Chapter 5

Variational Bayesian Linear
Dynamical Systems

5.1 Introduction

This chapter is concerned with the variational Bayesian treatment of Linear Dynamical Systems
(LDSs), also known as linear-Gaussian state-space models (SSMs). These models are widely
used in the fields of signal filtering, prediction and control, because: (1) many systems of inter-
est can be approximated using linear systems, (2) linear systems are much easier to analyse than
nonlinear systems, and (3) linear systems can be estimated from data efficiently. State-space
models assume that the observed time series data was generated from an underlying sequence
of unobserved (hidden) variables that evolve with Markovian dynamics across successive time
steps. The filtering task attempts to infer the likely values of the hidden variables that generated
the current observation, given a sequence of observations up to and including the current obser-
vation; the prediction task tries to simulate the unobserved dynamics one or many steps into the
future to predict a future observation.

The task of deciding upon a suitable dimension for the hidden state space remains a difficult
problem. Traditional methods, such as early stopping, attempt to reduce generalisation error
by terminating the learning algorithm when the error as measured on a hold-out set begins to
increase. However the hold-out set error is a noisy quantity and for a reliable measure a large
set of data is needed. We would prefer to learn from all the available data, in order to make
predictions. We also want to be able to obtain posterior distributions over all the parameters in
the model in order to quantify our uncertainty.

We have already shown in chaptethat we can infer the dimensionality of the hidden variable
space (i.e. the number of factors) in a mixture of factor analysers model, by placing priors on
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VB Linear Dynamical Systems 5.2. The Linear Dynamical System model

the factor loadings which then implement automatic relevance determination. Linear-Gaussian
state-space models can be thought of as factor analysis through time with the hidden factors
evolving with noisy linear dynamics. A variational Bayesian treatment of these models provides
a novel way to learn their structure, i.e. to identify the optimal dimensionality of their state
space.

With suitable priors the LDS model is in the conjugate-exponential family. This chapter presents
an example of variational Bayes applied to a conjugate-exponential model, which therefore re-
sults in a VBEM algorithm which has an approximate inference procedure with the same com-
plexity as the MAP/ML counterpart, as explained in chaetJnfortunately, the implemen-
tation is not as straightforward as in other models, for example the Hidden Markov Model of
chapter3, as some subparts of the parameter-to-natural parameter mapping are non-invertible.

The rest of this chapter is written as follows. In secttoBwe review the LDS model for both

the standard and input-dependent cases, and specify conjugate priors over all the parameters.
In 5.3 we use the VB lower bounding procedure to approximate the Bayesian integral for the
marginal likelihood of a sequence of data under a particular model, and derive the VBEM al-
gorithm. The VBM step is straightforward, but the VBE step is much more interesting and
we fully derive the forward and backward passes analogous to the Kalman filter and Rauch-
Tung-Striebel smoothing algorithms, which we call tregiational Kalman filterandsmoother
respectively. In this section we also discuss hyperparameter learning (including optimisation of
automatic relevance determination hyperparameters), and also show how the VB lower bound
can be computed. In sectidh4 we demonstrate the model’s ability to discover meaningful
structure from synthetically generated data sets (in terms of the dimension of the hidden state
space etc.). In sectioh.5 we present a very preliminary application of the VB LDS model

to real DNA microarray data, and attempt to discover underlying mechanisms in the immune
response of human T-lymphocytes, starting from T-cell receptor activation through to gene tran-
scription events in the nucleus. In secti®® we suggest extensions to the model and possible
future work, and in sectioB.7 we provide some conclusions.

5.2 The Linear Dynamical System model

5.2.1 Variables and topology

In state-space models (SSMs), a sequdpgge. . ., yr) of p-dimensional real-valued observa-
tion vectors, denotegt;., is modelled by assuming that at each time gtepp was generated
from ak-dimensional real-valued hidden state variabjeand that the sequence %% follow
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Figure 5.1: Graphical model representation of a state-space model. The hidden vatjables
evolve with Markov dynamics according to parametergljrand at each time step generate an
observatiory; according to parameters .

a first-order Markov process. The joint probability of a sequence of states and observations is
therefore given by:

T
p(xiar, yier) = p(xa)p(y1 |x1) [ [ p(xe [ xe-1)p(ye | xe) - (5.1)
t=2

This factorisation of the joint probability can be represented by the graphical model shown in
figure5.1 For the moment we consider just a single sequence, not a batch of i.i.d. sequences.
For ML and MAP learning there is a straightforward extension for learning multiple sequences;
for VB learning the extensions are outlined in secto®.8

The form of the distributiorp(x;) over the first hidden state is Gaussian, and is described
and explained in more detail in sectiér2.2 We focus on models where both the dynamics,

p(x¢ | x¢—1), and output functiong;(y; | x;), are linear and time-invariant and the distributions

of the state evolution and observation noise variables are Gaussian, i.e. linear-Gaussian state-
space models:

Xy = Axy 1 + Wy, wi ~ N(0,Q) (5.2)
yi =Cx + vy, vy ~ N(0, R) (5.3)

whereA (k x k) is the state dynamics matrik, (p x k) is the observation matrix, ar@ (k x k)

andR (p x p) are the covariance matrices for the state and output noise varsablasd v;,.

The parametersl andC' are analogous to the transition and emission matrices respectively in
a Hidden Markov Model (see chapt8). Linear-Gaussian state-space models can be thought
of as factor analysis where the low-dimensional (latent) factor vector at one time step diffuses
linearly with Gaussian noise to the next time step.

We will use the terms ‘linear dynamical system’ (LDS) and ‘state-space model’ (SSM) inter-
changeably throughout this chapter, although they emphasise different properties of the model.
LDS emphasises that the dynamics are linear — such models can be represented either in state-
space form or in input-output form. SSM emphasises that the model is represented as a latent-
variable model (i.e. the observables are generated via some hidden states). SSMs can be non-
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Figure 5.2: The graphical model for linear dynamical systems with inputs.

linear in general; here it should be assumed that we refer to linear models with Gaussian noise
except if stated otherwise.

A straightforward extension to this model is to allow both the dynamics and observation model
to include a dependence on a seried-gimensional driving inputsiy.7:

x; = Axy_1 + Buy + wy (5.4)
Yt = CXt + Dut + V¢ . (55)

Here B (k x d) andD (p x d) are the input-to-state and input-to-observation matrices respec-
tively. If we now augment the driving inputs with a constant bias, then this input driven model is
able to incorporate an arbitrary origin displacement for the hidden state dynamics, and also can
induce a displacement in the observation space. These displacements can be learnt as parameters
of the input-to-state and input-to-observation matrices.

Figure5.2shows the graphical model for an input-dependent linear dynamical system. An input-
dependent model can be used to model control systems. Another possible way in which the
inputs can be utilised is to feedback the outputs (data) from previous time steps in the sequence
into the inputs for the current time step. This means that the hidden state can concentrate on
modelling hidden factors, whilst the Markovian dependencies between succestgutsare
modelled using the output-input feedback construction. We will see a good example of this
type of application in sectiob.5 where we use it to model gene expression data in a DNA
microarray experiment.

On a point of notational convenience, the probability statements in the later derivations leave im-
plicit the dependence of the dynamics and output processes on the driving inputs, since for each
sequence they are fixed and merely modulate the processes at each time step. Their omission
keeps the equations from becoming unnecessarily complicated.

Without loss of generality we can set the hidden state evolution noise covarigrtoghe iden-
tity matrix. This is possible since an arbitrary noise covariance can be incorporated into the state
dynamics matrix4, and the hidden state rescaled and rotated to be made commensurate with
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this change (seRoweis and Ghahramari999 page 2 footnote); these changes are possible
since the hidden state is unobserved, by definition. This is the case in the maximum likelihood
scenario, but in the MAP or Bayesian scenarios this degeneracy is lost since various scalings in
the parameters will be differently penalised under the parameter priors (see Seztitirelow).

The remaining parameter of a linear-Gaussian state-space model is the covariancefinatrix,
the Gaussian output noise;. In analogy with factor analysis we assume this to be diagonal.
Unlike the hidden state noisé), there is no degeneracy iR since the data is observed, and
therefore its scaling is fixed and needs to be learnt.

For notational convenience we collect the above parameters into a single parameter vector for
the model:60 = (A, B,C, D, R).

We now turn to considering the LDS model for a Bayesian analysis. Fsat)) the complete-

data likelihood for linear-Gaussian state-space models is Gaussian, which is in the class of ex-
ponential family distributions, thus satisfying condition2l§0). In order to derive a variational
Bayesian algorithm by applying the results in cha@tare now build on the model by defining
conjugate priors over the parameters according to conditi@&3)(

5.2.2 Specification of parameter and hidden state priors

The description of the priors in this section may be made more clear by referring to figure
5.3 The forms of the following prior distributions are motivated by conjugacy (condition 2,
(2.88). By writing every term in the complete-data likelihodsl 1) explicitly, we notice that

the likelihood for state-space models factors into a product of terms for emeryf each of the
dynamics-related and output-related matrices, and the priors can therefore be factorised over the
hidden variable and observed data dimensions.

The prior over the output noise covariance matkixwhich is assumed diagonal, is defined
through the precision vectgr such thatR~! = diag (p). For conjugacy, each dimension pf
is assumed to be gamma distributed with hyperparametensib:

p a

a,b) =
p(pla,b) sHlF(“)

p% " exp{—bps}. (5.6)

More generally, we could leR be a full covariance matrix and still be conjugate: its inverse
V = R~ would be given a Wishart distribution with paramegeand degrees of freedom

p(V |1, 8) o |[V|¥ P D2 exp [—;tr VS’_l] ) (5.7)
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Zo. Mo

Figure 5.3: Graphical model representation of a Bayesian state-space model. Each sequence
{y1,-..,yr, }is now represented succinctly as the (inner) plate @ypairs of hidden variables,

each presenting the cross-time dynamics and output process. The second (outer) plate is over
the data set of size sequences. For the most part of the derivations in this chapter we restrict
ourselves tm = 1, and7,, = 7. Note that the plate notation used here is nhon-standard since
bothx;_; andx; have to be included in the plate to denote the dynamics.

where tr is the matrix trace operator. This more general form is not adopted in this chapter as
we wish to maintain a parallel between the output model for state-space models and the factor
analysis model (as described in chapter

Priorson A, B, C and D

The row vectora(Tj) is used to denote th@gh row of the dynamics matrix4, and is given a
zero mean Gaussian prior with precision equalitez (a), which corresponds to axis-aligned
covariance and can possibly be non-spherical. Each rawy dénoted:(z), is given a zero-mean
Gaussian prior with precision matrix equaldg (ps7y). The dependence of the precision of
c(5) on the noise output precisign is motivated by conjugacy (as can be seen from the explicit
complete-data likelihood), and intuitively this prior links the scale of the signal to the noise. We
place similar priors on the rows of the input-related matriBeand D, introducing two more
hyperparameter vectofsandd. A useful notation to summarise these forms is

plag)| ) = N(ag;) | 0, diag (o) ") (5.8)
p(b(j) | B) = N(b(;, | 0, diag (8) ") forj=1,....k (5.9)
plegs) !ps, ) =N(c() [0, p; " diag (v) ) (5.10)
p(d(s) | ps; 8) = N(d(y) | 0, p; " diag (8)7) (5.11)
p(ps|a,b) = Ga(ps | a,b) fors=1,...,p (5.12)

such thah(j) etc. are column vectors.
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The Gaussian priors on the transitiof) (and output ') matrices can be used to perform ‘au-
tomatic relevance determination’ (ARD) on the hidden dimensions. As an example consider
the matrixC which contains the linear embedding factor loadings for each factor in each of its
columns: these factor loadings induce a high dimensional oriented covariance structure in the
data C'C'"), based on an embedding of low-dimensional axis-aligned (unit) covariance. Let us
first fix the hyperparameters= {~1, ..., }. As the parameters of th& matrix are learnt, the

prior will favour entries close to zero since its mean is zero, and the degree with which the prior
enforces this zero-preference varies across the columns depending on the size of the precisions
in 7. As learning continues, the burden of modelling the covariance ip theéput dimensions

will be gradually shifted onto those hidden dimensions for which the entrigsare smallest,

thus resulting in the least penalty under the prior for non-zero factor loadings. When the hy-
perparameters are updated to reflect this change, the unequal sharing of the output covariance
is further exacerbated. The limiting effect as learning progresses is that some coluins of
become zero, coinciding with the respective hyperparameters tending to infinity. This implies
that those hidden state dimensions do not contribute to the covariance structure of data, and so
can be removed entirely from the output process.

Analogous ARD processes can be carried out for the dynamics rahtiixthis case, if thgth

column of A should become zero, this implies that ke hidden dimension at time— 1 is not
involved in generating the hidden state at timghe rank of the transformatioA is reduced

by 1). However theth hidden dimension may still be of use in producing covariance structure

in the data via the modulatory input at each time step, and should not necessarily be removed
unless the entries of thé matrix also suggest this.

For the input-related parametersihand D, the ARD processes correspond to selecting those
particular inputs that are relevant to driving the dynamics of the hidden state (th&ughd
selecting those inputs that are needed to directly modulate the observed data (#jroEgh
example the (constant) input bias that we use here to model an offset in the data mean will
almost certainly always remain non-zero, with a correspondingly small valdetlnless the
mean of the data is insignificantly far from zero.

Traditionally, the prior over the hidden state sequence is expressed as a Gaussian distribution
directly over the first hidden statg (see, for exampl&hahramani and Hintgri996a equation

(6)). For reasons that will become clear when later analysing the equations for learning the
parameters of the model, we choose here to express the prior over the first hidden state indirectly
through a prior over an auxiliary hidden state at time- 0, denotedx,, which is Gaussian
distributed with mean, and covarianc&:

p(x0 | 1o, X0) = N(x0 | o, o) - (5.13)
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This induces a prior ovex; via the the state dynamics process:

p(x1 | o, S0, 0) = / dxo p(xo | o> So)p(x1 | X0, ) (5.14)

= N(x; | Apg + Buy, ATS0A + Q) . (5.15)

Although not constrained to be so, in this chapter we work with a prior covarigpdteat is a
multiple of the identity.

The marginal likelihood can then be written

p(yvrr) = / dAdBdC dD dp dxo.r p(A, B,C, D, p,Xo.T,y1.T) - (5.16)

All hyperparameters can be optimised during learning (see se6t®f. In section5.4 we

present results of some experiments in which we show the variational Bayesian approach suc-
cessfully determines the structure of state-space models learnt from synthetic data, and in section
5.5we present some very preliminary experiments in which we attempt to use hyperparameter
optimisation mechanisms to elucidate underlying interactions amongst genes in DNA microar-
ray time-series data.

A fully hierarchical Bayesian structure

Depending on the task at hand we should consider how full a Bayesian analysis we require. As
the model specification stands, there is the problem that the number of free parameters to be ‘fit’
increases with the complexity of the model. For example, if the number of hidden dimensions
were increased then, even though the parameters of the dynathjcai{put (), input-to-state

(B), and input-to-observationl) matrices are integrated out, the size of taevy, 3 andd
hyperparameters have increased, providing more parameters to fit. Clearly, the more parameters
that are fit the more one departs from the Bayesian inference framework and the more one risks
overfitting. But, as pointed out iMacKay (1995, these extra hyperparameters themselves
cannot overfit the noise in the data, since it is only the parameters that can do so.

If the task at hand is structure discovery, then the presence of extra hyperparameters should not
affect the returned structure. However if the task is model comparison, that is comparing the
marginal likelihoods for models with different numbers of hidden state dimensions for example,
or comparing differently structured Bayesian models, then optimising over more hyperparame-
ters will introduce a bias favouring more complex models, unless they themselves are integrated
out.

The proper marginal likelihood to use in this latter case is that which further integrates over the
hyperparameters with respect to some hyperprior which expresses our subjective beliefs over
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the distribution of these hyperparameters. This is necessary for the ARD hyperparameters, and
also for the hyperparameters governing the prior over the hidden state sequgrase] X,

whose number of free parameters are functions of the dimensionality of the hidderkstate,
For example, the ARD hyperparameter for each matj3, C, D would be given a separate
spherical gamma hyperprior, which is conjugate:

k
o~ H Ga(a; | aq, ba) (5.17)
j=1
d
B~ ] Ga(B.|as,bp) (5.18)
c=1
k
v H Ga(v; | ay,by) (5.19)
j=1
d
8 ~ [ Ga(dc | as, bs) - (5.20)
c=1

The hidden state hyperparameters would be given spherical Gaussian and spherical inverse-
gamma hyperpriors:

IJ‘O ~ N(IJ‘O ’07 bILOI) (521)
k

So ~ [[ Ga(Zoj;! | as,, bs,) - (5.22)
j=1

Inverse-Wishart hyperpriors faf, are also possible. For the most part of this chapter we omit
this fuller hierarchy to keep the exposition clearer, and only perform experiments aimed at struc-
ture discovery using ARD as opposed to model comparison between this and other Bayesian
models. Towards the end of the chapter there is a brief note on how the fuller Bayesian hierar-
chy affects the algorithms for learning.

Origin of the intractability with Bayesian learning

Since A, B, C, D, p andxg.r are all unknown, given a sequence of observatipng, an

exact Bayesian treatment of SSMs would require computing marginals of the posterior over pa-
rameters and hidden variableg A, B, C, D, p,xo.r | y1.7). This posterior contains interaction
terms up tdfifth order, we can see this by considering the terms5ri) for the case of LDS
models which, for example, contain terms in the exponent of the fokm, C'" diag (p) Cx;.
Integrating over these coupled hidden variables and parameters is not analytically possible.
However, since the model is conjugate-exponential we can apply theh&tm derive a vari-
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ational Bayesian EM algorithm for state-space models analogous to the maximume-likelihood
EM algorithm ofShumway and Stoffg1982).

5.3 The variational treatment

This section covers the derivation of the results for the variational Bayesian treatment of linear-
Gaussian state-space models. We first derive the lower bound on the marginal likelihood, using
only the usual approximation of the factorisation of the hidden state sequence from the param-
eters. Due to some resulting conditional independencies between the parameters of the model,
we see how the approximate posterior over parameters can be separated into posteriors for the
dynamics and output processes. In seclidhlthe VBM step is derived, yielding approximate
distributions over all the parameters of the model, each of which is analytically manageable and
can be used in the VBE step.

In section5.3.2we justify the use of existing propagation algorithms for the VBE step, and
the following subsections derive in some detail the forward and backward recursions for the
variational Bayesian linear dynamical system. This section is concluded with results for hyper-
parameter optimisation and a note on the tractability of the calculation of the lower bound for
this model.

The variational approximation and lower bound

The full joint probability for parameters, hidden variables and observed data, given the inputs is

P(A7B7CaDaP7X0:T7}’1:T ‘ul:T) 5 (523)

which written fully is

p(Ala)p(B|B)p(p|a,b)p(C|p,v)p(D]p,d):

T
XO ‘ ”07 EO Hp Xt | Xt—1, A7 B7 ut)P(Yt | Xty C7 -Dv P, ut) . (524)
t=1
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From this point on we drop the dependence on the input sequengeand leave it implicit.
By applying Jensen’s inequality we introduce any distributjof, x) over the parameters and
hidden variables, and lower bound the log marginal likelihood

inp(yrr) =In [ dAdBACAD dpdxor p(A. B.C.D.pxor.yir)  (625)

> / dAdBdC dD dp dxo.r -

p(A7 B7 Cv D7 P, X0:T, Y1:T)
q(A7 B? Ca Dv P, XO:T)

Q(AvBacaD7p7 XO:T) In (526)

=F.

The next step in the variational approximation is to assume some approximate form for the
distributiong(-) which leads to a tractable bound. First, we factorise the parameters from the
hidden variables giving(A, B, C, D, p,xo.7) = qo(A, B,C, D, p)gx(x0.7). Writing out the
expression for the exact log posteriarp(A, B, C, D, p,x1.7, yo.T), One sees that it contains
interaction terms betweem, C' and D but none betweefA, B} and any of{p, C, D}. This
observation implies a further factorisation of the posterior parameter distributions,

q(A7 B7 Ca D7 P, XO:T) = qAB(A7 B>q0Dp(Cv D7 P)QX(XO:T) . (527)

It is important to stress that this latter factorisation amongst the parameters falls out of the
initial factorisation of hidden variables from parameters, and fromrdéiselting conditional
independencies given the hidden variables. Therefore the variational approximation does not
concede any accuracy by the latter factorisation, since it is exact given the first factorisation of
the parameters from hidden variables.

We choose to write the factors involved in this joint parameter distribution as

qaB(A,B) = q(B) qa(A| B) (5.28)
4cpp(C, D, p) = qo(p) ap(D | p) qc(C| D, p) . (5.29)
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Now the form forg(-) in (5.27) causes the integrab(26) to separate into the following sum of
terms:

_ L n(B19) L plAle)
F= [aB a0 [ a5 s [araamw 2ELS

p(pla;b) p(D|p,
/dpqp( ) In ") /dpqp( )/quD(D|p)ln(D|p)

Clp.v
+ [dpaple) [ aD ap(D1p) [ dC ac(Cp.D)n 201p7)

" 4c(Cp, D)
— /dXO:T 4x(x0:7) In gx (x0.7)
+ [dBan(B) [ d40s418) [ dpaple) [aD an(D1p) [ dC ao(Clp.D)-
/ dXO:T dx (XO:T) lnp(XO:T7 Yi.r | Av Bv C? D7 P) (530)

= f(Qx(XO:T)7QB(B)7QA(A|B)?QP(p)qu(D | p)vQC’(C|p7D)) . (531)

Here we have left implicit the dependencefobn the hyperparameters. For variational Bayesian
learning,F is the key quantity that we work with. Learning proceeds with iterative updates of
the variational posterior distributions(-), each locally maximising-.

The optimum forms of these approximate posteriors can be found by taking functional deriva-
tives of F (5.30 with respect to each distribution over parameters and hidden variable se-
qguences. In the following subsections we describe the straightforward VBM step, and the
somewhat more complicated VBE step. We do not need to be able to cotApotproduce

the learning rules, only calculate its derivatives. Nevertheless its calculation at each iteration
can be helpful to ensure that we are monotonically increasing a lower bound on the marginal
likelihood. We finish this section on the topic of how to calcul&tevhich is hard to compute
because it contains the a term which is the entropy of the posterior distribution over hidden state
sequences,

Hige(xo:7)) = / dxo:r dx(xor) In g (x07) - (5.32)

5.3.1 VBM step: Parameter distributions

Starting from some arbitrary distribution over the hidden variables, the VBM step obtained by
applying theoren2.2finds the variational posterior distributions over the parameters, and from
these computes the expected natural parameter vefgter,(¢(6)), where the expectation is
taken under the distributiogy(0), where@ = (A, B,C, D, p).

We omit the details of the derivations, and present just the forms of the distributions that ex-
tremiseF. As was mentioned in sectidh2.2 given the approximating factorisation of the
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posterior distribution over hidden variables and parameters, the approximate posterior over the
parameters can be factorised without further assumption or approximation into

k P
qe(A,B,C, D, p) H (by)a(ag) by [ [ a(ps)a(ds) | ps)ales | psds))  (5.33)
7j=1 s=1
where, for example, the row vectbé) is used to denote thgh row of the matrixB (similarly

so for the other parameter matrices).

We begin by defining some statistics of the input and observation data:

T T T
U= Z u,gu;r , Uy = Z uty;r ) Y = Zyty;r . (5.34)
t=1 t=1 t=1

In the forms of the variational posteriors given below, the matrix quantitigs G 4, M, SA,
andW¢, Go, Sco are exactly the expected complete data sufficient statistics, obtained in the
VBE step — their forms are given in equatiofis1265.132.

The natural factorisation of the variational posterior over parameters yields these forrhs for
andB:

k
=[N (b | =5b(), S5) (5.35)
7j=1
k
A|B H a(j ’EA SA( i — GAb(])] , EA) (536)
7j=1
with
Y4 = diag (a) + Wa (5.37)
Yp ' =diag(B8) + U — GiXAG4 (5.38)
B=M"-5}%,4G4, (5.39)

and WhereE(Tj) ands 4 ;) are vectors used to denote tjtb row of B and thejth column ofS4
respectively. It is straightforward to show that the marginal4as given by:

k
H (a0) 124 [s.0) — GaZsbi)] . $a) . (5.40)

where 34 =4+ S4G425G 34 . (5.41)
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In the case of either thd and B matrices, for both the marginal and conditional distributions,
each row has the same covariance.

The variational posterior over, C' andD is given by:

H Ga (,05 la + b+ Gss> (5.42)

s=1
p(D|p) H N (d(s) | Spd(s), p5'Sp) (5.43)
c(C|D,p) H N (e | 2o [see) — Gedy)] s p5'5e) (5.44)

with

Yo ! = diag (v) + We (5.45)
Yp !l =diag (8) + U — GLEcGe (5.46)
G=Y-S;ScSe —~DEpD | (5.47)
D=U) - S8/%cGe, (5.48)

and Whereﬁé) andsc, () are vectors corresponding to thi row of D and thesth column of
Sc respectively. Unlike the case of theand B matrices, the covariances for each row of the
C and D matrices can be very different due to the appearance gf therm, as so they should
be. Again it is straightforward to show that the marginald@bgiven p, is given by:

p
e (Clp) =[N (C(s) 3¢ [sc,s) — GeXpd(y)) Ps_lzc) ; (5.49)
s=1
where ¢ =S¢ + SeGeSpGhTe . (5.50)

Lastly, the full marginals for” and D after integrating out the precisignare Student-t distri-
butions.

In the VBM step we need to calculate the expected natural parametees mentioned in
theoren?.2 These will then be used in the VBE step which infers the distributid®,.7) over
hidden states in the system. The relevant natural parameterisation is given by the following:

¢(0) = (A, B,C,D,R)= |A, ATA, B, ATB, C'"R™'C, R™'C, C"R!

B'B,R°', m|R!, D'R'D, R"'D| . (551)
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The terms in the expected natural parameter vegtet (¢(8)),, ), Where(-) . ) denotes
expectation with respect to the variational posterior, are then given by:

(A) =[5, - GAEBET} Y (5.52)
(ATAY = (A)T(A) + k [zA + zAGAzBGXEA} (5.53)
(B) = BSp (5.54)
(ATB) =3, [SA<B> —Ga{(B)(B) + szH (5.55)
(B"B) = (BY"(B) + kXp, (5.56)

and
{ps) =ps = b(j,p++GJ;s//2 2 (5:57)
(In ps) = Inpg = t(ap + T/2) — n(bp + Gss/2) (5.58)
(R™) = diag (p) , (5.59)
(5.60)

and
(©) =[50 - GCEDDT} "o (5.61)
(D) = DSp (5.62)
(CTR™C) = (0) T diag (p) (C) + p [EC + ECGCzDngC} (5.63)
(R™1C) = diag (p) (C) (5.64)
(CTR™'D) = ¥ |Scdiag (p) (D) — Go(D) " diag () (D) ~ pGeTn)| (5.65)
(R™'D) = diag (p) (D) (5.66)
(D"R™'D) = (D) "diag (p) (D) + pXp . (5.67)

Also included in this list are several expectations which are not part of the mean natural param-
eter vector, but are given here because having them at hand during and after an optimisation is
useful.

5.3.2 VBE step: The Variational Kalman Smoother

We now turn to the VBE step: computing (xo.7). Since SSMs are singly connected belief
networks corollan2.2tells us that we can make use of belief propagation, which in the case of
SSMs is known as the Rauch-Tung-Striebel smootRauth et al.1963. Unfortunately the
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implementations of the filter and smoother are not as straightforward as one might expect, as is
explained in the following subsections.

In the standard point-parameter linear-Gaussian dynamical system, given the settings of the
parameters, the hidden state posterior is jointly Gaussian over the time steps. Reassuringly,
when we differentiateF with respect togx(xo.7), the variational posterior foky.r is also
Gaussian:

In QX(XO:T) =—-InZ + <1Dp(A, 37 Ca Da P, X0:T, yl:T)> (568)
= 71DZ’+ <1HP(X0:T,Y1:T|A,B,C,Dap)> 3 (569)

where
Z' = /dXO:T eXp<lnp(X05T7 yiur | A7 B7 07 D7 p)> ) (570)

and where(-) denotes expectation with respect to the variational posterior distribution over pa-
rametersgg(A, B, C, D, p). In this expression the expectations with respect to the approximate
parameter posteriors are performed on the logarithm of the complete-data likelihood and, even
though this leaves the coefficients on theterms in a somewhat unorthodox state, the new log
posterior still only contains up to quadratic terms in eagtand thereforex (xo.7) must be
Gaussian, as in the point-parameter case. We should therefore still be able to use an algorithm
very similar to the Kalman filter and smoother for inference of the hidden state sequence’s suf-
ficient statistics (the E-like step). However we can no longer plug in parameters to the filter and
smoother, but have to work with the natural parameters throughout the implementation.

The following paragraphs take us through the required derivations for the forward and backward
recursions. For the sake of clarity of exposition, we do not at this point derive the algorithms for
the input-driven system (though we do present the full input-driven algorithms as pseudocode
in algorithms5.1, 5.2and5.3). At each stage, we first we concentrate on the point-parameter
propagation algorithms and then formulate the Bayesian analogues.

5.3.3 Filter (forward recursion)

In this subsection, we first derive the well-known forward filtering recursion steps for the case
in which the parameters are fixed point-estimates. The variational Bayesian analogue of the
forward pass is then presented. The dependence of the filter equations on theninpiitas

been omitted in the derivations, but is included in the summarising algorithms.
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Point-parameter derivation

We defineay(x;) to be the posterior over the hidden state at tingédven observed data up to
and including time:

ar(xe) = p(xe [ y:e) - (5.71)

Note that this is slightly different to the traditional form for HMMs whichiigx;) = p(x¢, y1:t)-
We then form the recursion witty,_; (x;—1) as follows:

aulxi) = / dxi—1 p(Xe—1 | Y1) p(xe | xi-2) p(ye [ %0) / p(y1 | y10-1) (5.72)
B ct<1yt> / dxi—1 ar—1(xe-1) Pt | xe1) P(ye | %) (5.73)
N Ct(lsft)/dx“ N(xe—1 | g1, Se-1) N(xe | Axe—1,1) N(ye | Ox¢, R)  (5.74)
= N | g 2) (5.75)
where
C(ye) = p(yelyre-1) (5.76)

is the filtered output probability; this will be useful for computing the likelihood. Within the
above integrand the quadratic termsin ; form the GaussiaiN(x;—1 | x;_;, X;_;) with

s = (2,;11 + ATA) B (5.77)

Xt =%, [z;_llp,t_l v ATxt] : (5.78)

Marginalising outx;_1 gives the filtered estimates of the mean and covariance of the hidden
state as

O[t(Xt) = N(Xt | s Zt) (579)
with
-1
5, = [I +CTRC - AZ;*_lAT] (5.80)
My = X [CTR*l}’t + A22112551ut_1} : (5.81)

At each step the normalising const@ptobtained as the denominator B.72), contributes to
the calculation of the probability of the data

p(yrr) =p(y)p(y2|y1)...p (yt!y1~t—1)-~ (yrlyrr-1) (5.82)
T

ZP(Y1)H (ve|y1e-1) HCt yt) (5.83)
t=2
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It is not difficult to show that each of the above terms are Gaussian distributed,

Gi(yt) = N(y¢ | =, ) (5.84)
with
T -1
G = (R—l By Ye) e, R—l) (5.85)
w =R IOSAY] (3 iy (5.86)

With these distributions at hand we can compute the probability of each obseryatiiven

the previous observations in the sequence, and assign a predictive mean and variance to the data
at each time step as it arrives. However, this predictive distribution will change once the hidden
state sequence has been smoothed on the backward pass.

Certain expressions such as equatidn8@, (5.81), and 6.85 could be simplified using the
matrix inversion lemma (see appendix?), but here we refrain from doing so because a similar
operation is not possible in the variational Bayesian derivation (see comment at end of section
5.3.3.

Variational derivation

It is quite straightforward to repeat the above derivation for variational Bayesian learning, by
replacing parameters (and combinations of parameters) with their expectations under the varia-
tional posterior distributions which were calculated in the VBM step (se&i8r). Equation

(5.74 becomes rewritten as

1
ap(x¢) = Oy /dxt—l N(x¢—1| g1, 5-1) -
1 _ (s _ Tp-1(y. _
exp 5 (x¢ — Axp—1) I(xy — Axp—1) + (y¢ — Cx¢) ' R (y: — Cxy)
4 kln|27] + In 12w3\> (5.87)

vl
= —— [ dx;—1 N(x4— 1y 21)
C{(Yt) t—1 (tl\lit1 tl)

1
exp —5 [XZ—1<ATA>Xt—1 —2x;_1(A4) Tx¢

+x (14 (CTR'CY)x, — 2% (CTR My + . .. (5.88)

where the angled brackefs denote expectation under the variational posterior distribution over
parametersgg(A, B,C, D, p).
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After the parameter averaging, the integrand is still log-quadratic in koth andx;, and so
the derivation continues as before but with parameter expectations taking place of the point
estimates. Equation8.(77) and 6£.78 now become

-1

S = (S + (A7 4)) (5.89)
X;_1 =2 [Etf_lﬂitq + <A>Txt} ; (5.90)

and marginalising out;_; yields a Gaussian distribution ovey,

o (xe) = N(x¢ | g, 5) (5.91)

with mean and covariance given by

5, = [1 +(CTRIC) - <A>z;;1<A>T} (5.92)

te =S [(CTR™ )y + (S S i) (5.93)

This variationale-message evidently resembles the point-parameter resitdf and 6.81).
Algorithm 5.1 shows the full implementation for the variational Bayesian forward recursion,
including extra terms from the inputs and input-related paramd3easd D which were not
derived here to keep the presentation concise. In addition it gives the variational Bayesian
analogues of equationS.85 and 6£.86).

We now see why, for example, equatidn&5 was not simplified using the matrix inversion
lemma — this operation would necessarily split tRe! and C matrices, yet its variational
Bayesian counterpart requires that expectations be taken over the combined gtodact
These expectations cannot be passed through the inversion lemma. Included in agp2ndix
is a proof of the matrix inversion lemma which shows clearly how such expectations would
become disjoined.

5.3.4 Backward recursion: sequential and parallel

In the backward pass information about future observations is incorporated to update the pos-
terior distribution on the current time step. This recursion begins at the last time step

(which has no future observations to take into account) and recurses to the beginning of the
sequence to time= 0.

There are two different forms for the backward pass. $bguentiaform makes use of the
a-messages from the forward pass and does not need to access information about the current
observation in order to calculate the posterior over the hidden state given all the data. The
parallel form is so-called because it executes all its recursions independently of the forward
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Algorithm 5.1: Forward recursion for variational Bayesian state-space models with inpyt
(variational Kalman filter).

1. Initialise hyperparameteps, andX, as the mean and covariance of the auxiliary hid
statex

2. Fort=1toT
(a) Computeay (x;) = N(x¢ | gy, 34)
D= (S A7)
2= (1+{0TRC) — (A% (4)T)
pe =% [(CTR™ )y + (AT
+((B) = (A)S_1(ATB) - (CTR™'D) ) w]
(b) Compute predictive distribution of;
a= ("~ (R_10>Zt<R_1C>T)_1
@ = [(RO)S(A) S5 Y gy
+((R7'D) + Ry {(B) — (CTR'D) — (4)%;_ (AT B) } ) w]

(c) Compute(;(y:) (see .87 and also sectiob.3.7for details)

1 e _ _
In¢i(ye) = 5 [<ln\27TR\> —In S0 S0 S 4 e S e — e S
+y (R Dy — 2y, (R'D)u; + u/ (DT R D)y
- (2;31%—1 - <ATB>ut)TE:—1(E;—11Ht—1 - <ATB>ut)
End For

3. Output all computed quantities, including

InZ' =3 In¢/(ye)
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pass, and then later combines its messages with those from the forward pass to compute the
hidden state posterior for each time step.

Sequential implementation: point-parameters

In the sequential implementation we define a set-ohessages to be the posterior over the
hidden state given all the data. In the case of point-parameters, the recursion is then

Y (xt) = p(xt | y1.7) (5.94)
- / dxii1 p(xt,Xe41 | y17) (5.95)
= /dXt+1 p(xt | Xt+1, y1.70)p(Xe41 | Y1:7) (5.96)
= /dXt+1 p(xt | Xt+1,y1:t) P(Xe41 | y1.7) (5.97)
- [ |t ) 59
= /dxt—i-l [fdzz(zzig;&tjtl)xg)} Vo1 (Xe41) - (5.99)

Here the use of Bayes’ rule i5.08 has had the effect of replacing the explicit data dependence
with functions of thea-messages computed in the forward pass. Integratingeayt yields
Gaussian distributions for the smoothed estimates of the hidden state at each time step:

")/t(Xt) = N(Xt ’ Wi, Ttt) (5100)

wherey is as defined in the forward pass accordingad@'q) and

-1

Ky = (Tl + AT AT) (5.101)
—1

Yo = [E;—l - ATKtA} (5.102)

wi = To |57y + ATK (Y5 pwin — ASS )| (5.103)

Note thatK; given in 6.10]) is a different matrix to the Kalman gain matrix as found in the
Kalman filtering and smoothing literature, and should not be confused with it.

The sequential version has an advantage in online scenarios: once the data,at tifmas been
filtered it can be discarded and is replaced with its messade,) (see, for exampleRauch
1963. In this way potentially high dimensional observations can be stored simply as beliefs in
the low dimensional state space.
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Sequential implementation: variational analysis

Unfortunately the step using Bayes’ rule i5.98 cannot be transferred over to a variational
treatment, and this can be demonstrated by seeing how theptermx; 1, y1.1) in (5.97) is
altered by the lower bound operation. Up to a normalisation factor,

VB
p(xe [ X141, y1) ¥ exp(Inp(xe | Xe1,¥14) ) (5.104)

= exp<lnp(xt+1 | x¢) + In oy (xy) — ln/dxi oy (x5)p(xe 41 |X£)>
(5.105)

The last term in the above equation results in a precision term in the exponent of the form:
In [ dx} o (x))p(xe1 | x}) = —1 [I —A[S 4 ATA]T AT} + ¢. Even though this term is
easy to express for a knowhmatrix, its expectation unders (A) is difficult to compute. Even

with the use of the matrix inversion lemma (see appeld®), which yieIds(I + AEtAT)_l,

the expression is still not amenable to expectation.

Parallel implementation: point-parameters

Some of the above problems are ameliorated using the parallel implementation, which we first
derive using point-parameters. The parallel recursion prodgieesssages, defined as

Be(x¢) = p(yesr | Xe) - (5.106)

These are obtained through a recursion analogous to the forwardbpa3s (

Br—1(x¢-1) = /dXt p(xe | xe—1)p(ye | %) p(Yiq1.7 | Xt) (5.107)
= /dXt p(Xt ‘thl)p(}’t \ Xt)ﬁt(Xt) (5.108)
o< N(x¢—1 [ 151, Ut—-1) (5.109)

with the end condition that;(xr) = 1. Omitting the details, the terms for the backward
messages are given by:

-1
U= (1 + O RO+ \11;1) (5.110)
—1
U, = [ATA — AW:A} (5.111)
Moy =V 1 AT} [CTR_I}’t + \If;lnt} (5.112)
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wheret = {T,...,1}, and\ll;1 set to0 to satisfy the end condition (regardlessipf). The
last step in this recursion therefore finds the probability of all the data given the setting of the
auxiliary xq variable.

Parallel implementation: variational analysis

It is straightforward to produce the variational counterpart of the backward parallel pass just
described. Omitting the derivation, the results are presented in algdithwhich also includes
the influence of inputs on the recursions.

Algorithm 5.2: Backward parallel recursion for variational Bayesian state-space models with
inputsuy.r.

1. Initialise ! = 0 to satisfy end conditiopr(x7) = 1
2. Fort=Ttol
w; = (1+(CTRC)+ \1/;1)_1
Wy = ({AT4) — () Twp )
Moy = Wit |~ (AT B)u,
+ ()T ((Byu, + (CTR Yy, — (CTR™ Dyu, + 97 'm, )|
End For

3. Output{n,, ¥;}{_,

5.3.5 Computing the single and joint marginals

The culmination of the VBE step is to compute the sufficient statistics of the hidden state, which
are the marginals at each time step and the pairwise marginals across adjacent time steps.

In the point-parameter case, one can use the sequential backward pass, and then the single state
marginals are given exactly by themessages, and it only remains to calculate the pairwise
marginals. It is not difficult to show that the terms involvirgandx,, are best represented

with the quadratic term

1 el AT Xy
Inp(x¢, Xe41 | y1.1) = 3 ( X; X4 ) ( —tA -1 ) ( oo + const., (5.113)
t
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whereX:; is computed in the forward pass.{7) and K, is computed in the backward sequential
pass $.10J).

We defineY; ;11 to be the cross-covariance between the hidden states atitanes+ 1, given
all the observationg.7:

Yoo = ((x¢ — (%)) (X410 — <Xt+1>)T> , (5.114)

where (-) denotes expectation with respect to the posterior distribution over the hidden state
sequence given all the data. We now make use of the Schur complements (see apd@rmdix
the precision matrix given irb(113 to obtain

Yior1 =SF AT Vg1t - (5.115)
The variational Bayesian implementation

In the variational Bayesian scenario the marginals cannot be obtained easily with a backward
sequential pass, and they are instead computed by combining #mel 5-messages as follows:

p(xt | y1r) o< p(xt | y1:0)p(yes1:m | Xt) (5.116)
= at(xt)ﬁt(xt) (5117)
= N(x¢ |wi, Ty) (5.118)
with
Too= [S70 01 (5.119)
wip="Toe S e+ 97 n,] (5.120)

This is computed fot = {0,...,7 — 1}. Att = 0, ap(xp) is exactly the prior%.13 over the
auxiliary hidden state; at= T, there is no need for a calculation singer | y1.7) = ar(xr).

Similarly the pairwise marginals are given by

p(xt, X1 | y1r) o p(Xe | Y1) P(%et1 | %) (Y1 | Xe1)P(Yer 27 [ Xe41) (5.121)
= o (%) p(Xey1 | Xe)P(Yer1 [ Xer1) Ber1 (Xe41) (5.122)
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which under the variational transform becomes

B ap(xe) exp(Inp(xest | %) + I p(yes | xe1)) Berr(xe41)  (5.123)

T T
- N Xt | Wt t,t tt+1 . (5.124)
Xt+1 Wit+1

Tl Terren
With the use of Schur complements again, it is not difficult to showThat ; is given by

)

T =3(A) " (T4 (CTRTC)+ v <A>2;;<A>T)_1 | (5.125)

This cross-covariance is then computed for all time steps{0,...,7 — 1}, which includes
the cross-covariance between the zeroth and first hidden states.

In summary, the entire VBE step consists of a forward pass followed by a backward pass, during
which the marginals can be computed as well straight after gankssage.

The required sufficient statistics of the hidden state

In the VBE step we need to calculate the expected sufficient statistics of the hidden state, as
mentioned in theorerd.2 These will then be used in the VBM step which infers the distribution
qe(0) over parameters of the system (secttod.1). The relevant expectations are:

T
WA:Z<Xt 1Xt 1) ZTt 1t—1 T Wi 1th1 (5.126)
t=1
T
Ga=> (x11) Zwt 1, (5.127)
t=1
M = Zut<xt>T =ZutwtT (5.128)
t=1
T
Sa=) (x1x/) ZTt Lt wiiw, (5.129)
t=1 t=1
T
We=> (xix]) Z Tt + wiw, (5.130)
t=1
T
Ge = Z(Xt)utT: Zwtuj (5.131)
t=1
T
So =Y (x)yi = Zwtyt : (5.132)
t=1
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Note thatM andG¢ are transposes of one another. Also note that all the summations contain
T terms (instead of those for the dynamics model contaiffing 1). This is a consequence of

our adoption of a slightly unorthodox model specification of linear dynamical systems which
includes a fictitious auxiliary hidden variabitg.

5.3.6 Hyperparameter learning

The hyperparameters, 3, v, 4, a andb, and the prior parametebs andp,,, can be updated

so as to maximise the lower bound on the marginal likelihdo@8(@. By taking derivatives of

F with respect to the hyperparameters, the following updates can be derived, applicable after a
VBM step:

1 -
ot o |FZa+Da[SaSh - 204(B)TS] + GalkSp + <B>T<B>}GZ]2AL], (5.133)
1 -
g o [kos + <B>T<B>} ) (5.134)
L 13
17 o o
fyj_l — ” pXc + S [Scdiag (p) Sl — 2Scdiag (p) (D)G/
+ pGeSpGlh + Go(D)  diag () (D)GY] 20] ; (5.135)
-1 17 T . _
571 [pPp + (D) Tding (p) (D)] (5.136)

where[-],;; denotes itgj, j)th element.

Similarly, in order to maximise the probability of the hidden state sequence under the prior, the
hyperparameters of the prior over the auxiliary hidden state are set according to the distribution
of the smoothed estimate =f:

EO — T070 N Mo < Wo - (5137)

Last of all, the hyperparametessandb governing the prior distribution over the output noise,
R = diag (p), are set to the fixed point of the equations

I
w(a):lnb—i—EZlnps, ngzm (5.138)
s=1
wherey(z) = 9/0xInT(x) is the digammafunction (refer to equations5(57 and 6.58
for required expectations). These fixed point equations can be solved straightforwardly using
gradient following techniques (such as Newton’s method) in just a few iterations, bearing in
mind the positivity constraints amandb (see appendi&.2for more details).
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5.3.7 Calculation of F

Before we see whyF is hard to compute in this model, we should rewrite the lower bound more
succinctly using the following definitions, in the case of a pair of varialllaad K:

_ a(J) |
KL(J) = /dJ q(J)In o) (KL divergence) (5.139)
_ q(J | K) -
KL(J|K) = /dJ q(J|K)In VI K) (conditional KL) (5.140)
(KL(J | K))qg(r) = /dK q(K)KL(J | K) (expected conditional KL)  (5.141)

Note that in §.140 the prior overJ may need to be a function @& for conjugacy reasons (this
is the case for state-space models for the output param@tarsl D, and the nois&?). The
notationKL(.J | K) is not to be confused witKL(.J||K') which is the KL divergence between
distributionsq(.J) and ¢(K) (which are marginals). The lower bourfd (5.26) can now be
written as

F = —KL(B) — (KL(A| B))q)
— KL(p) = (KL(D | p))q(p) — (KL(C'| p, D))g(p,p)
+ H(gx(x0:7))
+ (Inp(xvr,yrr | A, B, C, D, p))yA,B,0,D,p)a(x1.7) (5.142)

whereH (g« (x0.7)) is the entropy of the variational posterior over the hidden state sequence,

H(gx(x0.7)) = _/dXO:T ax (%0:7) In gx (X0:7) - (5.143)

The reason whyF can not be computed directly is precisely due to both this entropy term
and the last term which takes expectations over all possible hidden state sequences under the
variational posteriorx(xq.7). Fortunately, straight after the VBE step, we know the form of
gx(x0.7) from (5.69, and on substituting this intd (¢x(xo.7)) we obtain

H(gqx(x01)) = _/dXO:T gx (x0.:7) In gx (x0.7) (5.144)

= —/dXO:T ax(X0:1) [— InZ'

+ <1np(XO:T7 Yur | Aa Ba 07 Dv P K, E0)>q9(A,B,C,D,p) (5145)
=nZ - <1np(X01T7 yur | A7 B, Ca D, P Ko, Z:0)>q9(A,B,C’,D,p)qx(xO;T)
(5.146)
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where the last line follows sinda Z’ is not a function of the state sequengg;. Substituting
this form (6.146 into the above form fofF (5.142 cancels the expected complete-data term in
both equations and yields a simple expression for the lower bound

F = —KL(B) — (KL(A| B))y(p)

— KL(p) = (KL(D | p))q(p) — (KL(C'| p; D)) g(p.0)
+InZ . (5.147)

Note that this simpler expression is only valid straight after the VBE step. The various KL
divergence terms are straightforward, yet laborious, to compute (see SEcifmn details).

We still have to evaluate the log partition functidn,Z’. It is not as complicated as the in-
tegral in equationq.70 suggests — at least in the point-parameter scenario we showed that
InZz = Zthl In (;(y:), as given in $.83. With some care we can derive the equivalent terms
{¢/(y¢)}L_, for the variational Bayesian treatment, and these are given in part (c) of algorithm
5.1 Note that certain terms cancel across time steps and so the overall computation can be made
more efficient if need be.

Alternatively we can calculateh Z’ from direct integration of the joints( 70 with respect to
each hidden variable one by one. In principal the hidden variables can be integrated out in any
order, but at the expense of having to store statistics for many intermediate distributions.

The complete learning algorithm for state-space models is presented in algbr@hirconsists

of repeated iterations of the VBM step, VBE step, calculatioff phnd hyperparameter updates.

In practice one does not need to comp@teat all for learning. It may also be inefficient to
update the hyperparameters after every iteration of VBEM, and for some applications in which
the user is certain of their prior specifications, then a hyperparameter learning scheme may not
be required at all.

5.3.8 Modifications when learning from multiple sequences

So far in this chapter the variational Bayesian algorithm has concentrated on just a data set
consisting of a single sequence. For a data set consistimgi.ofl. sequences with lengths
{T1,...,T,}, denotedy = {yi1.7,...,¥n1:7,}, it is straightforward to show that the VB
algorithm need only be slightly modified to take into account the following changes.
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Algorithm 5.3: Pseudocode for variational Bayesian state-space models.

1. Initialisation

® = {a,3,7,0} — initialise precision hyperparameters

Lo, 2o — initialise hidden state priors

hss < initialise hidden state sufficient statistics

2. Variational M step (VBM)
Infer parameter posteriotg(0) using{hss, y1.7, u;.r, ©}
a(B), q(A[ B),a(p), a(D | p), andq(C| p, D)
¢ — calculate expected natural parameters using equato52%.67)
3. Variational E step (VBE)

Infer distribution over hidden statg (xo.7) using{®, y1.r, u.7}
computeny (x¢) = p(x¢ | y11) ¢ € {1,...,T} (forward pass, algorithr.1),
computel;(x:) = p(ye+1.7 | %) t€{0,...,7—1} (backward pass, algoritht2),
computew;, T, t € {0,...,T} (marginals), and
computeY;,; te€{0,...,7 — 1} (cross-covariance).

hss « calculate hidden state sufficient statistics using equat®i265.132

4. ComputeF
Compute various parameter KL divergences (appe@dix
Compute log partition functiorin Z’ (equation $.70), algorithm5.1)
F = —KL(B) — (KL(A| B)) ~ KL(p) — (KL(D | p)) — (KL(C | p, D)) +In Z'
5. Update hyperparameters

©® «— update precision hyperparameters using equati®ig885.139

{py, Lo} < update auxiliary hidden stase prior hyperparameters using.({37

{a,b} — update noise hyperparameters usifd 89

6. While F is increasing, go to step
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VB Linear Dynamical Systems 5.3. The variational treatment

In the VBE step, the forward and backward passes of algorithinand5.2 are carried out on
each sequence, resulting in a set of sufficient statistics for each ofttltelen state sequences.
These are then pooled to form a combined statistic. For example, equati@g becomes

T; T;
WX) = Z<Xi,t—1x71—t_1> = Z Tit-1-1+ wi,t—lw;,rt—l 5 (5.148)
t=1

t=1 =

andthen Wi=> W, (5.149)
i=1
whereY; ;; andw; ; are the results of the VBE step on tite sequence. Each of the required
sufficient statistics in equation5.0265.132 are obtained in a similar fashion. In addition, the
number of time step¥' is replaced with the total over all sequendes- " | T;.

Algorithmically, the VBM step remains unchanged, as do the updates for the hyperparameters
{a, B,7,6,a,b}. The updates for the hyperparametggsandX, which govern the mean and
covariance of the auxiliary hidden state at tilme: 0 for every sequence, have to be modified
slightly and become

1 n

Ko < n ;wzpo ) (5.150)
1 n

X0~ > [Ti,O,O + (o — wio) (1o — wi,O)T] ; (5.151)

=1

where theu, appearing in the update fai, is the updated hyperparameter. In the case of

n = 1, equations §.150 and 6.157 resemble their originals forms given in sectibr8.6

Note that these batch updates trivially extend the analogous result for ML parameter estimation
of linear dynamical systems presented by Ghahramani and Hi@bahramani and Hintgn

19964 equation (25)), since here we do not assume that the sequences are equal in length (it is
clear from the forward and backward algorithms in both the ML and VB implementations that
the posterior variance of the auxiliary state, o will only be constant if all the sequences have

the same length).

Finally the computation of the lower bourfel is unchanged except that it now involves a con-
tribution from each sequence

F = —KL(B) — (KL(A| B)) y5)

B KL(p) - <KL(D | p)>q(p) - <KL(C ‘ P, D)>q(p,D) + Zln AL ,
i=1

whereln Z'() is computed in the VBE step in algorithBnl for each sequence individually.
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5.3.9 Modifications for a fully hierarchical model

As mentioned towards the end of sectmi.2 the hierarchy of hyperparameters for priors over

the parameters is not complete for this model as it stands. There remains the undesirable feature
that the parameteps, andyu, contain more free parameters as the dimensionality of the hidden
state increases. There is a similar problem for the precision hyperparameters. We refer the
reader to chaptet in which a similar structure was used for the hyperparameters of the factor
loading matrices.

With such variational distributions in place for VB LDS, the propagation algorithms would
change, replacing, for example, with its expectation over its variational posteri¢e) (q,.,

and the hyperhyperparametess, b, of equation $.17) would be updated to best fit the vari-
ational posterior fory, in the same fashion that the hyperparametetsare updated to reflect
the variational posterior op (section5.3.9. In addition a similar KL penalty term would arise.

For the parameters, and u,, again KL terms would crop up in the lower bound, and where
these quantities appeared in the propagation algorithms they would have to be replaced with
their expectations under their variational posterior distributions.

These modifications were considered too time-consuming to implement for the experiments
carried out in the following section, and so we should of course be mindful of their exclusion.

5.4 Synthetic Experiments

In this section we give two examples of how the VB algorithm for linear dynamical systems
can discover meaningful structure from the data. The first example is carried out on a data set
generated from a simple LDS with no inputs and a small number of hidden states. The second
example is more challenging and attempts to learn the number of hidden states and their dynam-
ics in the presence of noisy inputs. We find in both experiments that the ARD mechanism which
optimises the precision hyperparameters can be used successfully to determine the structure of
the true generating model.

5.4.1 Hidden state space dimensionality determination (no inputs)

An LDS with hidden state dimensionality &f= 6 and an output dimensionality pf= 10 was
set up with parameters randomly initialised according to the following procedure.

The dynamics matri¥d (k x k) was fixed to have eigenvalues (065, .7,.75, .8, .85, .9), con-
structed from a randomly rotated diagonal matrix; choosing fairly high eigenvalues ensures that
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Figure 5.4. Hinton diagrams of the dynamic$) (@and output () matrices after 500 iterations

of VBEM. From left to right, the length of the observed sequepge increases fronT’ =

10 to 300. This true data was generated from a linear dynamical systemiwith6 hidden

state dimensions, all of which participated in the dynamics (see text for a description of the
parameters used). As a visual aid, the entried afatrix and the columns of th& matrix have

been permuted in the order of the size of the hyperparameters in

every dimension participates in the hidden state dynamics. The output digpix k) had each

entry sampled from a bimodal distribution made from a mixture of two Gaussians with means
at (2,-2) and common standard deviations of 1; this was done in an attempt to keep the matrix
entries away from zero, such that every hidden dimension contributes to the output covariance
structure. Both the state noise covariadg@nd output noise covariande were set to be the
identity matrix. The hidden state at time= 1 was sampled from a Gaussian with mean zero
and unit covariance.

From this LDS model several training sequences of increasing length were generated, ranging
fromT = 10, ..., 300 (the data sets are incremental). A VBLDS model with hidden state space
dimensionalityk = 10 was then trained on each single sequence, for a total of 500 iterations

of VBEM. The resultingA andC' matrices are shown in figuf4. We can see that for short
sequences the model chooses a simple representation of the dynamics and output processes,
and for longer sequences the recovered model is the same as the underlying LDS model which
generated the sequences. Note that the model learns a predominantly diagonal dynamics matrix,
or a self-reinforcing dynamics (this is made obvious by the permutation of the states in the
figure (see caption), but is not a contrived observation). The likely reason for this is the prior's
preference for thed matrix to have small sum-of-square entries for each column; since the
dynamics matrix has to capture a certain amount of power in the hidden dynamics, the least
expensive way to do this is to place most of the power on the diagonal entries.

Plotted in figureb.5 are the trajectories of the hyperparameterand-~y, during the VB optimi-

sation for the sequence of length= 300. For each hidden dimensigrthe output hyperparam-
eter~; (vertical) is plotted against the dynamics hyperparamefert is in fact the logarithm

of thereciprocalof the hyperparameter that is plotted on each axis. Thus if a hidden dimension
becomes extinct, the reciprocal of its hyperparameter tends to zero (bottom left of plots). Each
component of each hyperparameter is initialised to 1 (see annotation for iteration 0, at top right
of plot 5.5(a), and during the optimisation some dimensions become extinct. In this example,
four hidden state dimensions become extinct, both in their ability to participate in the dynamics
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Figure 5.5: Trajectories of the hyperparameters for the gase300, plotted asiné (horizon-

tal axis) againstn% (vertical axis). Each trace corresponds to oné: ¢fidden state dimen-
sions, with points plotted after each iteration of VBEM. Note the initialisatiofilof ) for all
(aj,74), 3 =1,...,k (labelled iteration 0). The direction of each trajectory can be determined
by noting the spread of positions at successive iterations, which are resolvable at the begin-
ning of the optimisation, but not so towards the end (see annotated close-up). Note especially
that four hyperparameters are flung to locations corresponding to very small variances of the
prior for both theA andC matrix columns (i.e. this has effectively removed those hidden state
dimensions), and six remain in the top right with finite variances. Furthermore, the L-shaped
trajectories of the eventually extinct hidden dimensions imply that in this example the dimen-
sions are removed first from the model's dynamics, and then from the output process (see figure
5.8(a,c) also).

and their contribution to the covariance of the output data. Six hyperparameters remain useful,
corresponding té& = 6 in the true model. The trajectories of these are seen more clearly in
figure5.5(b)

5.4.2 Hidden state space dimensionality determination (input-driven)

This experiment demonstrates the capacity of the input-driven model to use (or not to use) an
input-sequence to model the observed data. We obtained a seqyenoélengthT = 100 by
running the linear dynamical system as given in equatiéig5.5), with a hidden state space
dimensionality oft = 2, generating an observed sequence of dimensionality4. The input
sequenceu;.r, consisted of three signals: the first two wérphase-lagged sinusoids of period

50, and the third dimension was uniform noisdJ(0, 1).

The parameterd, C, andR were created as described above (sedidnl). The eigenvalues of
the dynamics matrix were set (@5, .7), and the covariance of the hidden state noise set to the
identity. The parameteB (k x u) was set to the all zeros matrix, so the inputs did not modulate

191



VB Linear Dynamical Systems 5.4. Synthetic Experiments

the hidden state dynamics. The first two columns of £hép x «) matrix were sampled from

the uniformU(—10, 10), so as to induce a random (but fixed) displacement of the observation
sequence. The third column of the matrix was set to zeros, so as to ignore the third input
dimension (noise). Therefore the only noise in the training data was that from the state and
output noise mechanismg @ndR).

Figure5.6 shows the input sequence used, the generated hidden state sequence, and the result-
ing observed data, ovar = 100 time steps. We would like the variational Bayesian linear
dynamical system to be able to identify the number of hidden dimensions required to model
the observed data, taking into account the modulatory effect of the input sequence. As in the
previous experiment, in this example we attempt to learn an over-specified model, and make use
of the ARD mechanisms in place to recover the structure of the underlying model that generated
the data.

In full, we would like the model to learn that there are= 2 hidden states, that the third
input dimension is irrelevant to predicting the observed data, that all the input dimensions are
irrelevant for the hidden state dynamics, and that it is only the two dynamical hidden variables
that are being embedded in the data space.

The variational Bayesian linear dynamical system was run kith 4 hidden dimensions, for

a total of 800 iterations of VBE and VBM steps (see algorithr® and its sub-algorithms).
Hyperparameter optimisations after each VBM step were introduced on a staggered basis to
ease interpretability of the results. The dynamics-related hyperparameter optimisations (i.e.
and 3) were begun after the first 10 iterations, the output-related optimisationsy (aed d)

after 20 iterations, and the remaining hyperparametersu(ite X andp,) optimised after 30
iterations. After each VBE step; was computed and the current state of the hyperparameters
recorded.

Figure5.7 shows the evolution of the lower bound on the marginal likelihood during learning,
displayed as both the value &f computed after each VBE step (figuse’(a), and thechange

in F between successive iterations of VBEM (fig&&(b). The logarithmic plot shows the

onset of each group of hyperparameter optimisations (see caption), and also clearly shows three
regions where parameters are being pruned from the model.

As before we can analyse the change in the hyperparameters during the optimisation process. In
particular we can examine the ARD hyperparameter veetofs, v, 4, which contain the prior
precisions for the entries of each column of each of the matricds, C' and D respectively.

Since the hyperparameters are updated to reflect the variational posterior distribution over the
parameters, a large value suggest that the relevant column contains entries are close to zero, and
therefore can be considered excluded from the state-space model equadpasd 6.5).
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(a) 3 dimensional input sequence.
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(b) 2 dimensional hidden state sequence.
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(c) 4 dimensional observed data.

Figure 5.6: Data for the input-driven example in section.2 (a). The 3 dimensional input

data consists of two phase-lagged sinusoids of period 50, and a third dimension consisting of
noise uniformly distributed of0, 1]. Both B and D contain zeros in their third columns, so the
noise dimension is not used when generating the synthetic @ata he hidden state sequence
generated from the dynamics matri®, which in this example evolves independently of the
inputs. (c): The observed data, generated by combining the embedded hidden state sequence
(via the output matrix”') and the input sequence (via the input-output mafpix and then

adding noise with covariancB. Note that the observed data is now a sinusoidally modulated
simple linear dynamical system.
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(a) Evolution of F during iterations of VBEM. (b) Change inF between successive iterations.

Figure 5.7: Evolution of the lower boun#l during learning of the input-dependent model of
section5.4.2 (a): The lower boundF increases monotonically with iterations of VBENh):
Interesting features of the optimisation can be better seen in a logarithmic plot of the change of
F between successive iterations of VBEM. For example, it is quite clear there is a sharp increase
in F at 10 iterations (dynamics-related hyperparameter optimisation activated), at 20 iterations
(output-related hyperparameter optimisation activated), and at 30 iterations (the remaining hy-
perparameter optimisations are activated). The salient peaks around 80, 110, and 400 iterations
each correspond to the gradual automatic removal of one or more parameters from the model by
hyperparameter optimisation. For example, it is quite probable that the peak at around iteration
400 is due to the recovery of the first hidden state modelling the dynamics (seeSigure
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Figure5.8 displays the components of each of the four hyperparameter vectors throughout the
optimisation. The reciprocal of the hyperparameter is plotted since it is more visually intuitive
to consider the variance of the parameters falling to zero as corresponding to extinction, instead
of the precision growing without bound. We can see that, by 500 iterations, the algorithm has
(correctly) discovered that there are only two hidden variables participating in the dynamics
(from «), these same two variables are used as factors embedded in the outpui )fribrat

none of the input dimensions is used to modulate the hidden dynamics @yoand that just

two dimensions of the input are required to displace the data (&pmrhe remaining third
dimension of the inputis in fact disregarded completely by the model, which is exactly according
to the recipe used for generating this synthetic data.

Of course, with a smaller data set, the model may begin to remove some parameters corre-
sponding to arcs of influence between variables across time steps, or between the inputs and
the dynamics or outputs. This and the previous experiment suggest that with enough data, the
algorithm will generally discover a good model for the data, and indeed recover the true (or
equivalent) model if the data was in fact generated from a model within the class of models
accessible by the specified input-dependent linear dynamical system.

Although not observed in the experiment presented here, some caution needs to be taken with
much larger sequences to avoid local minima in the optimisation. In the larger data sets the
problems of local maxima or very long plateau regions in the optimisation become more fre-
guent, with certain dimensions of the latent space modelling either the dynamics or the output
processes, but not both (or neither). This problem is due to the presence of a dynamics model
coupling the data across each time step. Recall that in the factor analysis model (dhapter
because of the spherical factor noise model, ARD can rotate the factors into a basis where the
outgoing weights for some factors can be set to zero (by taking their precisions to infinity). Un-
fortunately this degeneracy is not present for the hidden state variables of the LDS model, and
so concerted efforts are required to rotate the hidden state along the entire sequence.

5.5 Elucidating gene expression mechanisms

Description of the process and data

The data consists of = 34 time series of the expressions of genes involved in a transcriptional
process in the nuclei of human T lymphocytes. Each sequence condists & measurements

of the expressions gf = 88 genes, at time pointd), 2, 4, 6, 8, 18, 24, 32,48, 72) hours after a
treatment to initiate the transcriptional process (Raagel et al.2001], section 2.1). For each
sequence, the expression levels of each gene were normalised to have mean 1, by dividing by
the mean gene expression over the 10 time steps. This normalisation reflects our interest in
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Figure 5.8: Evolution of the hyperparameters with iterations of variational Bayesian EM, for
the input-driven model trained on the data shown in fighu@(see sectiorb.4.2. Each plot
shows the reciprocal of the components of a hyperparameter vector, corresponding to the prior
variance of the entries of each column of the relevant matrix. The hyperparameter optimisation
is activated after 10 iterations of VBEM for the dynamics-related hyperparametargl 3,

after 20 iterations for the output-related hyperparamejensdd, and after 30 for the remaining
hyperparmeters(a): After 150 iterations of VBEM,O%3 -0 andai4 — 0, which corresponds

to the entries in the 3rd and 4th columnsAftending to zero. Thus only the remaining two
hidden dimensions (1,2) are being used for the dynamics pro@@ssAll hyperparameters in

the 3 vector grow large, corresponding to each of the column entrig3 being distributed
about zero with high precision; thus none of the dimensions of the input vector is being used
to modulate the hidden statéc): Similar to the A matrix, two hyperparameters in the vector

~ remain small, and the remaining two increase without bouhd—> 0andX — 0. This
corresponds to just two hidden dimensions (factors) causing the observed data throagh the
embedding. These are tBamedimensions as used for the dynamics process, agreeing with
the mechanism that generated the déty: Just one hyperparametg%, — 0, corresponding

to the model ignoring the third dimension of the input, which is a confusing input unused in
the true generation process (as can be seen from fig@¢a). Thus the model learns that this
dimension is irrelevant to modelling the data.

196



VB Linear Dynamical Systems 5.5. Elucidating gene expression mechanisms

%

i

RS AL

A

eIrADENS

S
TR

6

b3
S RN S SIFRIE S
PN T

i3
S e

YIEEE

A SN Al 2
LS

CHINE O

80

N

Figure 5.9: The gene expression dat&aihgel et al(2007). Each of the 88 plots corresponds
to a particular gene on the array, and contains all of the recorded 34 sequences each of length
10.
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the profiles of the genes rather than the absolute expression levels. Figst®ws the entire
collection of normalised expression levels for each gene.

A previous approach to modelling gene expression levels which used graphical models to model
the causal relationships between genes is presenteaitidman et al(2000. However, this ap-

proach ignored the temporal dependence of the gene intensities during trials and went only as
far as to infer the causal relationships between the genes within one time step. Their method dis-
cretised expression levels and made use of efficient candidate proposals and greedy methods for
searching the space of model structures. This approach also assumed that all the possibly inter-
acting variables are observed on the microarray. This precludes the existence of hidden causes
or unmeasured genes whose involvement might dramatically simplify the network structure and
therefore ease interpretability of the mechanisms in the underlying biological process.

Linear dynamical systems and other kinds of possibly nonlinear state-space models are a good
class of model to begin modelling this gene expression data. The gene expression measurements
are the noisy 88-dimensional outputs of the linear dynamical system, and the hidden states of
the model correspond to unobserved factors in the gene transcriptional process which are not
recorded in the DNA microarray — they might correspond simply to unmeasured genes, or
they could model more abstractly the effect of players other than genes, for example regulatory
proteins and background processes such as mRNA degradation.
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Some aspects of using the LDS model for this data are not ideal. For example, we make the
assumptions that the dynamics and output processes are time invariant, which is unlikely in a
real biological system. Furthermore the times at which the data are taken are not linearly-spaced
(see above), which might imply that there is some (possibly well-studied) non-linearity in the
rate of the transcriptional process; worse still, there may be whole missing time slices which, if
they had been included, would have made the dynamics process closer to stationary. There is
also the usual limitation that the noise in the dynamics and output processes is almost certainly
not Gaussian.

Experiment results

In this experiment we use the input-dependent LDS model feed backhe gene expressions

from the previous time step into the input for the current time step; in doing so we attempt

to discover gene-gene interactions across time steps (in a causal sense), with the hidden state
in this model now really representing unobserved variables. An advantage of this architecture
is that we can now use the ARD mechanisms to determine which genes are influential across
adjacent time slices, just as before (in sectioh? we determined which inputs were relevant

to predicting the data.

A graphical model for this setup is given in figuselQ When the input is replaced with the
previous time step’s observed data, the equations for the state-space model can be rewritten from
equations%.4) and £.5) into the form:

Xy = Axp_1 + Byt—l + wy (5152)
yt =Cx¢+ Dy;—1 + vy . (5.153)

As a function only of the data at the previous time s§gp,;, the data at timeé can be written
yt=(CB+ D)yi—1+ry, (5.154)

wherer; = v; + Cw; + C'Ax;_; includes all contributions from noise and previous states.
Thus to first order the interaction between géraad gene: can be characterised by the element
[CB + D], of the matrix. Indeed this matrix need not be symmetric and the element represents
activation or inhibition from gend to genea at the next time step, depending on its sign. We
will return to this quantity shortly.

5.5.1 Generalisation errors

For this experiment we trained both variational Bayesian and MAP LDS models on the first
30 of the 34 gene sequences, with the dimension of the hidden state ranging frorh to
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Figure 5.10: The feedback graphical model with outputs feeding into inputs.

20. The remaining 4 sequences were set aside as a test set. Since we required an input at time
t = 1, u, the observed sequences that were learnt began from time step. The MAP

LDS model was implemented using the VB LDS with the following two modifications: first,

the hyperparameteks, 3,~, d anda, b were not optimised (however, the auxiliary state prior
meanu, and covarianc&, were learnt); second, the sufficient statistics for the parameters were
artificially boosted by a large factor to simulate delta functions for the posterior — i.e. in the
limit of large n the VBM step recovers the MAP M step estimate of the parameters.

Both algorithms were run for 300 EM iterations, with no restarts. The one-step-ahead mean
total square reconstruction error was then calculated for both the training sequences and the test
sequences using the learnt models; the reconstruction ahtlsdservation for théh sequence,

Yit» was made like so:

yytAP = CmaP (Xit)gx + DMAPYit—1 (5.155)
it = (Clac (Xitdax + (D)ap¥it—1 - (5.156)

To clarify the procedure: to reconstruct the observations foittheequence, we use the entire
observation sequengg ;.7 to first infer the distribution over the hidden state sequenger,

and then we attempt to reconstruct egghusing just the hidden statg ; andy; ;—;. The form

given for the VB reconstruction irb(159 is valid since, subject to the approximate posterior:

all of the variational posterior distributions over the parameters and hidden states are Gaussian,
C andx; are independent, and the noise is Student-t distributed with mean zero.

Thus for each value df, and for each of the MAP and VB learnt models, the total squared error
per sequence is calculated according to:

T.
1 .
Figain = — S Fie —yin)” (5.157)
train i€train t=2
T;
1 - 2
Etest= Z Z (Vi —yie)” - (5.158)
Mest /cesti—2
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Figure 5.11: The per sequence squared reconstruction error for one-step-ahead prediction (see
text), as a function of the dimension of the hidden state, ranging frefril to 64, on(a) the 30
training sequences, aifl) the 4 test sequences.

Figure5.11shows the squared reconstruction error for one-step-ahead prediction, as a function
of the dimension of the hidden state for both the training and test sequences. We see that the
MAP LDS model achieves a decreasing reconstruction error on the training set as the dimen-
sionality of the hidden state is increased, whereas VB produces an approximately constant error,
albeit higher. On prediction for the test set, MAP LDS performs very badly and increasingly
worse for more complex learnt models, as we would expect; however, the VB performance is
roughly constant with increasing suggesting that VB is using the ARD mechanism success-
fully to discard surplus modelling power. The test squared prediction error is slightly more than
that on the training set, suggesting that VB is overfitting slightly.

5.5.2 Recovering gene-gene interactions

We now return to the interactions between gedesda — more specifically the influence of
gened on genex — in the matrix[C'B + D]. Those entries in the matrix which are significantly
different from zero can be considered as candidates for ‘interactions’. Here we consider an
entry to be significant if the zero point is more than 3 standard deviations from the posterior
mean for that entry (based on the variational posterior distribution for the entry). Calculating
the significance for the combin&dB + D matrix is laborious, and so here we provide results for
only the D matrix. Since there is a degeneracy in the feedback model, we chose to effectively
remove the first tern(;’ B, by constraining all (but one) of the hyperparameters to very high
values. The spared hyperparamete8iis used to still model an offset in the hidden dynamics
using the bias input. This process essentially enfoj€és),, = 0 for all gene-gene pairs, and

so simplifies the interpretation of the learnt model.
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Figure5.12shows the interaction matrix learnt by the MAP and VB models (with the column
corresponding the bias removed), for the cask ef 2 hidden state dimensions. For the MAP
result we simply showb + C'B. We see that the MAP and VB matrices share some aspects in
terms of the signs and size of some of the interactions, but under the variational posterior only
a few of the interactions are significantly non-zero, leading to a very sparse interaction matrix
(see figureb.13. Unfortunately, due to proprietary restrictions on the expression data the iden-
tities of the genes cannot be published here, so it is hard to give a biological interpretation to the
network in figure5.13 The hope is that these graphs suggest interactions which agree qualita-
tively with the transcriptional mechanisms already established in the research community. The
ultimate result would be to be able to confidently predict the existence of as-yet-undocumented
mechanisms to stimulate and guide future biological experiments. The VB LDS algorithm may
provide a useful starting point for this research programme.

5.6 Possible extensions and future research

The work in this chapter can be easily extended to linear-Gaussian state-space models on trees,
rather than chains, which could be used to model a variety of data. Moreover, for multiply-
connected graphs, the VB propagation subroutine can still be used within a structured VB ap-
proximation.

Another interesting application of this body of theory could be to a Bayesian version of what
we call aswitching state-space mod@wSSM), which has the following dynamics:

a switch variables; with dynamics p(s; =i|si—1 =j) =Tj; , (5.159)
hidden state dynamicsp(x; | s¢—1, %x¢—1) = N(x¢ | As,_,%X¢—1,Qs,_,) , (5.160)
and output function p(y: | s¢,x¢:) = N(y¢ | Cs,x¢, Rs,) - (5.161)

That is to say we have a non-stationary switching linear dynamical system whose parameters are
drawn from a finite set according to a discrete variable with its own dynamics. The appealing
aspect of this model is that it contains many models as special cases, including: mixtures of
factor analysers, mixtures of linear dynamical systems, Gaussian-output hidden Markov models,
and mixtures of Gaussians. With appropriate optimisation of the lower bound on the marginal
likelihood, one would hope that the data would provide evidence that one or other, or indeed
hybrids, of the above special cases was the underlying generating model, or best approximates
the true generating process in some sense. We have seen an example of variational Bayesian
learning for hidden Markov models in chapter

We have not commented on how reliably we expect the variational Bayesian method to approx-
imate the marginal likelihood. Indeed a full analysis of the tightness of the variational bound
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VB Linear Dynamical Systems 5.6. Possible extensions and future research

(a) The MAP EM solutior{D + C'B]aa. (b) Means(D,q) after VBEM.

(c) Varianceg D2 ;) — (D,q)? after VBEM. (d) Significant entries oD undergp (D).

Figure 5.12: The gene-gene interaction matrix learnt from(#)eMAP and (b) VB models

(with the column corresponding to the bias input removed). Note that some of the entries are
similar in each of the two matrices. Also showr{é$the covariance of the posterior distribution

of each element, which is a separable product of functions of each of the two genes’ identities.
Show in(d) are the entries ofD,,) which are significantly far from zero, that is the value of
zero is more than 3 standard deviations from the mean of the posterior.
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VB Linear Dynamical Systems 5.6. Possible extensions and future research

Figure 5.13: An example representation of the recovered interactions in thatrix, as shown

in figure5.12(d) Each arc between two genes represents a significant enfry Red (dotted)

and green (solid) denote inhibitory and excitatory influences, respectively. The direction of the
influence is from the the thick end of the arc to the thin end. Ellipses denote self-connections.
To generate this plot the genes were placed randomly and then manipulated slightly to reduce

arc-crossing.
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would require sampling for this model (as carried ouFniwirth-Schnatter1995 for exam-

ple). This is left for further work, but the reader is referred to chagtef this thesis and also

to Miskin (2000, where sampling estimates of the marginal likelihood are directly compared to
the VB lower bound and found to be comparable for practical problems.

We can also model higher than first order Markov processes using this model, by extending the
feedback mechanism used in sectiof This could be achieved by feeding back concatenated
observed datg;_4.;—1 into the current input vectar;, whered is related to the maximum order
present in the data. This procedure is common practice to model higher order data, but in our
Bayesian scheme we can also learn posterior uncertainties for the parameters of the feedback,
and can entirely remove some of the inputs via the hyperparameter optimisation.

This chapter has dealt solely with the case of linear dynamics and linear output processes with
Gaussian noise. Whilst this is a good first approximation, there are many scenarios in which
a non-linear model is more appropriate, for one or both of the processes. For exaanpke,

et al. (200)) present a model with factor analysis as the output process and a two layer MLP
network to model a non-linear dynamics process from one time step to the nextakuda

and Karhuner{(2002 extend this to include a non-linear output process as well. In both, the
posterior is assumed to be of (constrained) Gaussian form and a variational optimisation is
performed to learn the parameters and infer the hidden factor sequences. However, their model
does not exploit the full forward-backward propagation and instead updates the hidden state one
step forward and backward in time at each iteration.

5.7 Summary

In this chapter we have shown how to approximate the marginal likelihood of a Bayesian linear
dynamical system using variational methods. Since the complete-data likelihood for the LDS
model is in the conjugate-exponential family it is possible to write down a VBEM algorithm

for inferring the hidden state sequences whilst simultaneously maintaining uncertainty over the
parameters of the model, subject to the approximation that the hidden variables and parameters
are independent given the data.

Here we have had to rederive the forward and backward passes in the VBE step in order for them
to take as input the natural parameter expectations from the VBM step. It is an open problem
to prove that for LDS models the natural parameter mapgi(@) is not invertible; that is

to say there exists n@ in general that satisfie$(0) = ¢ = (9(0))40(0)- We have therefore
derived here the variational Bayesian counterparts of the Kalman filter and Rauch-Tung-Striebel
smoother, which can in fact be supplied wathydistribution over the parameters. As with other
conjugate-exponential VB treatments, the propagation algorithms have the same complexity as
the MAP point-parameter versions.
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We have shown how the algorithm can use the ARD procedure of optimising precision hyperpa-
rameters to discover the structure of models of synthetic data, in terms of the number of required
hidden dimensions. By feeding back previous data into the inputs of the model we have shown
how it is possible to elucidate interactions between genes in a transcription mechanism from
DNA microarray data. Collaboration is currently underway to interpret these results (personal

communication with D. Wild and C. Rangel).
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