicable after a

VBM step:

α−1
j ←

1
k

[
kΣA + ΣA

[
SAS

>
A − 2GA〈B〉>S>A +GA{kΣB + 〈B〉>〈B〉}G>

A

]
ΣA

]
jj

(5.133)

β−1
j ←

1
k

[
kΣB + 〈B〉>〈B〉

]
jj

(5.134)

γ−1
j ←

1
p

[
pΣC + ΣC

[
SCdiag (ρ)S>C − 2SCdiag (ρ) 〈D〉G>

C

+ pGCΣDG
′
C +GC〈D〉>diag (ρ) 〈D〉G>

C

]
ΣC

]
jj

(5.135)

δ−1
j ←

1
p

[
pΣD + 〈D〉>diag (ρ) 〈D〉

]
jj

(5.136)

where[·]jj denotes its(j, j)th element.

Similarly, in order to maximise the probability of the hidden state sequence under the prior, the

hyperparameters of the prior over the auxiliary hidden state are set according to the distribution

of the smoothed estimate ofx0:

Σ0 ← Υ0,0 , µ0 ← ω0 . (5.137)

Last of all, the hyperparametersa andb governing the prior distribution over the output noise,

R = diag (ρ), are set to the fixed point of the equations

ψ(a) = ln b+
1
p

p∑
s=1

ln ρs ,
1
b

=
1
pa

p∑
s=1

ρs (5.138)

whereψ(x) ≡ ∂/∂x ln Γ(x) is the digammafunction (refer to equations (5.57) and (5.58)

for required expectations). These fixed point equations can be solved straightforwardly using

gradient following techniques (such as Newton’s method) in just a few iterations, bearing in

mind the positivity constraints ona andb (see appendixC.2for more details).
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5.3.7 Calculation ofF

Before we see whyF is hard to compute in this model, we should rewrite the lower bound more

succinctly using the following definitions, in the case of a pair of variablesJ andK:

KL(J) ≡
∫
dJ q(J) ln

q(J)
p(J)

(KL divergence) (5.139)

KL(J |K) ≡
∫
dJ q(J |K) ln

q(J |K)
p(J |K)

(conditional KL) (5.140)

〈KL(J |K)〉q(K) ≡
∫
dK q(K)KL(J |K) (expected conditional KL). (5.141)

Note that in (5.140) the prior overJ may need to be a function ofK for conjugacy reasons (this

is the case for state-space models for the output parametersC andD, and the noiseR). The

notationKL(J |K) is not to be confused withKL(J ||K) which is the KL divergence between

distributionsq(J) and q(K) (which are marginals). The lower boundF (5.26) can now be

written as

F = −KL(B)− 〈KL(A |B)〉q(B)

−KL(ρ)− 〈KL(D |ρ)〉q(ρ) − 〈KL(C |ρ, D)〉q(ρ,D)

+ H(qx(x0:T ))

+ 〈ln p(x1:T ,y1:T |A,B,C,D,ρ)〉q(A,B,C,D,ρ)q(x1:T ) (5.142)

whereH(qx(x0:T )) is the entropy of the variational posterior over the hidden state sequence,

H(qx(x0:T )) ≡ −
∫
dx0:T qx(x0:T ) ln qx(x0:T ) . (5.143)

The reason whyF can not be computed directly is precisely due to both this entropy term

and the last term which takes expectations over all possible hidden state sequences under the

variational posteriorqx(x0:T ). Fortunately, straight after the VBE step, we know the form of

qx(x0:T ) from (5.69), and on substituting this intoH(qx(x0:T )) we obtain

H(qx(x0:T )) ≡ −
∫
dx0:T qx(x0:T ) ln qx(x0:T ) (5.144)

= −
∫
dx0:T qx(x0:T )

[
− lnZ ′

+ 〈ln p(x0:T ,y1:T |A,B,C,D,ρ,µ0,Σ0)〉qθ(A,B,C,D,ρ)

]
(5.145)

= lnZ ′ − 〈ln p(x0:T ,y1:T |A,B,C,D,ρ,µ0,Σ0)〉qθ(A,B,C,D,ρ)qx(x0:T )

(5.146)
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where the last line follows sincelnZ ′ is not a function of the state sequencex0:T . Substituting

this form (5.146) into the above form forF (5.142) cancels the expected complete-data term in

both equations and yields a simple expression for the lower bound

F = −KL(B)− 〈KL(A |B)〉q(B)

−KL(ρ)− 〈KL(D |ρ)〉q(ρ) − 〈KL(C |ρ, D)〉q(ρ,D)

+ lnZ ′ . (5.147)

Note that this simpler expression is only valid straight after the VBE step. The various KL

divergence terms are straightforward, yet laborious, to compute (see sectionC.3for details).

We still have to evaluate the log partition function,lnZ ′. It is not as complicated as the in-

tegral in equation (5.70) suggests — at least in the point-parameter scenario we showed that

lnZ ′ =
∑T

t=1 ln ζt(yt), as given in (5.83). With some care we can derive the equivalent terms

{ζ ′t(yt)}Tt=1 for the variational Bayesian treatment, and these are given in part (c) of algorithm

5.1. Note that certain terms cancel across time steps and so the overall computation can be made

more efficient if need be.

Alternatively we can calculatelnZ ′ from direct integration of the joint (5.70) with respect to

each hidden variable one by one. In principal the hidden variables can be integrated out in any

order, but at the expense of having to store statistics for many intermediate distributions.

The complete learning algorithm for state-space models is presented in algorithm5.3. It consists

of repeated iterations of the VBM step, VBE step, calculation ofF , and hyperparameter updates.

In practice one does not need to computeF at all for learning. It may also be inefficient to

update the hyperparameters after every iteration of VBEM, and for some applications in which

the user is certain of their prior specifications, then a hyperparameter learning scheme may not

be required at all.

5.3.8 Modifications when learning from multiple sequences

So far in this chapter the variational Bayesian algorithm has concentrated on just a data set

consisting of a single sequence. For a data set consisting ofn i.i.d. sequences with lengths

{T1, . . . , Tn}, denotedy = {y1,1:T1 , . . . ,yn,1:Tn}, it is straightforward to show that the VB

algorithm need only be slightly modified to take into account the following changes.
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Algorithm 5.3: Pseudocode for variational Bayesian state-space models.

1. Initialisation

Θ ≡ {α,β,γ, δ} ← initialise precision hyperparameters

µ0,Σ0 ← initialise hidden state priors

hss← initialise hidden state sufficient statistics

2. Variational M step (VBM)

Infer parameter posteriorsqθ(θ) using{hss,y1:T ,u1:T ,Θ}

q(B), q(A |B), q(ρ), q(D |ρ), andq(C |ρ, D)

φ← calculate expected natural parameters using equations (5.52-5.67)

3. Variational E step (VBE)

Infer distribution over hidden stateqx(x0:T ) using{φ,y1:T ,u1:T }

computeαt(xt) ≡ p(xt |y1:t) t ∈ {1, . . . , T} (forward pass, algorithm5.1),

computeβt(xt) ≡ p(yt+1:T |xt) t ∈ {0, . . . , T −1} (backward pass, algorithm5.2),

computeωt,Υt,t t ∈ {0, . . . , T} (marginals), and

computeΥt,t+1 t ∈ {0, . . . , T − 1} (cross-covariance).

hss← calculate hidden state sufficient statistics using equations (5.126-5.132)

4. ComputeF

Compute various parameter KL divergences (appendixC.3)

Compute log partition function,lnZ ′ (equation (5.70), algorithm5.1)

F = −KL(B)− 〈KL(A |B)〉 −KL(ρ)− 〈KL(D |ρ)〉 − 〈KL(C |ρ, D)〉+ lnZ ′

5. Update hyperparameters

Θ← update precision hyperparameters using equations (5.133-5.136)

{µ0,Σ0} ← update auxiliary hidden statex0 prior hyperparameters using (5.137)

{a, b} ← update noise hyperparameters using (5.138)

6. WhileF is increasing, go to step2
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In the VBE step, the forward and backward passes of algorithms5.1and5.2are carried out on

each sequence, resulting in a set of sufficient statistics for each of then hidden state sequences.

These are then pooled to form a combined statistic. For example, equation (5.126) becomes

W
(i)
A =

Ti∑
t=1

〈xi,t−1x>i,t−1〉 =
Ti∑
t=1

Υi,t−1,t−1 + ωi,t−1ω
>
i,t−1 , (5.148)

and then WA =
n∑
i=1

W
(i)
A , (5.149)

whereΥi,t,t andωi,t are the results of the VBE step on theith sequence. Each of the required

sufficient statistics in equations (5.126-5.132) are obtained in a similar fashion. In addition, the

number of time stepsT is replaced with the total over all sequencesT =
∑n

i=1 Ti.

Algorithmically, the VBM step remains unchanged, as do the updates for the hyperparameters

{α,β,γ, δ, a, b}. The updates for the hyperparametersµ0 andΣ0, which govern the mean and

covariance of the auxiliary hidden state at timet = 0 for every sequence, have to be modified

slightly and become

µ0 ←
1
n

n∑
i=1

ωi,0 , (5.150)

Σ0 ←
1
n

n∑
i=1

[
Υi,0,0 + (µ0 − ωi,0)(µ0 − ωi,0)>

]
, (5.151)

where theµ0 appearing in the update forΣ0 is the updated hyperparameter. In the case of

n = 1, equations (5.150) and (5.151) resemble their originals forms given in section5.3.6.

Note that these batch updates trivially extend the analogous result for ML parameter estimation

of linear dynamical systems presented by Ghahramani and Hinton (Ghahramani and Hinton,

1996a, equation (25)), since here we do not assume that the sequences are equal in length (it is

clear from the forward and backward algorithms in both the ML and VB implementations that

the posterior variance of the auxiliary stateΥi,0,0 will only be constant if all the sequences have

the same length).

Finally the computation of the lower boundF is unchanged except that it now involves a con-

tribution from each sequence

F = −KL(B)− 〈KL(A |B)〉q(B)

−KL(ρ)− 〈KL(D |ρ)〉q(ρ) − 〈KL(C |ρ, D)〉q(ρ,D) +
n∑
i=1

lnZ ′(i) ,

wherelnZ ′(i) is computed in the VBE step in algorithm5.1for each sequence individually.
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5.3.9 Modifications for a fully hierarchical model

As mentioned towards the end of section5.2.2, the hierarchy of hyperparameters for priors over

the parameters is not complete for this model as it stands. There remains the undesirable feature

that the parametersΣ0 andµ0 contain more free parameters as the dimensionality of the hidden

state increases. There is a similar problem for the precision hyperparameters. We refer the

reader to chapter4 in which a similar structure was used for the hyperparameters of the factor

loading matrices.

With such variational distributions in place for VB LDS, the propagation algorithms would

change, replacing, for example,α, with its expectation over its variational posterior,〈α〉q(α),

and the hyperhyperparametersaα, bα of equation (5.17) would be updated to best fit the vari-

ational posterior forα, in the same fashion that the hyperparametersa, b are updated to reflect

the variational posterior onρ (section5.3.6). In addition a similar KL penalty term would arise.

For the parametersΣ0 andµ0, again KL terms would crop up in the lower bound, and where

these quantities appeared in the propagation algorithms they would have to be replaced with

their expectations under their variational posterior distributions.

These modifications were considered too time-consuming to implement for the experiments

carried out in the following section, and so we should of course be mindful of their exclusion.

5.4 Synthetic Experiments

In this section we give two examples of how the VB algorithm for linear dynamical systems

can discover meaningful structure from the data. The first example is carried out on a data set

generated from a simple LDS with no inputs and a small number of hidden states. The second

example is more challenging and attempts to learn the number of hidden states and their dynam-

ics in the presence of noisy inputs. We find in both experiments that the ARD mechanism which

optimises the precision hyperparameters can be used successfully to determine the structure of

the true generating model.

5.4.1 Hidden state space dimensionality determination (no inputs)

An LDS with hidden state dimensionality ofk = 6 and an output dimensionality ofp = 10 was

set up with parameters randomly initialised according to the following procedure.

The dynamics matrixA (k × k) was fixed to have eigenvalues of(.65, .7, .75, .8, .85, .9), con-

structed from a randomly rotated diagonal matrix; choosing fairly high eigenvalues ensures that
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10 20 30 50 100 150 200 250 300
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Figure 5.4: Hinton diagrams of the dynamics (A) and output (C) matrices after 500 iterations
of VBEM. From left to right, the length of the observed sequencey1:T increases fromT =
10 to 300. This true data was generated from a linear dynamical system withk = 6 hidden
state dimensions, all of which participated in the dynamics (see text for a description of the
parameters used). As a visual aid, the entries ofA matrix and the columns of theC matrix have
been permuted in the order of the size of the hyperparameters inγ.

every dimension participates in the hidden state dynamics. The output matrixC (p×k) had each

entry sampled from a bimodal distribution made from a mixture of two Gaussians with means

at (2,-2) and common standard deviations of 1; this was done in an attempt to keep the matrix

entries away from zero, such that every hidden dimension contributes to the output covariance

structure. Both the state noise covarianceQ and output noise covarianceR were set to be the

identity matrix. The hidden state at timet = 1 was sampled from a Gaussian with mean zero

and unit covariance.

From this LDS model several training sequences of increasing length were generated, ranging

fromT = 10, . . . , 300 (the data sets are incremental). A VBLDS model with hidden state space

dimensionalityk = 10 was then trained on each single sequence, for a total of 500 iterations

of VBEM. The resultingA andC matrices are shown in figure5.4. We can see that for short

sequences the model chooses a simple representation of the dynamics and output processes,

and for longer sequences the recovered model is the same as the underlying LDS model which

generated the sequences. Note that the model learns a predominantly diagonal dynamics matrix,

or a self-reinforcing dynamics (this is made obvious by the permutation of the states in the

figure (see caption), but is not a contrived observation). The likely reason for this is the prior’s

preference for theA matrix to have small sum-of-square entries for each column; since the

dynamics matrix has to capture a certain amount of power in the hidden dynamics, the least

expensive way to do this is to place most of the power on the diagonal entries.

Plotted in figure5.5are the trajectories of the hyperparametersα andγ, during the VB optimi-

sation for the sequence of lengthT = 300. For each hidden dimensionj the output hyperparam-

eterγj (vertical) is plotted against the dynamics hyperparameterαj . It is in fact the logarithm

of thereciprocalof the hyperparameter that is plotted on each axis. Thus if a hidden dimension

becomes extinct, the reciprocal of its hyperparameter tends to zero (bottom left of plots). Each

component of each hyperparameter is initialised to 1 (see annotation for iteration 0, at top right

of plot 5.5(a)), and during the optimisation some dimensions become extinct. In this example,

four hidden state dimensions become extinct, both in their ability to participate in the dynamics
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(a) Hidden state inverse-hyperparameter tra-
jectories (logarithmic axes).
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(b) Close-up of top right corner of (a).

Figure 5.5: Trajectories of the hyperparameters for the casen = 300, plotted asln 1
α (horizon-

tal axis) againstln 1
γ (vertical axis). Each trace corresponds to one ofk hidden state dimen-

sions, with points plotted after each iteration of VBEM. Note the initialisation of(1, 1) for all
(αj , γj), j = 1, . . . , k (labelled iteration 0). The direction of each trajectory can be determined
by noting the spread of positions at successive iterations, which are resolvable at the begin-
ning of the optimisation, but not so towards the end (see annotated close-up). Note especially
that four hyperparameters are flung to locations corresponding to very small variances of the
prior for both theA andC matrix columns (i.e. this has effectively removed those hidden state
dimensions), and six remain in the top right with finite variances. Furthermore, the L-shaped
trajectories of the eventually extinct hidden dimensions imply that in this example the dimen-
sions are removed first from the model’s dynamics, and then from the output process (see figure
5.8(a,c) also).

and their contribution to the covariance of the output data. Six hyperparameters remain useful,

corresponding tok = 6 in the true model. The trajectories of these are seen more clearly in

figure5.5(b).

5.4.2 Hidden state space dimensionality determination (input-driven)

This experiment demonstrates the capacity of the input-driven model to use (or not to use) an

input-sequence to model the observed data. We obtained a sequencey1:T of lengthT = 100 by

running the linear dynamical system as given in equations (5.4,5.5), with a hidden state space

dimensionality ofk = 2, generating an observed sequence of dimensionalityp = 4. The input

sequence,u1:T , consisted of three signals: the first two wereπ
2 phase-lagged sinusoids of period

50, and the third dimension was uniform noise∼ U(0, 1).

The parametersA,C, andRwere created as described above (section5.4.1). The eigenvalues of

the dynamics matrix were set to(.65, .7), and the covariance of the hidden state noise set to the

identity. The parameterB (k×u) was set to the all zeros matrix, so the inputs did not modulate
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the hidden state dynamics. The first two columns of theD (p × u) matrix were sampled from

the uniformU(−10, 10), so as to induce a random (but fixed) displacement of the observation

sequence. The third column of theD matrix was set to zeros, so as to ignore the third input

dimension (noise). Therefore the only noise in the training data was that from the state and

output noise mechanisms (Q andR).

Figure5.6shows the input sequence used, the generated hidden state sequence, and the result-

ing observed data, overT = 100 time steps. We would like the variational Bayesian linear

dynamical system to be able to identify the number of hidden dimensions required to model

the observed data, taking into account the modulatory effect of the input sequence. As in the

previous experiment, in this example we attempt to learn an over-specified model, and make use

of the ARD mechanisms in place to recover the structure of the underlying model that generated

the data.

In full, we would like the model to learn that there arek = 2 hidden states, that the third

input dimension is irrelevant to predicting the observed data, that all the input dimensions are

irrelevant for the hidden state dynamics, and that it is only the two dynamical hidden variables

that are being embedded in the data space.

The variational Bayesian linear dynamical system was run withk = 4 hidden dimensions, for

a total of 800 iterations of VBE and VBM steps (see algorithm5.3 and its sub-algorithms).

Hyperparameter optimisations after each VBM step were introduced on a staggered basis to

ease interpretability of the results. The dynamics-related hyperparameter optimisations (i.e.α

andβ) were begun after the first 10 iterations, the output-related optimisations (i.e.γ andδ)

after 20 iterations, and the remaining hyperparameters (i.e.a, b, Σ0 andµ0) optimised after 30

iterations. After each VBE step,F was computed and the current state of the hyperparameters

recorded.

Figure5.7 shows the evolution of the lower bound on the marginal likelihood during learning,

displayed as both the value ofF computed after each VBE step (figure5.7(a)), and thechange

in F between successive iterations of VBEM (figure5.7(b)). The logarithmic plot shows the

onset of each group of hyperparameter optimisations (see caption), and also clearly shows three

regions where parameters are being pruned from the model.

As before we can analyse the change in the hyperparameters during the optimisation process. In

particular we can examine the ARD hyperparameter vectorsα,β,γ, δ, which contain the prior

precisions for the entries of each column of each of the matricesA,B,C andD respectively.

Since the hyperparameters are updated to reflect the variational posterior distribution over the

parameters, a large value suggest that the relevant column contains entries are close to zero, and

therefore can be considered excluded from the state-space model equations (5.4) and (5.5).
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(a) 3 dimensional input sequence.
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(b) 2 dimensional hidden state sequence.
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(c) 4 dimensional observed data.

Figure 5.6: Data for the input-driven example in section5.4.2. (a): The 3 dimensional input
data consists of two phase-lagged sinusoids of period 50, and a third dimension consisting of
noise uniformly distributed on[0, 1]. BothB andD contain zeros in their third columns, so the
noise dimension is not used when generating the synthetic data.(b): The hidden state sequence
generated from the dynamics matrix,A, which in this example evolves independently of the
inputs. (c): The observed data, generated by combining the embedded hidden state sequence
(via the output matrixC) and the input sequence (via the input-output matrixD), and then
adding noise with covarianceR. Note that the observed data is now a sinusoidally modulated
simple linear dynamical system.
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(a) Evolution ofF during iterations of VBEM.
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(b) Change inF between successive iterations.

Figure 5.7: Evolution of the lower boundF during learning of the input-dependent model of
section5.4.2. (a): The lower boundF increases monotonically with iterations of VBEM.(b):
Interesting features of the optimisation can be better seen in a logarithmic plot of the change of
F between successive iterations of VBEM. For example, it is quite clear there is a sharp increase
in F at 10 iterations (dynamics-related hyperparameter optimisation activated), at 20 iterations
(output-related hyperparameter optimisation activated), and at 30 iterations (the remaining hy-
perparameter optimisations are activated). The salient peaks around 80, 110, and 400 iterations
each correspond to the gradual automatic removal of one or more parameters from the model by
hyperparameter optimisation. For example, it is quite probable that the peak at around iteration
400 is due to the recovery of the first hidden state modelling the dynamics (see figure5.8).
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Figure5.8 displays the components of each of the four hyperparameter vectors throughout the

optimisation. The reciprocal of the hyperparameter is plotted since it is more visually intuitive

to consider the variance of the parameters falling to zero as corresponding to extinction, instead

of the precision growing without bound. We can see that, by 500 iterations, the algorithm has

(correctly) discovered that there are only two hidden variables participating in the dynamics

(from α), these same two variables are used as factors embedded in the output (fromγ), that

none of the input dimensions is used to modulate the hidden dynamics (fromβ), and that just

two dimensions of the input are required to displace the data (fromδ). The remaining third

dimension of the input is in fact disregarded completely by the model, which is exactly according

to the recipe used for generating this synthetic data.

Of course, with a smaller data set, the model may begin to remove some parameters corre-

sponding to arcs of influence between variables across time steps, or between the inputs and

the dynamics or outputs. This and the previous experiment suggest that with enough data, the

algorithm will generally discover a good model for the data, and indeed recover the true (or

equivalent) model if the data was in fact generated from a model within the class of models

accessible by the specified input-dependent linear dynamical system.

Although not observed in the experiment presented here, some caution needs to be taken with

much larger sequences to avoid local minima in the optimisation. In the larger data sets the

problems of local maxima or very long plateau regions in the optimisation become more fre-

quent, with certain dimensions of the latent space modelling either the dynamics or the output

processes, but not both (or neither). This problem is due to the presence of a dynamics model

coupling the data across each time step. Recall that in the factor analysis model (chapter4),

because of the spherical factor noise model, ARD can rotate the factors into a basis where the

outgoing weights for some factors can be set to zero (by taking their precisions to infinity). Un-

fortunately this degeneracy is not present for the hidden state variables of the LDS model, and

so concerted efforts are required to rotate the hidden state along the entire sequence.

5.5 Elucidating gene expression mechanisms

Description of the process and data

The data consists ofn = 34 time series of the expressions of genes involved in a transcriptional

process in the nuclei of human T lymphocytes. Each sequence consists ofT = 10 measurements

of the expressions ofp = 88 genes, at time points(0, 2, 4, 6, 8, 18, 24, 32, 48, 72) hours after a

treatment to initiate the transcriptional process (seeRangel et al., 2001, section 2.1). For each

sequence, the expression levels of each gene were normalised to have mean 1, by dividing by

the mean gene expression over the 10 time steps. This normalisation reflects our interest in
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Figure 5.8: Evolution of the hyperparameters with iterations of variational Bayesian EM, for
the input-driven model trained on the data shown in figure5.6 (see section5.4.2). Each plot
shows the reciprocal of the components of a hyperparameter vector, corresponding to the prior
variance of the entries of each column of the relevant matrix. The hyperparameter optimisation
is activated after 10 iterations of VBEM for the dynamics-related hyperparametersα andβ,
after 20 iterations for the output-related hyperparametersγ andδ, and after 30 for the remaining
hyperparmeters.(a): After 150 iterations of VBEM, 1

α3
→ 0 and 1

α4
→ 0, which corresponds

to the entries in the 3rd and 4th columns ofA tending to zero. Thus only the remaining two
hidden dimensions (1,2) are being used for the dynamics process.(b): All hyperparameters in
the β vector grow large, corresponding to each of the column entries inB being distributed
about zero with high precision; thus none of the dimensions of the input vector is being used
to modulate the hidden state.(c): Similar to theA matrix, two hyperparameters in the vector
γ remain small, and the remaining two increase without bound,1

γ3
→ 0 and 1

γ4
→ 0. This

corresponds to just two hidden dimensions (factors) causing the observed data through theC
embedding. These are thesamedimensions as used for the dynamics process, agreeing with
the mechanism that generated the data.(d): Just one hyperparameter,1

δ3
→ 0, corresponding

to the model ignoring the third dimension of the input, which is a confusing input unused in
the true generation process (as can be seen from figure5.6(a)). Thus the model learns that this
dimension is irrelevant to modelling the data.
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Figure 5.9: The gene expression data ofRangel et al.(2001). Each of the 88 plots corresponds
to a particular gene on the array, and contains all of the recorded 34 sequences each of length
10.

the profiles of the genes rather than the absolute expression levels. Figure5.9shows the entire

collection of normalised expression levels for each gene.

A previous approach to modelling gene expression levels which used graphical models to model

the causal relationships between genes is presented inFriedman et al.(2000). However, this ap-

proach ignored the temporal dependence of the gene intensities during trials and went only as

far as to infer the causal relationships between the genes within one time step. Their method dis-

cretised expression levels and made use of efficient candidate proposals and greedy methods for

searching the space of model structures. This approach also assumed that all the possibly inter-

acting variables are observed on the microarray. This precludes the existence of hidden causes

or unmeasured genes whose involvement might dramatically simplify the network structure and

therefore ease interpretability of the mechanisms in the underlying biological process.

Linear dynamical systems and other kinds of possibly nonlinear state-space models are a good

class of model to begin modelling this gene expression data. The gene expression measurements

are the noisy 88-dimensional outputs of the linear dynamical system, and the hidden states of

the model correspond to unobserved factors in the gene transcriptional process which are not

recorded in the DNA microarray — they might correspond simply to unmeasured genes, or

they could model more abstractly the effect of players other than genes, for example regulatory

proteins and background processes such as mRNA degradation.
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Some aspects of using the LDS model for this data are not ideal. For example, we make the

assumptions that the dynamics and output processes are time invariant, which is unlikely in a

real biological system. Furthermore the times at which the data are taken are not linearly-spaced

(see above), which might imply that there is some (possibly well-studied) non-linearity in the

rate of the transcriptional process; worse still, there may be whole missing time slices which, if

they had been included, would have made the dynamics process closer to stationary. There is

also the usual limitation that the noise in the dynamics and output processes is almost certainly

not Gaussian.

Experiment results

In this experiment we use the input-dependent LDS model, andfeed backthe gene expressions

from the previous time step into the input for the current time step; in doing so we attempt

to discover gene-gene interactions across time steps (in a causal sense), with the hidden state

in this model now really representing unobserved variables. An advantage of this architecture

is that we can now use the ARD mechanisms to determine which genes are influential across

adjacent time slices, just as before (in section5.4.2) we determined which inputs were relevant

to predicting the data.

A graphical model for this setup is given in figure5.10. When the input is replaced with the

previous time step’s observed data, the equations for the state-space model can be rewritten from

equations (5.4) and (5.5) into the form:

xt = Axt−1 +Byt−1 + wt (5.152)

yt = Cxt +Dyt−1 + vt . (5.153)

As a function only of the data at the previous time step,yt−1, the data at timet can be written

yt = (CB +D)yt−1 + rt , (5.154)

wherert = vt + Cwt + CAxt−1 includes all contributions from noise and previous states.

Thus to first order the interaction between gened and genea can be characterised by the element

[CB +D]ad of the matrix. Indeed this matrix need not be symmetric and the element represents

activation or inhibition from gened to genea at the next time step, depending on its sign. We

will return to this quantity shortly.

5.5.1 Generalisation errors

For this experiment we trained both variational Bayesian and MAP LDS models on the first

30 of the 34 gene sequences, with the dimension of the hidden state ranging fromk = 1 to
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Figure 5.10: The feedback graphical model with outputs feeding into inputs.

20. The remaining 4 sequences were set aside as a test set. Since we required an input at time

t = 1, u1, the observed sequences that were learnt began from time stept = 2. The MAP

LDS model was implemented using the VB LDS with the following two modifications: first,

the hyperparametersα,β,γ, δ anda, b were not optimised (however, the auxiliary state prior

meanµ0 and covarianceΣ0 were learnt); second, the sufficient statistics for the parameters were

artificially boosted by a large factor to simulate delta functions for the posterior — i.e. in the

limit of largen the VBM step recovers the MAP M step estimate of the parameters.

Both algorithms were run for 300 EM iterations, with no restarts. The one-step-ahead mean

total square reconstruction error was then calculated for both the training sequences and the test

sequences using the learnt models; the reconstruction of thetth observation for theith sequence,

yi,t, was made like so:

ŷMAP
i,t = CMAP〈xi,t〉qx +DMAPyi,t−1 (5.155)

ŷVB
i,t = 〈C〉qC 〈xi,t〉qx + 〈D〉qDyi,t−1 . (5.156)

To clarify the procedure: to reconstruct the observations for theith sequence, we use the entire

observation sequenceyi,1:T to first infer the distribution over the hidden state sequencexi,1:T ,

and then we attempt to reconstruct eachyi,t using just the hidden statexi,t andyi,t−1. The form

given for the VB reconstruction in (5.156) is valid since, subject to the approximate posterior:

all of the variational posterior distributions over the parameters and hidden states are Gaussian,

C andxt are independent, and the noise is Student-t distributed with mean zero.

Thus for each value ofk, and for each of the MAP and VB learnt models, the total squared error

per sequence is calculated according to:

Etrain =
1

ntrain

∑
i∈train

Ti∑
t=2

(ŷi,t − yi,t)
2 (5.157)

Etest =
1
ntest

∑
i∈test

Ti∑
t=2

(ŷi,t − yi,t)
2 . (5.158)
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Figure 5.11: The per sequence squared reconstruction error for one-step-ahead prediction (see
text), as a function of the dimension of the hidden state, ranging fromk = 1 to 64, on(a) the 30
training sequences, and(b) the 4 test sequences.

Figure5.11shows the squared reconstruction error for one-step-ahead prediction, as a function

of the dimension of the hidden state for both the training and test sequences. We see that the

MAP LDS model achieves a decreasing reconstruction error on the training set as the dimen-

sionality of the hidden state is increased, whereas VB produces an approximately constant error,

albeit higher. On prediction for the test set, MAP LDS performs very badly and increasingly

worse for more complex learnt models, as we would expect; however, the VB performance is

roughly constant with increasingk, suggesting that VB is using the ARD mechanism success-

fully to discard surplus modelling power. The test squared prediction error is slightly more than

that on the training set, suggesting that VB is overfitting slightly.

5.5.2 Recovering gene-gene interactions

We now return to the interactions between genesd anda – more specifically the influence of

gened on genea – in the matrix[CB +D]. Those entries in the matrix which are significantly

different from zero can be considered as candidates for ‘interactions’. Here we consider an

entry to be significant if the zero point is more than 3 standard deviations from the posterior

mean for that entry (based on the variational posterior distribution for the entry). Calculating

the significance for the combinedCB+D matrix is laborious, and so here we provide results for

only theD matrix. Since there is a degeneracy in the feedback model, we chose to effectively

remove the first term,CB, by constraining all (but one) of the hyperparameters inβ to very high

values. The spared hyperparameter inβ is used to still model an offset in the hidden dynamics

using the bias input. This process essentially enforces[CB]ad = 0 for all gene-gene pairs, and

so simplifies the interpretation of the learnt model.

200



VB Linear Dynamical Systems 5.6. Possible extensions and future research

Figure5.12shows the interaction matrix learnt by the MAP and VB models (with the column

corresponding the bias removed), for the case ofk = 2 hidden state dimensions. For the MAP

result we simply showD + CB. We see that the MAP and VB matrices share some aspects in

terms of the signs and size of some of the interactions, but under the variational posterior only

a few of the interactions are significantly non-zero, leading to a very sparse interaction matrix

(see figure5.13). Unfortunately, due to proprietary restrictions on the expression data the iden-

tities of the genes cannot be published here, so it is hard to give a biological interpretation to the

network in figure5.13. The hope is that these graphs suggest interactions which agree qualita-

tively with the transcriptional mechanisms already established in the research community. The

ultimate result would be to be able to confidently predict the existence of as-yet-undocumented

mechanisms to stimulate and guide future biological experiments. The VB LDS algorithm may

provide a useful starting point for this research programme.

5.6 Possible extensions and future research

The work in this chapter can be easily extended to linear-Gaussian state-space models on trees,

rather than chains, which could be used to model a variety of data. Moreover, for multiply-

connected graphs, the VB propagation subroutine can still be used within a structured VB ap-

proximation.

Another interesting application of this body of theory could be to a Bayesian version of what

we call aswitching state-space model(SwSSM), which has the following dynamics:

a switch variablest with dynamics p(st = i | st−1 = j) = Tij , (5.159)

hidden state dynamicsp(xt | st−1,xt−1) = N(xt |Ast−1xt−1, Qst−1) , (5.160)

and output function p(yt | st,xt) = N(yt | Cstxt, Rst) . (5.161)

That is to say we have a non-stationary switching linear dynamical system whose parameters are

drawn from a finite set according to a discrete variable with its own dynamics. The appealing

aspect of this model is that it contains many models as special cases, including: mixtures of

factor analysers, mixtures of linear dynamical systems, Gaussian-output hidden Markov models,

and mixtures of Gaussians. With appropriate optimisation of the lower bound on the marginal

likelihood, one would hope that the data would provide evidence that one or other, or indeed

hybrids, of the above special cases was the underlying generating model, or best approximates

the true generating process in some sense. We have seen an example of variational Bayesian

learning for hidden Markov models in chapter3.

We have not commented on how reliably we expect the variational Bayesian method to approx-

imate the marginal likelihood. Indeed a full analysis of the tightness of the variational bound
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(a) The MAP EM solution[D + CB]ad. (b) Means〈Dad〉 after VBEM.

(c) Variances〈D2
ad〉 − 〈Dad〉2 after VBEM. (d) Significant entries ofD underqD(D).

Figure 5.12: The gene-gene interaction matrix learnt from the(a) MAP and (b) VB models
(with the column corresponding to the bias input removed). Note that some of the entries are
similar in each of the two matrices. Also shown is(c) the covariance of the posterior distribution
of each element, which is a separable product of functions of each of the two genes’ identities.
Show in(d) are the entries of〈Dad〉 which are significantly far from zero, that is the value of
zero is more than 3 standard deviations from the mean of the posterior.
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Figure 5.13: An example representation of the recovered interactions in theD matrix, as shown
in figure5.12(d). Each arc between two genes represents a significant entry inD. Red (dotted)
and green (solid) denote inhibitory and excitatory influences, respectively. The direction of the
influence is from the the thick end of the arc to the thin end. Ellipses denote self-connections.
To generate this plot the genes were placed randomly and then manipulated slightly to reduce
arc-crossing.
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would require sampling for this model (as carried out inFrüwirth-Schnatter, 1995, for exam-

ple). This is left for further work, but the reader is referred to chapter4 of this thesis and also

to Miskin (2000), where sampling estimates of the marginal likelihood are directly compared to

the VB lower bound and found to be comparable for practical problems.

We can also model higher than first order Markov processes using this model, by extending the

feedback mechanism used in section5.5. This could be achieved by feeding back concatenated

observed datayt−d:t−1 into the current input vectorut, whered is related to the maximum order

present in the data. This procedure is common practice to model higher order data, but in our

Bayesian scheme we can also learn posterior uncertainties for the parameters of the feedback,

and can entirely remove some of the inputs via the hyperparameter optimisation.

This chapter has dealt solely with the case of linear dynamics and linear output processes with

Gaussian noise. Whilst this is a good first approximation, there are many scenarios in which

a non-linear model is more appropriate, for one or both of the processes. For example,Särel̈a

et al. (2001) present a model with factor analysis as the output process and a two layer MLP

network to model a non-linear dynamics process from one time step to the next, andValpola

and Karhunen(2002) extend this to include a non-linear output process as well. In both, the

posterior is assumed to be of (constrained) Gaussian form and a variational optimisation is

performed to learn the parameters and infer the hidden factor sequences. However, their model

does not exploit the full forward-backward propagation and instead updates the hidden state one

step forward and backward in time at each iteration.

5.7 Summary

In this chapter we have shown how to approximate the marginal likelihood of a Bayesian linear

dynamical system using variational methods. Since the complete-data likelihood for the LDS

model is in the conjugate-exponential family it is possible to write down a VBEM algorithm

for inferring the hidden state sequences whilst simultaneously maintaining uncertainty over the

parameters of the model, subject to the approximation that the hidden variables and parameters

are independent given the data.

Here we have had to rederive the forward and backward passes in the VBE step in order for them

to take as input the natural parameter expectations from the VBM step. It is an open problem

to prove that for LDS models the natural parameter mappingφ(θ) is not invertible; that is

to say there exists nõθ in general that satisfiesφ(θ̃) = φ = 〈φ(θ)〉qθ(θ). We have therefore

derived here the variational Bayesian counterparts of the Kalman filter and Rauch-Tung-Striebel

smoother, which can in fact be supplied withanydistribution over the parameters. As with other

conjugate-exponential VB treatments, the propagation algorithms have the same complexity as

the MAP point-parameter versions.
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We have shown how the algorithm can use the ARD procedure of optimising precision hyperpa-

rameters to discover the structure of models of synthetic data, in terms of the number of required

hidden dimensions. By feeding back previous data into the inputs of the model we have shown

how it is possible to elucidate interactions between genes in a transcription mechanism from

DNA microarray data. Collaboration is currently underway to interpret these results (personal

communication with D. Wild and C. Rangel).
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